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ON POTENTIALLY H-GRAPHIC SEQUENCES

Meng-Xiao Yin, Nanning, Jian-Hua Yin, Haikou

(Received April 17, 2005)

Abstract. For given a graph H, a graphic sequence π = (d1, d2, . . . , dn) is said to be
potentially H-graphic if there is a realization of π containing H as a subgraph. In this
paper, we characterize the potentially (K5 − e)-positive graphic sequences and give two
simple necessary and sufficient conditions for a positive graphic sequence π to be potentially
K5-graphic, where Kr is a complete graph on r vertices and Kr − e is a graph obtained
from Kr by deleting one edge. Moreover, we also give a simple necessary and sufficient
condition for a positive graphic sequence π to be potentially K6-graphic.
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1. Introduction

The set of all non-increasing nonnegative integer sequences π = (d1, d2, . . . , dn)
with di 6 n − 1 for each i is denoted by NSn. A sequence π ∈ NSn is said to be

graphic if it is the degree sequence of a simple graph G on n vertices, and such
a graph G is called a realization of π. The set of all graphic sequences in NSn is
denoted by GSn. If each term of a graphic sequence π ∈ GSn is nonzero, then π

is said to be positive graphic. For a sequence π = (d1, d2, . . . , dn) ∈ NSn, define
σ(π) = d1 + d2 + . . . + dn. For given a graph H , a sequence π ∈ GSn is said to be

potentially H-graphic, if there is a realization of π containing H as a subgraph. If π
has a realization in which the r+1 vertices of largest degree induce a clique, then π is

said to be potentially Ar+1-graphic. Erdős, Jacobson and Lehel [1] in 1991 considered
an extremal problem on potentially Kr+1-graphic sequences: determine the smallest

even integer σ(Kr+1, n) such that every sequence π ∈ GSn with σ(π) > σ(Kr+1, n) is
potentiallyKr+1-graphic. They proved that σ(K3, n) = 2n for n > 6 and conjectured
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that σ(Kr+1, n) = (r − 1)(2n − r) + 2 for sufficiently large n. Gould et al. [3] and

Li and Song [6] independently proved it for r = 3. Recently, Li et al. [7], [8] proved
that the conjecture is true for r = 4 and n > 10 and for r > 5 and n >

(
r
2

)
+ 3.

Although the Erdős-Jacobson-Lehel conjecture was confirmed, it leaves a natural

open question: given a graphic sequence π, how to tell whether it is potentially
Kr+1-graphic? In [12], Rao considered the problem of characterizing potentially

Kr+1-graphic sequences, proved that a sequence π ∈ GSn is potentially Ar+1-graphic
if and only if it is potentially Kr+1-graphic, and developed a “Havel-Hakimi” type

procedure as follows to determine the maximum clique number of a graph with a
given degree sequence.

Let n > r + 1 and π = (d1, d2, . . . , dn) ∈ NSn with dr+1 > r. We define sequences
π0, . . . , πr+1 as follows. Let π0 = π. Let

π1 = (d2 − 1, . . . , dr+1 − 1, d
(1)
r+2, . . . , d

(1)
n ),

where d
(1)
r+2 > . . . > d

(1)
n is the rearrangement of dr+2−1, . . . , dd1+1−1, dd1+2, . . . , dn.

For 2 6 i 6 r + 1, given πi−1 = (di − i + 1, . . . , dr+1 − i + 1, d
(i−1)
r+2 , . . . , d

(i−1)
n ), let

πi = (di+1 − i, . . . , dr+1 − i, d
(i)
r+2, . . . , d

(i)
n ),

where d
(i)
r+2 > . . . > d

(i)
n is the rearrangement of d

(i−1)
r+2 − 1, . . . , d

(i−1)
di+1 − 1, d

(i−1)
di+2 , . . . ,

d
(i−1)
n .

Theorem 1.1 [12]. Let n > r + 1 and π = (d1, d2, . . . , dn) ∈ NSn with dr+1 > r.

Then π is potentially Ar+1-graphic if and only if πr+1 is graphic.

Theorem 1.2 [12]. Let n > r + 2, π = (d1, d2, . . . , dn) with dr+2 > dr+3 > . . . >
dn. If there exists a graph G on the vertex set V (G) = {v1, v2, . . . , vn} such that
dG(vi) = di for i = 1, 2, . . . , n and {v1, v2, . . . , vr+1} forms a complete subgraph of
G, then there is one such graph in which v1 is joined to vr+2, vr+3, . . . , vd1+1.

From the proof of Theorem 1.2, it is easy to obtain the following

Remark 1.1. Let n > r + 2 and π = (d1, d2, . . . , dn) with dr+2 > dr+3 > . . . >
dn. If there exists a graph G on the vertex set V (G) = {v1, v2, . . . , vn} such that
dG(vi) = di for i = 1, 2, . . . , n and the subgraph of G induced by {v1, v2, . . . , vr+1}
contains Kr+1 − e as a subgraph, where e = vrvr+1, then there is one such graph in

which v1 is joined to vr+2, vr+3, . . . , vd1+1.

In [13], Rao gave the following characterization for a sequence π ∈ GSn to be
potentially Ar+1-graphic.
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Theorem 1.3 [13]. Let n > r + 1 and π = (d1, d2, . . . , dn) ∈ GSn. Then π is

potentially Ar+1-graphic if and only if the following conditions hold:

(i) dr+1 > r,

(ii) σ(π) is even,
(iii) for any s and t, 0 6 s 6 r + 1 and 0 6 t 6 n− r − 1,

L(s, t) 6 R(s, t),

where L(s, t) =
s∑

i=1

di+
t∑

i=1

dr+1+i and R(s, t) = (s+t)(s+t−1)+
r+1∑

i=s+1

min{s+t,

di − r + s}+
n∑

i=r+t+2

min{s + t, di}.

The original proof of Theorem 1.3 remains unpublished, but recently Kézdy and

Lehel [4] have given a different proof using network flows. Unfortunately, the con-
ditions in Theorem 1.3 are not easy to check, but Luo et al. [10], [11] gave simple

characterizations for a positive graphic sequence π to be potentially Kr-graphic for
r = 3 and 4, and Yin and Li [15] also obtained two sufficient conditions for a graphic
sequence π to be potentially Kr-graphic. The following are their results.

Theorem 1.4 [10]. Let π = (d1, d2, . . . , dn) ∈ GSn be a positive graphic sequence

with n > 3. Then π is potentially K3-graphic if and only if d3 > 2 except for two
cases: π = (24) and π = (25), where the symbol xy in a sequence stands for y

consecutive terms, each equal to x.

Theorem 1.5 [11]. Let π = (d1, d2, . . . , dn) ∈ GSn be a positive graphic sequence

with n > 4 and d4 > 3. Then π is potentially K4-graphic if and only if π 6=
(n − 1, 3s, 1n−s−1) for s = 4, 5, and π is not one the following sequences:

n = 5: (4, 34), (34, 2);
n = 6: (46), (42, 34), (4, 34, 2), (36), (35, 1), (34, 22);
n = 7: (47), (4, 36), (4, 35, 1), (36, 2), (35, 2, 1);
n = 8: (37, 1), (36, 12).

Theorem 1.6 [15]. Let n > r + 1 and π = (d1, d2, . . . , dn) ∈ GSn with dr+1 > r.

If di > 2r − i for i = 1, 2, . . . , r − 1, then π is potentially Ar+1-graphic.

Theorem 1.7 [15]. Let n > 2r +2 and π = (d1, d2, . . . , dn) ∈ GSn with dr+1 > r.

If d2r+2 > r − 1, then π is potentially Ar+1-graphic.

Recently, Eschen and Niu [2] characterized potentially K4 − e-graphic sequences,
and Yin and Li [15] gave two sufficient conditions for a graphic sequence π to be
potentially Kr − e-graphic. In other words, they proved the following
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Theorem 1.8 [2]. Let n > 4 and π = (d1, d2, . . . , dn) ∈ GSn be a positive graphic

sequence. Then π is potentially K4−e-graphic if and only if the following conditions

hold:

(1) d1 > d2 > 3, d4 > 2;
(2) π 6= (36), (32, 24), (32, 23).

Theorem 1.9 [15]. Let n > r+1 and π = (d1, d2, . . . , dn) ∈ GSn with dr+1 > r−1.
If di > 2r − i for i = 1, 2, . . . , r − 1, then π is potentially Kr+1 − e-graphic.

Theorem 1.10 [15]. Let n > 2r+2 and π = (d1, d2, . . . , dn) ∈ GSn with dr−1 > r.

If d2r+2 > r − 1, then π is potentially Kr+1 − e-graphic.

In this paper, we characterize potentially K5 − e-positive graphic sequences, give

two simple necessary and sufficient conditions for a positive graphic sequence π to be
potentially K5-graphic, and also present a simple necessary and sufficient condition

for a positive graphic sequence π to be potentiallyK6-graphic, which are the following
four theorems.

Theorem 1.11. Let n > 5 and π = (d1, d2, . . . , dn) ∈ NSn be a positive graphic

sequence with d3 > 4 and d5 > 3. Then π is potentially K5 − e-graphic if and only

if π is not one of the following sequences:

(n− 1, 46, 1n−7), (n − 1, 42, 34, 1n−7), (n − 1, 42, 33, 1n−6);
n = 6: (46), (44, 32), (43, 32, 2);
n = 7: (43, 34), (52, 4, 34), (47), (45, 32), (5, 43, 33), (52, 45), (5, 45, 3), (43, 32, 22),

(44, 32, 2), (5, 42, 33, 2), (46, 2), (43, 33, 1);
n = 8: (58), (48), (52, 46), (6, 47), (44, 34), (5, 42, 35), (46, 32), (5, 46, 3), (43, 34, 2),

(47, 2), (44, 33, 1), (5, 42, 34, 1), (43, 33, 2, 1), (46, 3, 1), (5, 46, 1);
n = 9: (49), (43, 35, 1), (48, 2), (47, 3, 1), (5, 47, 1), (43, 34, 12), (47, 12);

n = 10: (48, 12).

Theorem 1.12. Let n > 14 and π = (d1, d2, . . . , dn) ∈ NSn be a positive graphic

sequence with d5 > 4. Then π is potentially A5-graphic if and only if π5 /∈ S, where

S = {(2), (22), (3, 1), (32), (3, 2, 1), (32, 2), (33, 1), (32, 12)}.

Theorem 1.13. Let n > 18 and π = (d1, d2, . . . , dn) ∈ NSn be a positive graphic

sequence with d6 > 5. Then π is potentially A6-graphic if and only if π6 /∈ S.
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Theorem 1.14. Let n be sufficiently large and π = (d1, d2, . . . , dn) ∈ NSn

be a positive graphic sequence with d5 > 4. Then π is potentially A5-graphic

if and only if (d1 − 4, d2 − 4, d3 − 4, d4 − 4, d5 − 4, d6, . . . , dn) is graphic, π 6=
(n − a, n− b, 44, 2n−(a+b+4), 1a+b−2) for 1 6 a 6 b 6 n− 6 and a + b 6 n− 4, and
π 6= (n − a, n− b, 45, 2n−(a+b+5), 1a+b−2) for 1 6 a 6 b 6 n − 6 and a + b 6 n− 5.

2. Preparations

In order to prove our main results, we need the following notations and known
results.

Let π = (d1, d2, . . . , dn) ∈ NSn and 1 6 k 6 n. Let

π′′k =

{
(d1 − 1, . . . , dk−1 − 1, dk+1 − 1, . . . , ddk+1 − 1, ddk+2, . . . , dn), if dk > k,

(d1 − 1, . . . , ddk
− 1, ddk+1, . . . , dk−1, dk+1, . . . , dn), if dk < k.

Let π′k = (d′1, d′2, . . . , d′n−1), where d′1 > d′2 > . . . > d′n−1 is the rearrangement of the
n − 1 terms of π′′k . π′k is called the residual sequence obtained by laying off dk from

π. It is easy to see that if π′
k is graphic then so is π, since a realization G of π can be

obtained from a realization G′ of π′k by adding a new vertex of degree dk and joining

it to the vertices whose degrees are reduced by one in going from π to π′
k. In fact

more is true:

Theorem 2.1 [5]. Let π = (d1, d2, . . . , dn) ∈ NSn and 1 6 k 6 n. Then π ∈ GSn

if and only if π′k ∈ GSn−1.

Theorem 2.2 [14]. Let π = (d1, d2, . . . , dn) ∈ NSn, d1 = m and σ(π) be even. If
there exists an integer n1, n1 6 n such that dn1 > h > 1 and n1 > [ 14 (m + h + 1)2]/h,

then π ∈ GSn.

Theorem 2.3 [9]. Let π = (d1, d2, . . . , dn) ∈ NSn and σ(π) be even. If d1−dn 6 1,
then π ∈ GSn.

Theorem 2.4 [3]. If π = (d1, d2, . . . , dn) ∈ GSn has a realization G containing H

as a subgraph, then there exists a realization G′ of π containing H as a subgraph so

that the vertices of H have the largest degrees of π.
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Lemma 2.1. If π = (d1, d2, . . . , dn) ∈ NSn is potentially Kr+1 − e-graphic,

then there is a realization G of π containing Kr+1 − e such that the r + 1 vertices
v1, v2, . . . , vr+1 of Kr+1 − e satisfy dG(vi) = di for i = 1, 2, . . . , r + 1 and e = vrvr+1.
���������

. According to Theorem 2.4, there is a graph G′ with vertex set V (G′) =
{v1, v2, . . . , dn} and dG′(vi) = di for i = 1, 2, . . . , n such that the subgraph of G′

induced by {v1, v2, . . . , vr+1} contains a Kr+1 − e. If e = vrvr+1, then the lemma
holds. We now assume e = vivj .

If vi, vj ∈ {v1, . . . , vr−1}, then for vi, there exists a vertex v′i ∈ G′ \ {v1, v2, . . . ,

vr+1} such that v′ivi ∈ E(G′) and v′ivr /∈ E(G′). Otherwise dr > di + 1, which is
a contradiction. Similarly, for vj , there is a vertex v′j ∈ G′ \ {v1, v2, . . . , vr+1} such
that vjv

′
j ∈ E(G′) and v′jvr+1 /∈ E(G′). Then

G = G′ − viv
′
i − vrvr+1 − vjv

′
j + vivj + vrv

′
i + vr+1v

′
j

is also a realization of π and G satisfies the conditions of the lemma.
If vi ∈ {v1, . . . , vr−1}, without loss of generality, let vj = vr, then there exists a

vertex v′i ∈ G′ \ {v1, v2, . . . , vr+1} such that v′ivi ∈ E(G′) and v′ivr+1 /∈ E(G′) since
di > dr+1. Hence,

G = G′ − viv
′
i − vrvr+1 + vivr + vr+1v

′
i

is also a realization of π satisfying the conditions of the lemma.
For vj ∈ {v1, . . . , vr−1}, the proof is similar to the above and is omitted here. �

Lemma 2.2. Let π = (3x, 2y, 1z) with even σ(π) and x + y + z = n > 1, then
π ∈ GSn if and only if π /∈ S.

���������
. For n = 1, since σ(π) is even, π must be (2), which belongs to S. For

n > 2, we consider the following cases.�
	���

1: n = 2. Then π is one of the following sequences: (3, 1), (22), (32), (12).

It is easy to check that only one sequence (12) is graphic.�
	���

2: n = 3. Since σ(π) is even, π may be (3, 2, 1), (32, 2), (23) or (2, 12). We

can see that (23) and (2, 12) are graphic.�
	���

3: n = 4. Then π is one of the following:

(33, 1), (3, 13), (34), (24), (3, 22, 1), (22, 12), (32, 22), (14), (32, 12),

which are all graphic except (32, 12) and (33, 1).�
	���

4: n = 5. It is easy to see that π must be one of the following graphic

sequences:

(2, 14), (3, 2, 13), (32, 2, 12), (33, 2, 1), (3, 23, 1), (25), (32, 23), (23, 12), (34, 2).
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�
	���

5: n > 6. If x > 0 and z > 0, then n > [ (3+1+1)2

4 ]. Hence, π is graphic from
Theorem 2.2. Otherwise, π is graphic by Theorem 2.3. �

Lemma 2.3. Let π = (d1, . . . , dn) ∈ NSn with dn > 1 and even σ(π). (1) If n > 9
and d1 6 4, then π ∈ GSn. (2) If n > 12 and d1 6 5, then π ∈ GSn.

���������
. (1) If d1 = 4 and dn 6 2, then n > 9 = max{[ (4+1+1)2

4 ], 1
2 [ (4+2+1)2

4 ]}.
Therefore, π is graphic by Theorem 2.2. If d1 = 4 and dn > 3, then by Theorem 2.3,
π is graphic. If d1 6 3, then π ∈ GSn by Lemma 2.2.
(2) If d1 6 4, then π ∈ GSn from (1). For d1 = 5 and dn 6 3, we have n > 12 =

max{ 1
2 [ (5+2+1)2

4 ], [ (5+1+1)2

4 ], 1
3 [ (5+3+1)2

4 ]}. By Theorem 2.2, π is graphic. If d1 = 5
and dn > 4, then π ∈ GSn by Theorem 2.3. �

Lemma 2.4. Let n > 5 and π = (d1, . . . , dn) ∈ NSn be a positive graphic

sequence with d3 > 4 and d5 > 3. If π is not potentially K5 − e-graphic and π′1 6=
(36), (32, 24), (32, 23), then n − 2 > d1 > . . . > d4 > d5 = d6 = . . . = dd1+2 >
dd1+3 > . . . > dn.

���������
. By way of contradiction, we assume that there exists an integer t, 5 6

t 6 d1 + 1 such that dt > dt+1. Since d3 > 4, d5 > 3 and π′1 6= (36), (32, 24), (32, 23),
the residual sequence π′

1 = (d′1, . . . , d
′
n−1) satisfies the conditions in Theorem 1.8.

Notice that d′i = di+1 − 1 for i = 1, . . . , t − 1. Therefore, π′
1 has a realization G

containingK4−e such that the degrees of the vertices of K4−e in G are d′1, d
′
2, d

′
3, d

′
4.

Thus π is potentially K5− e-graphic by {d2−1, d3−1, d4−1, d5−1} = {d′1, . . . , d′4}.
�

For convenience, we need the following definitions.
Let n > 5 and π = (d1, d2, . . . , dn) ∈ NSn with d3 > 4 and d5 > 3. We define

sequences π∗0 , π∗1 , π∗2 and π∗3 as follows. Let π∗0 = π. Let

π∗1 = (d2 − 1, . . . , d5 − 1, d
(1)
6 , . . . , d(1)

n ),

where d
(1)
6 > . . . > d

(1)
n is a rearrangement of d6 − 1, . . . , dd1+1− 1, dd1+2, . . . , dn. Let

π∗2 = (d3 − 2, . . . , d5 − 2, d
(2)
6 , . . . , d(2)

n ),

where d
(2)
6 > . . . > d

(2)
n is the rearrangement of d(1)

6 −1, . . . , d
(1)
d2+1−1, d

(1)
d2+2, . . . , d

(1)
n .

Let

π∗3 = (d4 − 3, d5 − 3, d
(3)
6 , . . . , d(3)

n ),

where d
(3)
6 > . . . > d

(3)
n is the rearrangement of d(2)

6 −1, . . . , d
(2)
d3+1−1, d

(2)
d3+2, . . . , d

(2)
n .
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Lemma 2.5. Let n > 5 and π = (d1, . . . , dn) ∈ NSn be a positive graphic

sequence with d3 > 4 and d5 > 3. Then π is potentially K5 − e-graphic if and only

if π∗3 is graphic.

���������
. The sufficient condition is obvious from the definition of π∗

3 . Now we

show the necessary condition. By Lemma 2.1 and Remark 1.1, π has a realization G0

on the vertex set V (G0) = {v1, v2, . . . , vn} such that dG0(vi) = di for i = 1, 2, . . . , n,

the subgraph of G0 induced by {v1, v2, v3, v4, v5} containsK5−e as a subgraph, where
e = v4v5, and v1 is joined to v6, v7, . . . , vd1+1. Let G′

1 be the graph obtained from G0

by deleting v1. Then G′
1 is a realization of π

∗
1 . By Remark 1.1, there exists a graph

G1 on the vertex set V (G1) = {v2, v3, . . . , vn} having the following properties. First,
dG1(vi) = di − 1 for i = 2, 3, 4, 5 and dG1(vi) = d

(1)
i for i = 6, . . . , n. Additionally,

the subgraph of G1 induced by {v2, v3, v4, v5} contains a K4 − e as a subgraph and

e = v4v5. Finally, v2 is joined to v6, v7, . . . , vd2+1. Denote the graph obtained from
G1 by deleting v2 by G′

2. Then G′
2 is a realization of π

∗
2 . By Remark 1.1, π

∗
2 has a

realization G2 on the vertex set V (G2) = {v3, v4, . . . , vn} satisfying: (1) dG2(vi) =
di − 2 for i = 3, 4, 5 and dG2(vi) = d

(2)
i for i = 6, . . . , n, (2) the subgraph of G2

induced by {v3, v4, v5} contains a K3 − e as a subgraph, where e = v4v5, and (3) v3

is joined to v6, v7, . . . , vd3+1. Deleting the vertex v3 from G2, we get a realization of

π∗3 . �

Lemma 2.6. Let n > 9 and π = (d1, . . . , dn) ∈ NSn be a positive graphic sequence

with d1 6 n− 2, d3 > 4 and d5 > 3. If the residual sequence π′
5 6= (37, 1), (36, 12) and

d3 > d5, then π is potentially K5 − e-graphic.

���������
. As d1 6 n − 2 and π′5 6= (37, 1), (36, 12), there is a realization G′ of

π′5 containing a K4 such that the degrees of vertices of K4 in G′ are d′1, . . . , d
′
4 by

Theorem 1.5 and Theorem 2.4. Since d3 > d5, we have {d1 − 1, d2 − 1, d3 − 1, } ⊆
{d′1, . . . , d′4}. Hence, π is potentially K5 − e-graphic. �

Lemma 2.7. Let n > 14 and π = (d1, . . . , dn) ∈ NSn be a positive graphic

sequence with d5 > 4 and n − 2 > d1 > . . . > d5 = d6 = . . . = dd1+2 > . . . > dn.

Then π is potentially A5-graphic.

���������
. Let π = (d1, d2, . . . , dn) ∈ NSn be a graphic sequence satisfying the

conditions of the Lemma. Here, |π| means the positive term number of π. By Theo-

rem 1.1, we only need to verify that π5 = (d(5)
6 , d

(5)
7 , . . . , d

(5)
n ) is graphic. According

to Theorem 1.6 and Theorem 1.7, it is sufficient to consider the following three cases:
�
	���


1. d1 6 6 and d10 6 2. Then d1 = 4, 5 or 6. We consider the following
three subcases.
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� � ����	���

1.1. d1 = 4. Then d5 = d6 = 4.We may assume that π = (46, d7, d8, d9,

2x, 1y) with x + y > 5 and even σ(π). It is easy to compute that the corresponding
π5 is (4, d7, d8, d9, 2x, 1y). It follows from Lemma 2.3 that π5 is graphic.
� � ����	���


1.2. d1 = 5. Then d5 = d6 = d7 > 4.
If d5 = d6 = d7 = 4, then we may assume that π = (5, d2, d3, d4, 43, d8, d9, 2x, 1y)

with x + y > 5 and even σ(π). Since 1 6
5∑

i=1

(di − 4) 6 4, we have d
(5)
6 6 4 and

|π5| > 9. So π5 is graphic by Lemma 2.3.

If d5 = d6 = d7 = 5, then we assume that π = (57, d8, d9, 2x, 1y). Notice that
5∑

i=1

(di − 4) = 5, we have d
(5)
6 6 4 and |π5| > 9. It follows from Lemma 2.3 that π5 is

graphic.
� � ����	���


1.3. d1 = 6. Then d5 = d6 = d7 = d8 > 4. The general form for π is

(6, d2, . . . , d9, 2x, 1y) with x + y > 5 and even σ(π).

If d5 = 4, then d
(5)
6 6 4 and

5∑
i=1

(di − 4) 6 8. Therefore, |π5| > 9, and so π5 is

graphic by Lemma 2.3.

If d5 = 5, then 6 6
5∑

i=1

(di − 4) 6 9. Thus, d(5)
6 6 4 and |π5| > 9. By Lemma 2.3,

π5 is graphic.

If d5 = 6, then
5∑

i=1

(di − 4) = 10 and d6 = d7 = d8 = 6. Therefore, d(5)
6 6 4 and

|π5| > 9. It follows from Lemma 2.3 that π5 is graphic.
�
	���


2. d2 6 5, d1 > 7 and d10 6 2.

Then d2 = 4 or 5. Since d10 6 2, we have d1 = 7. Thus d5 = d6 = d7 = d8 = d9 > 4.

If d2 = 4, then we may assume that π = (7, 48, 2x, 1y) with x+y > 5 and even σ(π).
It is easy to compute that the corresponding π5 is (4, 33, 2x, 1y), which is graphic by
Lemma 2.3.

If d2 = 5 and d5 = 4, then we may assume π = (7, 5, d3, d4, 45, 2x, 1y) with x+y > 5

and even σ(π). Since
5∑

i=1

(di − 4) 6 6, we have d
(5)
6 6 4 and |π5| > 9. It follows from

Lemma 2.3 that π5 is graphic.
If d2 = 5 and d5 = 5, then we assume π = (7, 58, 2x, 1y) with x + y > 5 and even

σ(π). Since
5∑

i=1

(di−4) = 7 and d6 = d7 = d8 = d9 = 5, we have d
(5)
6 6 4 and |π5| > 9.

Thus π5 is graphic by Lemma 2.3.
�
	���


3. d3 = 4, d1 > 7, d2 > 6 and d10 6 2. Then d1 = 7 and d2 = 6 or 7.
The general form for π is either (7, 6, 47, 2x, 1y) or (72, 47, 2x, 1y) with x + y > 5
and even σ(π). It is easy to compute that the corresponding π5 is (33, 2, 2x, 1y) or
(32, 22, 2x, 1y). From Lemma 2.2, both of them are graphic. �
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Lemma 2.8. Let n > 18 and π = (d1, . . . , dn) ∈ NSn be a positive graphic

sequence with n − 2 > d1 > . . . > d6 = d7 = . . . = dd1+2 > dd1+3 > . . . > dn and

d6 > 5. Then π is potentially A6-graphic.
���������

. Let π = (d1, d2, . . . , dn) ∈ NSn be a graphic sequence satisfying the
conditions of the Lemma. By Theorem 1.1, it is sufficient to show that π6 =
(d(6)

7 , d
(6)
8 , . . . , d

(6)
n ) is graphic. According to Theorem 1.6 and Theorem 1.7, we only

need to consider the following four cases:
�
	���


1. d1 6 8 and d12 6 3. Then the general form for π is (d1, d2, . . . , d11, 3x,

2y, 1z) with x + y + z > 7 and even σ(π). Consider the following four subcases.
� � ����	���


1.1. d1 = 5. Then d6 = d7 = 5. We may assume that π =
(57, d8, d9, d10, d11, 3x, 2y, 1z). It is easy to compute that π6 is (5, d8, . . . , d11, 3x,

2y, 1z). By Lemma 2.3, π6 is graphic.
� � ����	���


1.2. d1 = 6. Then d6 = d7 = d8 > 5.

If d6 = d7 = d8 = 5, then d
(6)
7 6 5 and |π6| > 12 by 1 6

6∑
i=1

(di − 5) 6 5. Thus by

Lemma 2.3, π6 is graphic.

If d6 = d7 = d8 = 6, then π = (68, d9, d10, d11, 3x, 2y, 1z). Since
6∑

i=1

(di − 5) = 6, we

have d
(6)
7 6 5 and |π6| > 12. Therefore, π6 is graphic from Lemma 2.3.

� � ����	���

1.3. d1 = 7. Then d6 = d7 = d8 = d9 > 5.

If d6 = 5, then
6∑

i=1

(di − 5) 6 10. Thus |π6| > 12 and d
(6)
7 6 5. It follows from

Lemma 2.3 that π6 is graphic.

If d6 = 6, then d
(6)
7 6 5 and |π6| > 12 by 7 6

6∑
i=1

(di − 5) 6 11. Therefore, π6 is

graphic by Lemma 2.3.

If d6 = 7, then we assume that π = (79, d10, d11, 3x, 2y, 1z). Since
6∑

i=1

(di − 5) = 12,

we know that d
(6)
7 6 5 and |π6| > 12. By Lemma 2.3, π6 is graphic.

� � ����	���

1.4. d1 = 8. Then d6 = d7 = d8 = d9 = d10 > 5.

If d6 = 5, then |π6| > 12 by
6∑

i=1

(di − 5) 6 15. Thus π6 is graphic by Lemma 2.3.

If d6 = 6, then 8 6
6∑

i=1

(di − 5) 6 16. Hence d
(6)
7 6 5 and |π6| > 12, and so π6 is

graphic by Lemma 2.3.

If d6 = 7, then 13 6
6∑

i=1

(di − 5) 6 17. Therefore, d
(6)
7 6 5 and |π6| > 12. By

Lemma 2.3, π6 is graphic.

If d6 = 8, then d
(6)
7 6 5 and |π6| > 12 by

6∑
i=1

(di − 5) = 18. It follows from

Lemma 2.3 that π6 is graphic.
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�
	���

2. d2 6 7, d1 > 9 and d12 6 3. Then d1 = 9 and d6 = d7 = d8 = d9 =

d10 = d11 > 5. The general form for π is (9, d2, . . . , d11, 3x, 2y, 1z) with x + y + z > 7
and even σ(π). Consider the following three subcases.
� � ����	���


2.1. d2 = 5. Then d6 = d7 = . . . = d11 = 5 and π = (9, 510, 3x, 2y, 1z).
The corresponding sequence π6 is (5, 44, 3x, 2y, 1z), which is graphic by Lemma 2.3.
� � ����	���


2.2. d2 = 6. Then d6 = d7 = . . . = d11 = 5 or 6.

If d6 = 5, then |π6| > 12 and d
(6)
7 6 5 by 5 6

6∑
i=1

(di − 5) 6 8. From Lemma 2.3,

π6 is graphic.

If d6 = 6, then |π6| > 12 and d
(6)
7 6 5 by

6∑
i=1

(di − 5) = 9. Therefore, π6 is graphic

by Lemma 2.3.
� � ����	���


2.3. d2 = 7. Then d6 = d7 = . . . = d11 = 5, 6 or 7.

If d6 = 5, then 6 6
6∑

i=1

(di − 5) 6 12. Therefore, |π6| > 12 and d
(6)
7 6 5. By

Lemma 2.3, π6 is graphic.

If d6 = 6, then |π6| > 12 and d
(6)
7 6 4 by 10 6

6∑
i=1

(di − 5) 6 12. It follows from

Lemma 2.3 that π6 is graphic.

If d6 = 7, then π = (9, 710, 3x, 2y, 1z). The corresponding sequence is π6 =
(5, 44, 3x, 2y, 1z), which is graphic by Lemma 2.3.
�
	���


3. d3 6 6, d2 > 8, d1 > 9 and d12 6 3. Then d1 = 9 and d6 = . . . = d11 > 5.

We may assume that π = (9, d2, . . . , d11, 3x, 2y, 1z) with x+y +z > 7 and even σ(π).

If d6 = 5, then |π6| > 12 by
6∑

i=1

(di − 5) 6 11. By Lemma 2.3, π6 is graphic.

If d6 = 6, then 11 6
6∑

i=1

(di − 5) 6 12. Therefore, |π6| > 12 and d
(6)
7 6 4. From

Lemma 2.3, π6 is graphic.
�
	���


4. d4 = 5, d3 > 7, d2 > 8, d1 > 9 and d12 6 3. Then d1 = 9 and d5 =

d6 = . . . = d11 = 5. Since 9 6
6∑

i=1

(di − 5) 6 12, we have |π6| > 12 and d
(6)
7 6 4. It

follows Lemma 2.3 that π6 is graphic. �

3. Proofs of Theorems

���������������
� 
 ��� 
��
1.11. Assume that π is one of the following sequences:

(n− 1, 46, 1n−7), (n − 1, 42, 34, 1n−7), (n − 1, 42, 33, 1n−6);
n = 6: (46), (44, 32), (43, 32, 2);
n = 7: (43, 34), (52, 4, 34), (47), (45, 32), (5, 43, 33), (52, 45), (5, 45, 3), (43, 32, 22),

(44, 32, 2), (5, 42, 33, 2), (46, 2), (43, 33, 1);
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n = 8: (58), (48), (52, 46), (6, 47), (44, 34), (5, 42, 35), (46, 32), (5, 46, 3), (43, 34, 2),
(47, 2), (44, 33, 1), (5, 42, 34, 1), (43, 33, 2, 1), (46, 3, 1), (5, 46, 1);

n = 9: (49), (43, 35, 1), (48, 2), (47, 3, 1), (5, 47, 1), (43, 34, 12), (47, 12);
n = 10: (48, 12).
Then, it is easy to compute that the corresponding π∗

3 of π is one of the following
sequences: (12, 32, 0n−7), (02, 22, 0n−7), (02, 2, 0n−6), (12, 4), (1, 0, 3), (02, 2), (02, 32),
(02, 22), (12, 42), (12, 32), (1, 0, 3, 2), (12, 4, 2), (02, 3, 1), (22, 43), (12, 43), (12, 4, 32),
(1, 0, 33), (02, 32, 2), (12, 42, 2), (1, 0, 32, 1), (02, 3, 2, 1), (12, 4, 3, 1), (12, 44), (02, 33, 1),
(12, 43, 2), (12, 42, 3, 1), (02, 32, 12), (12, 42, 12), (12, 43, 12). It is easy to check that
all of the above sequences are not graphic. By Lemma 2.5, π is not potentially
K5 − e-graphic. Now, we show the sufficient condition.

If d1 = n − 1, then π is potentially K5 − e-graphic by Lemma 2.4. If n = 5, then
π is either (43, 32) or (45), and it is easy to see that they both have realizations
containing K5 − e. Assume that d1 6 n− 2 and n > 6. According to Lemma 2.5, it

is enough to prove that π∗
3 is graphic. We consider the following cases:

�
	���

1. n = 6. Then d1 = d2 = d3 = 4. As π 6= (46), (44, 32), (43, 32, 2), π must

be either (45, 2) or (44, 3, 1), each of which is potentially K5 − e-graphic.
�
	���


2. n = 7. Then d1 6 5. We consider the following two subcases.
� � ����	���


2.1. d1 = 4. Then d1 = d2 = d3 = 4. If π′1 = (36) or (32, 24), then
π = (45, 32) or (43, 32, 22), which is impossible. Since π′1 has six positive terms, π

′
1 6=

(32, 23). By Lemma 2.4, we may assume that d5 = d6 > 3. Notice that d4+d5+d6+d7

is even. If d5 = d6 = 3, then (d4, d7) is one of the following: (4, 2), (32), (3, 1); if
d5 = d6 = 4, then (d4, d7) is either (4, 2) or (42). Thus π is one of the following
sequences:

(44, 32, 2), (43, 34), (43, 33, 1), (46, 2), (47)

which is impossible.
� � ����	���


2.2. d1 = 5. If π′1 = (32, 23), then the residual sequence π′
1 must

contain 1 as a term. Therefore, π′
1 6= (32, 23). If π′1 = (36) or (32, 24), then π is either

(5, 45, 3) or (5, 42, 33, 2), which is impossible. By Lemma 2.4, we may assume that
d5 = d6 = d7 > 3. Since σ(π) is even, we have d5 6= 5.

If d5 = d6 = d7 = 3, then d2 +d3 +d4 is even. Thus (d2, d3, d4) = (43) or (52, 4) or
(5, 4, 3). If d5 = d6 = d7 = 4, then (d2, d3, d4) is either (5, 42) or (53) by d2 + d3 + d4

being odd. As π 6= (52, 45), (5, 43, 33), (52, 4, 34), π is either (54, 43) or (53, 4, 33).
The corresponding π∗3 is (2, 1, 3, 2) or (1, 0, 2, 1), which are both graphic. Hence π is

potentially K5 − e-graphic from Lemma 2.5.
�
	���


3. n = 8. Then d1 6 6. We consider the following three subcases.
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� � ����	���

3.1. d1 = 4. Then d1 = d2 = d3 = 4. As d8 > 1 and d5 > 3, the residual

sequence π′1 6= (36), (32, 24), (32, 23). According to Lemma 2.4, we may assume that
d5 = d6 > 3. Consider the residual sequence π′

5 = (d′1, d
′
2, . . . , d

′
n−1).

If d5 = 3 and π′5 6= (4, 36), (4, 35, 1), (36, 2), (35, 2, 1), then there is a realiza-
tion G′ of π′5 containing a K4 such that the degrees of vertices of K4 in G′ are

d′1, d
′
2, d

′
3, d

′
4 by Theorem 1.5 and Theorem 2.4. Therefore, π is potentially K5 − e-

graphic from {d1 − 1, d2 − 1, d3 − 1} ⊆ {d′1, d′2, d′3, d′4}. If π′5 is one of the following

sequences: (4, 36), (4, 35, 1), (36, 2), (35, 2, 1), then π must be one of the following
sequences:(44, 34), (44, 33, 1), (43, 34, 2), (43, 33, 2, 1), which is impossible.

Assume that d5 = 4. Then d1 = . . . = d6 = 4. If π′5 6= (4, 36), (4, 35, 1), then π′5
is potentially A4-graphic by Theorem 1.5 and Theorem 2.4. If d7 6 3, then π is

potentially K5 − e-graphic by {d1 − 1, d2 − 1, d3 − 1} ⊆ {d′1, d′2, d′3, d′4}. If d7 = 4,
then π is either (47, 2) or (48), which is impossible. If π′5 = (4, 36) or (4, 35, 1), then
π = (46, 32) or (46, 3, 1), which is also impossible.
� � ����	���


3.2. d1 = 5. Then π′1 has at most seven positive terms. If π′
1

has at most six positive terms, then it must contain 1 as a term. Thus, π′
1 6=

(36), (32, 24), (32, 23). By Lemma 2.4, we assume that d5 = d6 = d7 > 3. Consider

the residual sequence π′
5.

If d5 = d6 = d7 = 3, then d1 − 1, d2 − 1, d3 − 1, d4 are the four largest degrees in

π′5. If π′5 6= (4, 36), (4, 35, 1), then π′5 is potentially A4-graphic by Theorem 1.5 and
Theorem 2.4. Thus π is potentially K5 − e-graphic. If π′5 = (4, 36) or (4, 35, 1), then
π is either (5, 42, 35) or (5, 42, 34, 1), which is impossible.

If d5 = d6 = d7 = 4 and π′5 6= (47), then π′5 is potentially A4-graphic by The-

orem 1.5 and Theorem 2.4. If d3 > 5, then π is potentially K5 − e-graphic by
{d1 − 1, d2 − 1, d3 − 1} ⊆ {d′1, d′2, d′3, d′4}. If d3 = 4, then π = (52, 45, 2) since
π 6= (5, 46, 1), (5, 46, 3), (52, 46). The corresponding π∗

3 is graphic sequence (12, 32, 2).
If d5 = d6 = d7 = 4 and π′5 = (47), then π = (54, 44). The corresponding sequence
π∗3 = (2, 1, 33), which is graphic.

If d5 = d6 = d7 = 5, then π = (57, 1) or (57, 3) by π 6= (58). The corresponding π∗
3

is (22, 4, 3, 1) or (22, 4, 32), which are both graphic.
� � ����	���


3.3. d1 = 6. Then the residual sequence π′
1 has at most seven positive

terms. If π′1 has at most six positive terms, then it should contain 1 as a term.
Therefore, π′1 6= (36), (32, 24), (32, 23). We may assume that d5 = d6 = d7 = d8 > 3
by Lemma 2.4. Consider the residual sequence π′

5 = (d′1, d′2, . . . , d′n−1).

If d5 = d6 = d7 = d8 = 3, then d1 − 1, d2 − 1, d3 − 1, d4 are the four largest

degrees in π′5. Since d1 − 1 = 5, π′5 is potentially A4-graphic by Theorem 1.5 and
Theorem 2.4. Therefore, π is potentially K5 − e-graphic.
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If d5 = d6 = d7 = d8 = 4 and d4 > 5, then π is potentially K5 − e-graphic by

{d1 − 1, d2 − 1, d3 − 1, d4 − 1} = {d′1, d′2, d′3, d′4} and Theorem 1.5. If d4 = d5 = d6 =
d7 = d8 = 4, then π = (6, 52, 45) or (63, 45) since π 6= (6, 47). It is easy to see that
(6, 52, 45) and (63, 45) are both potentially K5 − e-graphic.

If d5 = d6 = d7 = d8 = 5, then (d2, d3, d4) is either (63) or (6, 52) since d2+d3+d4 is
even. That is, π = (64, 54) or (62, 56). The corresponding π∗

3 is (3, 2, 33) or (22, 4, 32),
which are both graphic.
If d5 = d6 = d7 = d8 = 6, then π = (68) and π∗3 is graphic sequence (32, 43).
�
	���


4. n = 9. Then the residual sequence π′
1 has at most eight positive terms.

If π′1 has at most seven positive terms, then it must contain 1 as a term. Therefore
π′1 6= (36), (32, 24), (32, 23). Assume that d5 = d6 = . . . = dd1+2 > 3 by Lemma 2.4.
We consider the following four subcases.
� � ����	���


4.1. d1 = 4. Then d5 = d6 > 3. Consider the residual sequence π′
5.

If d5 = d6 = 3 and π′5 6= (37, 1), (36, 12), then π is potentially K5 − e-graphic

according to Lemma 2.6. If d5 = d6 = 3 and π′5 = (37, 1) or (36, 12), then π =
(43, 35, 1) or (43, 34, 12), which is impossible.
If d5 = d6 = 4, then π′5 6= (37, 1), (36, 12). Thus there is a realization G of π′

5

containing a K4 such that the degrees of vertices of K4 in G are d′1, d
′
2, d

′
3, d

′
4 by

Theorem 1.5 and Theorem 2.4. If d7 6 3, then π is potentially K5 − e-graphic by
{d6, d1−1, d2−1, d3−1} = {d′1, d′2, d′3, d′4}. If d7 = 4, then d8+d9 is even, and (d8, d9)
is one of the following: (12), (22), (32), (42), (3, 1), (4, 2). Therefore, π = (47, 22) or
(47, 32) by π 6= (47, 3, 1), (48, 2), (49), (47, 12). The corresponding π∗

3 = (12, 42, 22) or
(12, 42, 32), which are both graphic.
� � ����	���


4.2. d1 = 5. Then d5 = d6 = d7 > 3 and the residual sequence
π′5 6= (37, 1), (36, 12).
If d5 = d6 = d7 = 3, then π is potentially K5 − e-graphic from Lemma 2.6.

If d5 = d6 = d7 = 4 and d3 = 5, then π is potentiallyK5−e-graphic by Lemma 2.6.
If d2 = d3 = 4, then d4 = 4 and d8 + d9 is odd. Therefore (d8, d9) is (2, 1) or (3, 2)
or (4, 1) or (4, 3). Since π 6= (5, 47, 1), π = (5, 46, 2, 1) or (5, 46, 3, 2) or (5, 47, 3). The
corresponding π∗3 is one of the following graphic sequences:

(12, 4, 3, 2, 1), (12, 4, 32, 2), (12, 42, 32).

In this case, if d3 = 4 and d2 = 5, then d8 + d9 is even, and (d8, d9) is one of the
following:

(12), (22), (32), (42), (3, 1), (4, 2).

Therefore, π must be one of the following sequences:

(52, 45, 12), (52, 45, 22), (52, 45, 32), (52, 47), (52, 45, 3, 1), (52, 46, 2)
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and the corresponding π∗
3 is one of the following graphic sequences:

(12, 32, 12), (12, 32, 22), (12, 34), (12, 42, 32), (12, 33, 1), (12, 4, 32, 2).

If d5 = d6 = d7 = 5, then π is one of the following sequences:

(57, 2, 1), (57, 4, 1), (57, 3, 2), (58, 2), (58, 4), (57, 4, 3)

and it is easy to compute that the corresponding π∗
3 is one of the following graphic

sequences:

(22, 4, 3, 2, 1), (22, 42, 3, 1), (22, 4, 32, 2), (22, 43, 2), (22, 44), (22, 42, 32).

� � ����	���

4.3. d1 = 6. Then d5 = d6 = d7 = d8 > 3 and π′5 6= (37, 1), (36, 12).

If d5 = d6 = d7 = d8 = 3, then π is potentially K5 − e-graphic by Lemma 2.6.
If d5 = d6 = d7 = d8 = 4 and d3 > 5, then π is potentially K5 − e-graphic by

Lemma 2.6. If d3 = 4, then π is one of the following sequences:

(62, 46, 2), (62, 47), (6, 5, 46, 3), (6, 5, 46, 1), (6, 47, 2), (6, 48)

and it is easy to compute that the corresponding π∗
3 is one of the following graphic

sequences:

(12, 32, 22), (12, 34), (12, 33, 1), (12, 4, 32, 2), (12, 42, 32).

If d5 = d6 = d7 = d8 = 5 and d3 = 6, then π is potentially K5 − e-graphic by
Lemma 2.6. If d3 = d5 = d6 = d7 = d8 = 5, then π is one of the following sequences:

(62, 56, 2), (62, 56, 4), (6, 57, 1), (6, 57, 3), (6, 58)

and the corresponding π∗
3 is one of the following graphic sequences:

(22, 4, 32, 2), (22, 42, 32), (22, 42, 3, 1), (22, 44).

If d5 = d6 = d7 = d8 = 6, then π is (68, 2) or (68, 4) or (69). The corresponding π∗
3

are (32, 43, 2), (32, 44) and (32, 52, 42), respectively, all of which are graphic.
� � ����	���


4.4. d1 = 7. Then d5 = d6 = d7 = d8 = d9 > 3.

If d5 = d6 = d7 = d8 = d9 = 3, then π is potentially K5−e-graphic by Lemma 2.6.
If d5 = d6 = d7 = d8 = d9 = 4 and d3 > 5, then π is potentially K5 − e-graphic

by Lemma 2.6. If d3 = d5 = d6 = d7 = d8 = d9 = 4, then π = (7, 5, 47) or (72, 47).
The corresponding π∗3 = (12, 34) or (12, 32, 22), both of which are graphic.
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If d5 = d6 = d7 = d8 = d9 = 5 and d3 > 6, then π is potentially K5 − e-graphic

by Lemma 2.6. If d3 = d5 = d6 = d7 = d8 = d9 = 5, then π = (7, 6, 57). The
corresponding sequence π∗

3 is (22, 42, 32), which is graphic.
If d5 = d6 = d7 = d8 = d9 = 6 and d3 > 7, then π is potentially K5 − e-graphic

by Lemma 2.6. If d3 = d5 = d6 = d7 = d8 = d9 = 6, then π = (72, 67), π∗3 = (32, 44)
is graphic.
�
	���


5. n = 10. Then d1 6 8. The residual sequence π′
1 has at most nine positive

terms. If π′1 has at most eight positive terms, then it must contains 1 as a term.
Therefore, π′1 6= (36), (32, 24), (32, 23). We may assume that d5 = d6 = . . . = dd1+2 >
3 by Lemma 2.4. We consider the following two subcases.
� � ����	���


5.1. d′3 > 4 in the residual sequence π′
10.

If π′10 6= (49), (43, 35, 1), (48, 2), (47, 3, 1), (5, 47, 1), (43, 34, 12), (47, 12), then π′10
is potentially K5 − e-graphic by Case 4, and so is π.
If π′10 = (49), then d10 6 4. Thus π is one of the following sequences:

(5, 48, 1), (52, 47, 2), (53, 46, 3), (54, 46)

and it is easy to compute that the corresponding π∗
3 is one of the following graphic

sequences:

(12, 43, 3, 1), (12, 42, 32, 2), (12, 4, 34), (2, 1, 42, 33).

If π′10 = (48, 2), then d10 6 2. Therefore π is either (5, 47, 2, 1) or (52, 46, 22).
The corresponding sequence π∗

3 is (12, 42, 3, 2, 1) or (12, 4, 32, 22), both of which are
graphic.

If π′10 = (43, 35, 1), then d10 = 1. Hence, π = (5, 42, 35, 12) or (44, 34, 12). The
corresponding π∗3 = (02, 32, 2, 12) or (1, 0, 33, 12), which are both graphic.
If π′10 = (47, 3, 1), then d10 = 1. Since π 6= (48, 12), π = (5, 46, 3, 12). The sequence

π∗3 = (12, 4, 32, 12), which is graphic.
If π′10 = (5, 47, 1), then d10 = 1. Thus π = (6, 47, 12) or π = (52, 46, 12). The

sequences π∗3 are both (12, 4, 32, 12), which is graphic.
If π′10 = (43, 34, 12), then d10 = 1. Therefore, π = (5, 42, 34, 13) or π = (44, 33, 13).

The corresponding sequence π∗
3 is (0

2, 3, 2, 13) or (1, 0, 32, 13), which are both graphic.
If π′10 = (47, 12), then π = (5, 46, 13) by d10 = 1. The sequence π∗

3 = (12, 4, 3, 13),
which is graphic.
� � ����	���


5.2. d′3 6 3 in the residual sequence π′
10. Then d′3 = d′4 = d′5 = 3 by

d′5 > 3. Since d′3 = 3, we have d10 6 3 and d5 = d6 = 3. It follows from Lemma 2.6

that π is potentially K5 − e-graphic.
�
	���


6. n > 11. Then π′1 6= (36), (32, 24), (32, 23). Otherwise, each of the three
sequences should contain 1 as a term, which is a contradiction. Assume that d5 =
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d6 = . . . = dd1+2 > 3. Consider the residual sequence π′
n. Obviously, d

′
5 > 3 in π′n.

We use induction on n to prove this case. We first prove the case n = 11.

If d′3 > 4 in the residual sequence π′
11 and π′11 6= (48, 12), then π′11 is potentially

K5 − e-graphic by Case 5 and so is π. If π′
11 = (48, 12), then π = (5, 47, 13), π∗3 =

(12, 42, 3, 13), which is graphic.

If d′3 = 3 in π′11, then d5 = 3. From Lemma 2.6, π is potentially K5 − e-graphic.

Now we assume that for n − 1 > 11 the result is true. If d′3 > 4 in the residual
sequence π′n, then π′n is potentially K5 − e-graphic by the induction hypothesis, and
so is π. If d′3 = 3 in π′n, then d5 = 3.We consider the residual sequence π′

5. According

to Lemma 2.6, π is potentially K5 − e-graphic. �
����������������� 
 ��� 
��

1.12. If d1 = n − 1 or there exists an integer t, 5 6 t 6
d1 + 1 such that dt > dt+1, then π is potentially A5-graphic if and only if π5 /∈ S

by Theorem 1.5 and Theorem 2.4. If n − 2 > d1 > . . . > d4 > d5 = . . . = dd1+2 >
dd1+3 > . . . > dn, then π is potentially A5-graphic by Lemma 2.7. Therefore, π is
potentially A5-graphic if and only if π5 /∈ S. �
����������������� 
 ��� 
��

1.13. If d1 = n − 1 or there exists an integer t, 6 6 t 6
d1 + 1 such that dt > dt+1, then π is potentially A6-graphic if and only if π6 /∈ S

from Theorem 1.12 and Theorem 2.4. If n − 2 > d1 > . . . > d5 > d6 = . . . =
dd1+2 > dd1+3 > . . . > dn, then π is potentially A6-graphic by Lemma 2.8. Hence π

is potentially A6-graphic if and only if π6 /∈ S. �
����������������� 
 ��� 
��

1.14. If π is potentially A5-graphic, then it is ob-
vious that (d1 − 4, d2 − 4, . . . , d5 − 4, d6, . . . , dn) is graphic. If π is (n − a, n −
b, 44, 2n−(a+b+4), 1a+b−2) or (n−a, n−b, 45, 2n−(a+b+5), 1a+b−2), then the correspond-
ing π5 is (2, 0n−6) or (22, 0n−7), neither of which is graphic. Thus π is not potentially
A5-graphic by Theorem 1.1. Now we verify the sufficient condition. According to
Theorem 1.6 and Theorem 1.7, we only need to consider the following three cases:
�
	���


1. d1 6 6 and d10 6 2. Let G be a realization of the sequence (d1 − 4,

d2 − 4, . . . , d5 − 4, d6, . . . , dn) with V (G) = {v1, . . . , vn}, d(vi) = di − 4 for i =
1, . . . , 5 and d(vi) = di for i = 6, . . . , n. Let A = {v1, . . . , v5} and B = V (G) \ A.

Moreover, G minimizes the edge number |E(G[A])| of the induced subgraph G[A]. If
|E(G[A])| = 0, then π is potentially A5-graphic. Otherwise, there exists at least one
edge e = uv in G[A].Without loss of generality, we may assume that dG(u) > dG(v).
Then u and v are respectively adjacent to at most one vertex u′′ and v′′ of B. Since
n is sufficiently large and π is positive graphic, we may find an edge e′ = u′v′ with

u′, v′ ∈ B and u′, v′ 6= u′′, v′′. Since d1 6 6, u and v are not adjacent to u′ and v′.

We may obtain another realization G′ of (d1 − 4, d2 − 4, . . . , d5 − 4, d6, . . . , dn) by
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swapping the edges e and e′ with the non-edges uu′ and vv′. Clearly, |E(G′[A])| is
less than |E(G[A])|.
�
	���


2. d2 6 5, d1 > 7 and d10 6 2. If d2 = 4, then π is potentially A5-graphic

since (d1−4, d2−4, . . . , d5−4, d6, . . . , dn) is graphic. If d2 = 5 and |E(G[A])| = 0, then
π is potentially A5-graphic, where the definition of G is the same as that in Case 1.

If d2 = 5 and |E(G[A])| 6= 0, we assume that e = uv in G[A] and dG(u) > dG(v).
Then u is not adjacent to at least one vertex u′ of B. Since π is positive graphic,

there exists a vertex v′ ∈ N(u′), where N(u′) is the neighbor set of the vertex u′.

As the vertex v has degree at most one in G, v is not adjacent to u′ and v′. Thus

G′ = G−uv−u′v′+uu′+vv′ is also a realization of (d1−4, d2−4, . . . , d5−4, d6, . . . , dn)
with |E(G′[A])| < |E(G[A])|.
�
	���


3. d3 = 4, d2 > 6, d1 > 7 and d10 6 2. Then we assume that π =
(d1, d2, 43, d6, d7, d8, d9, 2x, 1y) with x + y = n − 9. By Theorem 1.1, it is enough
to prove that π5 = (d(5)

6 , d
(5)
7 , . . . , d

(5)
n ) is graphic. If d6 6 2, then π5 is graphic by

Theorem 2.3. If d6 = 3, then (d1 − 4) + (d2 − 4) > 5. Thus d
(5)
6 6 2 and h(π5) = 1,

where h(π5) means the smallest positive term of π5. It follows from Theorem 2.3 that

π5 is graphic. For d6 = 4, we consider the following three subcases.
� � ����	���


3.1. d7 6 2. Assume π = (d1, d2, 44, 2x, 1y) with x + y = n − 6. Since
π is graphic, we have (d1 − 4) + (d2 − 4) 6 2 + 2x + y, that is, d1 + d2 6 n + 4 + x.

If d1 + d2 = n + 4 + x, then π5 = (2, 0n−6), which is not graphic. Hence π is not
potentially A5-graphic. Let d1 = n− a and d2 = n− b. Then x = n− (a + b + 4) and
y = a + b − 2. Since x > 0 and d2 > 6, we have a + b 6 n− 4 and b 6 n− 6. That
is, π = (n− a, n− b, 44, 2n−(a+b+4), 1a+b−2), which is impossible.

If d1 + d2 < n + 4 + x, then h(π5) = 1 and d
(5)
6 = 2 by

5∑
i=1

(di − 4) > 5. Thus π5 is

graphic by Theorem 2.3.
� � ����	���


3.2. d7 = 3. Assume π = (d1, d2, 44, 3, d8, d9, 2x, 1y) with x+y = n−9.

Since (d1 − 4) + (d2 − 4) > 5, we have d
(5)
6 = 2. If d1 > 8, then h(π5) = 1 by d7 = 3.

Thus by Theorem 2.3, π5 is graphic. If d1 = 7 and d8 = 3, then π5 has at least three
positive terms. If d1 = 7 and d8 6 2, then h(π5) = 1. Therefore, π5 is graphic by

Lemma 2.2.
� � ����	���


3.3. d7 = 4.

(1) If d8 6 2, then we assume that π = (d1, d2, 45, 2x, 1y) with x+y = n−7. Since

π is graphic, we know that (d1 − 4) + (d2 − 4) 6 2 + 2 + 2x + y = n− 3 + x, that is,
d1 + d2 6 n + 5 + x.

If d1 + d2 = n + 5 + x, then π5 = (22, 0n−7), which is not graphic. Since x >
0, d2 > 6, x = n− (a + b + 5) and y = a + b− 2, we have a + b 6 n− 5 and b 6 n − 6.
Therefore, π = (n − a, n− b, 45, 2n−(a+b+5), 1a+b−2), which is a contradiction.
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If d1 +d2 < n + 5 + x, then h(π5) = 1. As (d1−4)+(d2−4) > 5, we have d
(5)
6 = 2.

It follows from Theorem 2.3 that π5 is graphic.

(2) If d8 > 3 and d9 6 2, then we assume that π = (d1, d2, 45, d8, 2x, 1y) with
x + y = n − 8.

If (d1−4)+(d2−4) > 6 and d2 > 7, then d
(5)
6 = 2 and π5 has at least three positive

terms; if (d1 − 4) + (d2 − 4) > 6, d2 = 6 and d8 = 4, then π5 = (3, 22, 2x′
, 1y′

, 0z′
)

with x′ + y′ + z′ = n− 8; if (d1 − 4) + (d2 − 4) > 6, d2 = 6 and d8 = 3, then d
(5)
6 = 2

and π5 has at least three positive terms. By Lemma 2.2, π5 is graphic.

If (d1−4)+(d2−4) = 5, then d1 = 7 and d2 = 6. If d8 = 3, then π5 = (23, 2x, 1y).
If d8 = 4, then π5 = (3, 22, 2x, 1y). By Lemma 2.2, π5 is graphic.

(3) If d8 > 3 and d9 > 3, then π = (d1, d2, 45, d8, d9, 2x, 1y) with x + y = n − 9.

Since (d1 − 4) + (d2 − 4) > 5, π5 has at least four positive terms and d
(5)
6 6 3. If π5

has at least five positive terms, then π5 is graphic by Lemma 2.2. If π5 has exact
four positive terms, then d

(5)
6 = 2, and π5 is also graphic by Lemma 2.2. �
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[8] J. S. Li, Z.X. Song and R. Luo: The Erdős-Jacobson-Lehel conjecture on potentially
Pk-graphic sequences is true. Science in China, Ser. A 41 (1998), 510–520. zbl

[9] J. S. Li and J.H.Yin: A variation of an extremal theorem due to Woodall. Southeast
Asian Bulletin of Mathematics 25 (2001), 427–434. zbl

[10] R.Luo: On potentially Ck-graphic sequences. Ars Combinatoria 64 (2002), 301–318. zbl
[11] R.Luo and Morgan Warner: On potentially Kk-graphic sequences. Ars Combinatoria

75 (2005), 233–239. zbl
[12] A.R.Rao: The clique number of a graph with given degree sequence. Proc. Symposium

on Graph Theory, A.R.Rao ed., MacMillan and Co. India Ltd., I.S.I. Lecture Notes
Series 4 (1979), 251–267. zbl
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