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1. Introduction

For a measurable set E of real numbers we denote by |E| its Lebesgue measure.
Let E be a measurable set and let c be a real number. The density of E at c is

defined by

dcE = lim
h→0+

|E ∩ (c− h, c + h)|
2h

provided the limit exists. The point c is called a point of density of E if dcE = 1
and a point of dispersion of E if dcE = 0. The set Ed represents the set of all points
x ∈ E such that x is a point of density of E.

A function F : [a, b] → �
is said to be approximately differentiable at c ∈ [a, b] if

there exists a measurable set E ⊆ [a, b] such that c ∈ Ed and lim
x→c
x∈E

F (x)−F (c)
x−c exists.

The approximate derivative of F at c is denoted by F ′
ap(c).

An approximate neighborhood (or ap-nbd) of x ∈ [a, b] is a measurable set Sx ⊆
[a, b] containing x as a point of density. For every x ∈ E ⊆ [a, b], choose an ap-nbd
Sx ⊆ [a, b] of x. Then we say that S = {Sx : x ∈ E} is a choice on E. A tagged
interval (x, [c, d]) is said to be subordinate to the choice S = {Sx} if c, d ∈ Sx.

Let P = {(xi, [ci, di]) : 1 6 i 6 n} be a finite collection of non-overlapping tagged
intervals. If (xi, [ci, di]) is subordinate to a choice S for each i, then we say thatP is
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subordinate to S. If P is subordinate to S and [a, b] =
n⋃

i=1

[ci, di], then we say that

P is a tagged partition of [a, b] that is subordinate to S.

2. The ap-Denjoy integral

We introduce the notion of the approximate Lusin function. This function is used

to define the ap-Denjoy integral.
For a function F : [a, b] → �

, F can be treated as a function of intervals by defining

F ([c, d]) = F (d) − F (c).

Definition 2.1. Let F : [a, b] → �
be a function. The function F is an approx-

imate Lusin function (or F is an AL function) on [a, b] if for every measurable set
E ⊆ [a, b] of measure zero and for every ε > 0 there exists a choice S on E such that

|(P)
∑

F (I)| < ε for every finite collection P of non-overlapping tagged intervals
that is subordinate to S.

Recall that F : [a, b] → �
is ACs on a measurable set E ⊆ [a, b] if for each ε > 0

there exist a positive number δ and a choice S on E such that |(P)
∑

F (I)| < ε for

every finite collectionP of non-overlapping tagged intervals that is subordinate to S

and satisfies (P)
∑ |I | < δ. The function F is ACGs on E if E can be expressed as

a countable union of measurable sets on each of which F is ACs.

Lemma 2.2. If F : [a, b] → �
is ACGs on [a, b], then F is an AL function on [a, b].

���������
. Suppose that E ⊆ [a, b] is a measurable set of measure zero. Let

E =
∞⋃

n=1

En, where {En} is a sequence of disjoint measurable sets and F is ACs on

each En. Let ε > 0. For each positive integer n there exist a choice Sn = {Sn
x : x ∈

En} on En and a positive number δn such that |(P)
∑

F (I)| < ε/2n wheneverP is
subordinate to Sn and (P)

∑ |I | < δn. For each positive integer n, choose an open

set On such that En ⊆ On and |On| < δn. Let Sx = Sn
x ∩(x − %(x, Oc

n), x + %(x, Oc
n))

for each x ∈ En, where %(x, Oc
n) is the distance from x to Oc

n = [a, b] − On. Then

S = {Sx : x ∈ E} is a choice on E. Suppose that P is subordinate to S. LetPn be
a subset of P that has tags in En and note that (Pn)

∑ |I | < |On| < δn. Hence,

we have ∣∣∣(P)
∑

F (I)
∣∣∣ 6

∞∑

n=1

∣∣∣(Pn)
∑

F (I)
∣∣∣ <

∞∑

n=1

ε

2n
= ε.

�

Definition 2.3. A function f : [a, b] → �
is ap-Denjoy integrable on [a, b] if

there exists an AL function F on [a, b] such that F is approximately differentiable
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almost everywhere on [a, b] and F ′
ap = f almost everywhere on [a, b]. The function f

is ap-Denjoy integrable on a measurable set E ⊆ [a, b] if fχE is ap-Denjoy integrable
on [a, b].

If we add the condition F (a) = 0, then the function F is unique. We will denote

this function F (x) by (AD)
∫ x

a f .
It is easy to show that if f : [a, b] → �

is ap-Denjoy integrable on [a, b], then f is

ap-Denjoy integrable on every subinterval of [a, b]. This gives rise to an interval func-
tion F such that F (I) = (AD)

∫
I
f for every subinterval I ⊆ [a, b]. The function F

is called the primitive of f .
Recall that a function F : [a, b] → �

is AC∗ on a measurable set E ⊆ [a, b]
if for each ε > 0 there exists δ > 0 such that (P)

∑
ω(F, I) < ε for every fi-

nite collection P of non-overlapping intervals that have endpoints in E and satisfy

(P)
∑ |I | < δ, where ω(F, I) = sup{|F (y)−F (x)| : x, y ∈ I}. A function F is ACG∗

on E if F |E is continuous on E, E =
∞⋃

n=1
En and F is AC∗ on each En. It is easy to

show that if F is ACG∗ on [a, b], then F is ACGs on [a, b]. A function f : [a, b] → �

is Denjoy integrable on [a, b] if there exists an ACG∗ function F : [a, b] → �
such

that F ′ = f almost everywhere on [a, b].
The following theorem shows that the ap-Denjoy integral is an extension of the

Denjoy integral.

Theorem 2.4. If f : [a, b] → �
is Denjoy integrable on [a, b], then f is ap-Denjoy

integrable on [a, b].
���������

. Suppose that f : [a, b] → �
is Denjoy integrable on [a, b]. Then there

exists an ACG∗ function F : [a, b] → �
such that F ′ = f almost everywhere on [a, b].

Since F is ACGs on [a, b], by Lemma 2.2 F is an AL function on [a, b] and F ′
ap =

F ′ = f almost everywhere on [a, b]. Hence, f is ap-Denjoy integrable on [a, b]. �

There exists a function that is ap-Denjoy integrable on [a, b], but not Denjoy
integrable on [a, b].

Example 2.5. Let {(an, bn)} be a sequence of disjoint open intervals in (a, b)
with the following properties:

(1) b1 < b and bn+1 < bn for all n;
(2) {an} converges to a;

(3) a is a point of dispersion of O =
∞⋃

n=1
(an, bn).

Define F : [a, b] → �
by F (x) = 0 for all x ∈ [a, b]−O and

F (x) = sin2
( x− an

bn − an
π
)
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for x ∈ (an, bn). Then it is easy to show that the function F is differentiable on (a, b]
and approximately differentiable at a, but F is not continuous at a. Hence F ′ = Fap

almost everywhere on [a, b], but F ′
ap is not Denjoy integrable on [a, b], since F is not

continuous on [a, b].
To show that F ′ap is ap-Denjoy integrable on [a, b], it is sufficient to show that F is

an AL function on [a, b]. Let E be a measurable set in [a, b] of measure zero and let
ε > 0. For each positive integer n, choose an open set On such that E ∩ [an, bn] ⊆ On

and |On| < (bn − an)ε/π2n.

For each x ∈ E, define

Sx =





[a, b]−
∞⋃

n=1
(an, bn) if x = a;

(bn+1, an) if bn+1 < x < an, n = 1, 2, 3, . . . ;

(x− %(x, Oc
n), x + %(x, Oc

n)) if an 6 x 6 bn, n = 1, 2, 3, . . . .

Then S = {Sx : x ∈ E} is a choice on E. Let P = {(x, [a, b])} be a finite collection
of non-overlapping tagged intervals that is subordinate to S. Then we have

(P)
∑

|F ([c, d])| =
∞∑

n=1

∑

x∈(bn+1,an)

|F ([c, d])| +
∞∑

n=1

∑

x∈[an,bn]

|F ([c, d])|

6
∞∑

n=1

∑

x∈[an,bn]

π(d− c)
bn − an

6
∞∑

n=1

π
bn − an

|On| <
∞∑

n=1

ε

2n
= ε.

Hence, F is an AL function on [a, b].

Theorem 2.6. Let f : [a, b] → �
be ap-Denjoy integrable on [a, b] and let F (x) =

(AD)
∫ x

a f for each x ∈ [a, b]. Then
(a) the function F is approximately differentiable almost everywhere on [a, b] and

F ′ap = f almost everywhere on [a, b]; and
(b) the functions F and f are measurable.
���������

. (a) follows from the definition of the ap-Denjoy integral. Since F is

approximately continuous almost everywhere on [a, b], F is measurable by [4, Theo-
rem 14.7]. It follows from [4, Theorem 14.12] that f is measurable. �

Theorem 2.7. Let F : [a, b] → �
be an AL function on [a, b]. If F is approx-

imately differentiable almost everywhere on [a, b], then F ′
ap is ap-Denjoy integrable

on [a, b] and (AD)
∫ x

a F ′ap = F (x) − F (a) for each x ∈ [a, b].
���������

. Suppose that F is an AL function on [a, b] and F is approximately
differentiable almost everywhere on [a, b]. It follows from the definition that F ′

ap is
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ap-Denjoy integrable on [a, b]. For a constant C, F +C is also an AL function on [a, b],
approximately differentiable almost everywhere on [a, b] and (F +C)′ap = F ′ap almost
everywhere on [a, b]. Hence, we have

F (x) + C = (AD)
∫ x

a

F ′ap for each x ∈ [a, b].

Since F (a) + C = 0, C = −F (a) and

(AD)
∫ x

a

F ′ap = F (x)− F (a) for each x ∈ [a, b].

�

We can easily show that if f is ap-Denjoy integrable on each of intervals [a, c] and
[c, b], then f is ap-Denjoy integrable on [a, b] and

(AD)
∫ b

a

f = (AD)
∫ c

a

f + (AD)
∫ b

c

f.

Theorem 2.8. Suppose that f : [a, b] → �
is ap-Denjoy integrable on each subin-

terval [c, d] ⊆ (a, b). If (AD)
∫ d

c
f converges to a finite limit as c → a+ and d → b−,

then f is ap-Denjoy integrable on [a, b] and (AD)
∫ b

a f = lim
c→a+

d→b−

(AD)
∫ d

c f .

���������
. Choose a point p ∈ (a, b) and fix it. First, we will prove that if f is ap-

Denjoy integrable on [p, d] for each d ∈ (p, b) and (AD)
∫ d

p f converges to a finite limit

as d → b−, then f is ap-Denjoy integrable on [p, b] and (AD)
∫ b

p
f = lim

d→b−
(AD)

∫ d

p
f .

Let L = lim
d→b−

(AD)
∫ d

p f , let a0 = p and let {ak} be an increasing sequence in (p, b)

that converges to b. Define a function F : [p, b] → �
by

F (x) = Fi(x) if x ∈ [ai−1, ai] for each i = 1, 2, 3, . . .

and F (b) = L, where Fi is the primitive of f on [ai−1, ai] and Fi(ai−1) = 0 for
each i. Since each Fi is an AL function on [ai−1, ai] such that Fi is approximately
differentiable almost everywhere on [ai−1, ai] and (Fi)′ap = f almost everywhere on
[ai−1, ai], the function F is an AL function on [p, b] such that F is approximately

differentiable almost everywhere on [p, b] and F ′
ap = f almost everywhere on [p, b].

Hence, f is ap-Denjoy integrable on [p, b] and

(AD)
∫ b

p

f = F (b) = L = lim
d→b−

(AD)
∫ d

p

f.
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Similarly, we can prove that if f is ap-Denjoy integrable on [c, p] for each c ∈ (a, p)
and (AD)

∫ p

c f converges to a finite limit as c → a+, then f is ap-Denjoy integrable
on [a, p] and (AD)

∫ p

a
f = lim

c→a+
(AD)

∫ p

c
f .

If (AD)
∫ d

c
f converges to a finite limit as c → a+ and d → b−, then for any

p ∈ (a, b) the integral (AD)
∫ p

c f converges to a finite limit as c → a+ and (AD)
∫ d

p f

converges to a finite limit as d → b−. By the proof of the previous parts, f is

ap-Denjoy integrable on [a, p] ∪ [p, b] = [a, b] and

(AD)
∫ b

a

f = (AD)
∫ p

a

f + (AD)
∫ b

p

f

= lim
c→a+

(AD)
∫ p

c

f + lim
d→b−

(AD)
∫ d

p

f = lim
c→a+

d→b−

(AD)
∫ d

c

f.

�

Recall that a function f : [a, b] → �
is ap-Henstock integrable on [a, b] if there exists

a real number A with the following property: for each ε > 0 there exists a choice S

on [a, b] such that |(P)
∑

f(x)|I | − A| < ε whenever P = {(x, I) : x ∈ [a, b]} is a
tagged partition of [a, b] that is subordinate to S. The real number A is called the

ap-Henstock integral of f on [a, b] and is denoted by (AH)
∫ b

a f . If f is ap-Henstock
integrable on [a, b], then f is also ap-Henstock integrable on any subinterval I of [a, b].
Hence, an interval function F can be defined by F (I) = (AH)

∫
I f . The function F

is called the primitive of f .

The following theorem shows that the ap-Denjoy integral is equivalent to the ap-
Henstock integral and the integrals are equal to each other.

Theorem 2.9. The function f : [a, b] → �
is ap-Denjoy integrable on [a, b] if and

only if f is ap-Henstock integrable on [a, b] and the integrals are equal to each other.
���������

. If f is ap-Henstock integrable on [a, b] with the primitive F , then
F is ACGs on [a, b] and F ′ap = f almost everywhere on [a, b] by [4, Theorem 16.18].
By Lemma 2.2, f is ap-Denjoy integrable on [a, b].
Suppose that f is ap-Denjoy integrable on [a, b] with the primitive F . Then F is an

AL function on [a, b] such that F is approximately differentiable almost everywhere

on [a, b] and F ′ap = f almost everywhere on [a, b]. Let

E = {x ∈ [a, b] : F ′ap(x) 6= f(x)}.

Then |E| = 0. Let D = [a, b]−E and let ε > 0.
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For each x ∈ D there exists a measurable set Dx ⊆ [a, b] such that x ∈ Dd
x and

F ′ap(x) = lim
y→x
y∈Dx

F (y)− F (x)
y − x

.

Hence, there exists δx > 0 such that for every y ∈ Dx ∩ (x − δx, x + δx) = Sx

|F (y)− F (x) − F ′ap(x)(y − x)| 6 ε|y − x|.

If (x, [u, v]) is a tagged interval that is subordinate to {Sx}, then

|F (v) − F (u)− F ′ap(x)(v − u)|
6 |F (v)− F (x) − F ′ap(x)(v − x)|+ |F (x) − F (u)− F ′

ap(x)(x − u)|
< ε(v − x) + ε(x− u) = ε(v − u).

Hence, there exists a choice S ′ on D such that |(P)
∑

f(x)|I | − (P)
∑

F (I)| <

ε(P)
∑ |I | whenever P is a collection of tagged intervals that is subordinate to S ′.

By [4, Lemma 9.15] and the fact that F is an AL function on [a, b], there exists a
choice S′′ on E such that |(P)

∑
f(x)|I || < ε and |(P)

∑
F (I)| < ε wheneverP is

subordinate to S′′. Let S = S′ ∪ S′′. Then S is a choice on [a, b].
Suppose thatP is a tagged partition of [a, b] that is subordinate to S. LetPE be

the subset of P that has tags in E and let PD = P −PE . Then we have

∣∣∣(P)
∑

f(x)|I | − (P)
∑

F (I)
∣∣∣

6
∣∣∣(PD)

∑
f(x)|I | − (PD)

∑
F (I)

∣∣∣ +
∣∣∣(PE)

∑
f(x)|I |

∣∣∣ +
∣∣∣(PE)

∑
F (I)

∣∣∣
< ε(b− a + 2).

Hence, f is ap-Henstock integrable on [a, b] and (AH)
∫ b

a
f = (P)

∑
F (I) = F (b) −

F (a) = (AD)
∫ b

a f . �
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