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BASIC SUBGROUPS IN MODULAR ABELIAN GROUP ALGEBRAS

Peter Danchev, Plovdiv

(Received December 2, 2004)

Abstract. Suppose F is a perfect field of charF = p 6= 0 and G is an arbitrary abelian
multiplicative group with a p-basic subgroup B and p-component Gp. Let FG be the group
algebra with normed group of all units V (FG) and its Sylow p-subgroup S(FG), and let
Ip(FG;B) be the nilradical of the relative augmentation ideal I(FG;B) of FG with respect
to B.
The main results that motivate this article are that 1 + Ip(FG;B) is basic in S(FG), and

B(1 + Ip(FG;B)) is p-basic in V (FG) provided G is p-mixed. These achievements extend
in some way a result of N. Nachev (1996) in Houston J. Math. when G is p-primary. Thus
the problem of obtaining a (p-)basic subgroup in FG is completely resolved provided that
the field F is perfect.
Moreover, it is shown that Gp(1 + Ip(FG;B))/Gp is basic in S(FG)/Gp, and G(1 +

Ip(FG;B))/G is basic in V (FG)/G provided G is p-mixed.
As consequences, S(FG) and S(FG)/Gp are both starred or divisible groups.
All of the listed assertions enlarge in a new aspect affirmations established by us in

Czechoslovak Math. J. (2002), Math. Bohemica (2004) and Math. Slovaca (2005) as well.
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Introduction

As usual, everywhere in the text FG will designate the group algebra of an abelian

group G over a field F with characteristic p > 0. For G such a group, B denotes
its fixed p-basic subgroup, and Gt denotes its maximal torsion subgroup with p-

component Gp and pn-socle G[pn]. Certainly Gp =
∞⋃

n=1
G[pn], where G[pn] ⊆ G[pn+1]

and Gt =
∐
p

Gp = Gp ×
∐

q 6=p

Gq . All other notations and terminology from the

abelian group theory not explicitly defined herein are as in [9]. For FG such an
F -algebra, V (FG) will denote the group of all normalized invertible elements in FG
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with Sylow p-subgroup S(FG). For H a subgroup of G, we define I(FG; H) as the
relative augmentation ideal of FG with respect to H with nil-radical Ip(FG; H).
The notation and terminology from the group rings theory which are not given here
will follow essentially [11].

In 1996, Nachev established in [15] an explicit form of a basic subgroup of V (RG),
namely 1+I(RG; B), when R is an abelian, unitary, perfect ring of prime charR = p

and G is an abelian p-group. Nevertheless, we have obtained in [2] a basic subgroup

of S(RG), namely 1 + I(RG; Bp), when G/Gp is p-divisible and R is as above, thus
generalizing the mentioned Nachev’s claim. Further developments in this theme we

have realized in [4]–[8].

In the present paper and more specifically in the next paragraph, we shall give in
an explicit form a basic subgroup of S(FG) and a p-basic subgroup of V (FG) under
some minimal restrictions on F and G, namely that F is perfect plus Gt = Gp for
the mixed case. Thus, as a culmination of a series of explorations, the question of

finding a (p-)basic subgroup in a modular group ring is settled in the case of a perfect
coefficient field. The general situation when F is not perfect is also discussed in the

epilogue. And so, we begin with

Main results

We start here with a technical claim that gives a satisfactory estimate for the value
of heights in group rings.

Lemma (Heights). For perfect F and any 1+
∑

i,j ri,jgi,j(1−cj) ∈ 1+I(FG; H),
it is valid that p-height(1 +

∑
i,j ri,jgi,j(1− cj)) 6 min

s
{p-height(c±ε1

j1
c±ε2
j2

. . . c±εs

js
)}

where (j1, j2, . . . , js) is an arbitrary permutation of the indices j, and ε1, . . . , εs ∈�
. In particular, as a corollary, there exists 1 6= c ∈ H so that p-height(1 +∑
i,j ri,jgi,j(1− cj)) 6 p-height(c).
���������

. This is straightforward. �

For our further successful presentation, we need the following extra observation
on heights of elements of infinite order.

Given that order(b) = ∞, we have 〈b〉 = {. . . , b−n, b−(n−1), . . . , b−1, b0 =
1, b, . . . , bn−1, bn, . . .}. Therefore b ∈ 〈b〉 \ 〈b〉p, . . . , bp−1 ∈ 〈b〉 \ 〈b〉p; bp ∈ 〈b〉p \
〈b〉p2

, . . . , bp2−1 ∈ 〈b〉p\〈b〉p2
etc. This enables us to detect that 〈b〉pω

=
∞⋂

n=1
〈b〉pn

= 1.

In fact, for an arbitrary element x ∈ 〈b〉pω

we have that x = bn1p = bn2p2
= . . . =

bnkpk

= . . . where n1, n2, . . . , nk ∈ 	 ∀k > 1. Henceforth, n1 = n2p = . . . =
nkpk−1 = . . . and |n1| = |nkpk−1| = |nk|pk−1 > pk−1 ∀k > 1, provided nk 6= 0. But
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it is easily seen that such an inequality is impossible. Thereby the foregoing chain

of equalities is fulfilled precisely when n1 = n2 = . . . = nk = . . . = 0. This allows us
to conclude that x = 1, as expected.
Before establishing the basic subgroups, we proceed by proving one important

theorem that is the omnibus for our main results.

Theorem 1. The group 1 + Ip(FG; B)/Bp is a direct sum of cyclic groups and

so Bp is a direct factor of 1 + Ip(FG; B) with a direct sum of cyclics complement.

���������
. Of course Gp 6= 1, otherwise S(FG) = 1. Certainly, we write B =

Bp×M , where Bp is a direct sum of p-cyclics and M a direct sum of infinite cyclics.

Clearly, as it was already observed, B is p-separable or in other terms Bpω

= 1.
That is why, according to [2], 1 + Ip(FG; B) is separable. Moreover, we may write

Bp =
∞⋃

n=1
Bn, where Bn ⊆ Bn+1, all Bn are pure in Bp and Bpn

n = 1. Consequently,

we see that B =
∞⋃

n=1
[Bn × M ] where Bn × M is pure in Bp × M = B whence it is

p-pure in G, and 1 + Ip(FG; B) =
∞⋃

n=1
[1 + Ip(FG; Bn × M)] where, in accordance

with [4], 1 + Ip(FG; Bn ×M) is pure in 1 + Ip(FG; B) whence in S(FG).
For the application of the Kulikov criterion [9, p. 110, Theorem 18.1], it is enough

to construct an infinite sequence of subgroups (In)∞n=1 such that I = 1+Ip(FG; B) =
∞⋃

n=1
In, In ⊆ In+1 and for every n ∈ �

the groups In are height-finite in I with

heights < n. Without loss of generality we shall assume that F is perfect since a
subgroup of a direct sum of cyclic groups is again a direct sum of cyclic groups.

Indeed, we select In in the following manner: In = 〈x(n) = 1 +
∑

i,j αi,jgi,j(1 −
b
(n)
j mj) is a p-element of order 6 pn|0 6= αi,j ∈ F, gi,j ∈ G, b

(n)
j ∈ Bn, m

±ε1
j1

m±ε2
j2

. . .

m±εs

js
∈ (M \Mpn

) ∪ {1} for all possible permutations (j1, j2, . . . , js) of the indexes
j; 0 6 ε1, ε2, . . . , εs 6 pn − 1〉.
Since 1 + Ip(FG; B) ⊆ S(FG) = 1 + I(FG; Gp), there follows at once the simple

but however crucial fact that every x ∈ 1 + Ip(FG; B) is of the form x = 1 +∑
i,j fi,jgi,j(1 − bj,p) +

∑
k,l,m rk,l,mak,l,m(1 − gl,p)(1 − bm), where fi,j , rk,l,m ∈ F ;

gi,j , ak,l,m ∈ G; bj,p ∈ Bp, gl,p ∈ Gp; bm ∈ B. Therefore, we redefine the wanted
generating subgroups like this:

In =
〈

x(n) = 1 +
∑

i,j

f
(n)
i,j g

(n)
i,j (1− b

(n)
j,p )

+
∑

k,l,m

r
(n)
k,l,ma

(n)
k,l,m(1− g

(n)
l,p )(1− b(n)

m )|f (n)
i,j ∈ F, g

(n)
i,j ∈ G, b

(n)
j,p ∈ Bn;
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r
(n)
k,l,m ∈ F, a

(n)
k,l,m ∈ G, g

(n)
l,p ∈ G[pn], b(n)

m1

±ε1
. . . b(n)

ms

±εs ∈ (M \Mpn

) ∪ {1}
for all possible permutations (m1, . . . , ms) of the indices m;

0 6 ε1, . . . , εs 6 pn − 1
〉

,

by using the elementary argument that I(FG; Bn × M) = I(FG; Bn) + I(FG; M).
We also emphasize that we may fix g

(n)
l,p ∈ (BnGp[pn] \Gpn

[pn]) ∪Gpω

[pn], although
it is not necessary for our final conclusions.
Apparently, In ⊆ 1 + Ip(FG; Bn ×M).

We first of all observe that b
(n)
m1

±ε1
. . . b

(n)
ms

±εs

/∈ Gpn

whenever ε1, . . . , εs ∈ �

because of the fact that M is pure in B, hence it is p-pure in G. Moreover, a useful
observation is that every non-trivial element of In may be not eventually a generator

of In but however it does not belong to Ipn

. In order to verify this claim, we can
restrict our attention to two generators since the general case holds either by virtue of

an ordinary mathematical induction or by copying directly the idea described below.
Indeed, write x

(n)
1 = 1 +

∑
i,j α

(n)
i,j g

(n)
i,j (1 − b

(n)
j,p ) +

∑
k,l,m β

(n)
k,l,ma

(n)
k,l,m(1 − g

(n)
l,p )×

(1− b
(n)
m ) and x

(n)
2 = 1+

∑
i,j α′(n)

i,j g′(n)
i,j (1− b′(n)

j,p )+
∑

k,l,m β′(n)
k,l,ma′(n)

k,l,m(1− g′(n)
l,p )×

(1− b′(n)
m ). Further, their multiplying gives x

(n)
1 x

(n)
2 ∈ 1+ Ip(FG; Bn× [(M \Mpn

)∪
{1}]) where the direct product is taken in Gp ×M . Applying Lemma (Heights) for
appropriate members in Gp×M , or in more precise words in the estimation of heights

substituting the elements 0 6= 1− b′(n)
m ∈ FM 6 FG for 1− g′(n)

l,p ∈ FGp when the

expression does not depend on 1 − b
(n)
j,p or 1 − b

(n)
m , by what we have shown above,

it is clear that x
(n)
1 x

(n)
2 has height as computed in I less than or equal to the height

of some nonidentity element from Bn × [(M \Mpn

) ∪ {1}] or from Gp × (M \Mpn

)
where Gp ×M = BGp is p-pure in G. This substantiates our claim. So, In ∩ Ipn

= 1
as desired, and we are done.
After this, we shall establish in the sequel that [InBp] ∩ Ipn ⊆ Bp, whence

I/Bp =
∞⋃

n=1
[InBp/Bp] will be a direct sum of cyclics utilizing the above cited

Kulikov criterion. Well, take an arbitrary element x in the left hand-side. Thus
x = bpy = bp(f1c1 + . . . + fscs), where bp ∈ Bp; f1c1 + . . . + fscs ∈ In; s ∈

�
. It is

not difficult to see that the sum f1c1 + . . . + fscs contains a member that belongs
to B, say for instance c1 = b ∈ B, and on the other hand it contains a member of

the form gpb where gp ∈ Gp, say c2 = gpb. We work by analogy for the remaining
members. Consequently, we write bpc1 ∈ Gpn

, . . ., bpcs ∈ Gpn

, hence we may de-

rive c2c
−1
1 ∈ Gpn

, . . . , csc
−1
1 ∈ Gpn

, i.e. cic
−1
j ∈ Gpn

for all 1 6 i, j 6 s. That is
why gp = c2c

−1
1 ∈ Gpn

etc. But as we have shown above, the elements of In have

heights < n, hence we deduce that x ∈ Bp, as required. Besides, it is a routine
matter to see that Bp is pure in 1 + Ip(FG; B), so a theorem due to L. Kulikov
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([9], p. 143, Theorem 28.2) guarantees that Bp must be itself a direct factor of I , as

claimed.

The theorem is proved. �

We continue with two preliminary assertions of technical character, starting with

Lemma. Bp is basic in Gp.

���������
. This is routine and so we omit the details. �

The following intersection ratios play a key role for our good presentation.

Proposition (Intersection). Suppose A, B 6 G and 1 ∈ P 6 F . Then

(∗) [B(1 + Ip(FG; B))] ∩ S(PA) = 1 + Ip(PA; A ∩ B);
(∗∗) [Gp(1 + Ip(FG; B))] ∩ S(PA) = Ap(1 + Ip(PA; A ∩ B)).

���������
. (∗) Certainly [B(1+Ip(FG; B))]∩S(PA) = (1+Ip(FG; B))∩S(PA) =

1 + Ip(PA; A ∩ B), owing to relations in [2], [3].
(∗∗) Take x in the left hand-side. Then x = gp

∑
g∈G

fgg =
∑

a∈A

αaa, where gp ∈

Gp, fg ∈ F, αa ∈ P and
∑

g∈gB

fg =

{
0, g 6∈ B,

1, g ∈ B
for each g ∈ G. On the other hand,

for every g ∈ G and a ∈ A from the sums we have gpg = a and fg = αa. That
is why, since in the support of

∑
g∈G

fgg there is an element b ∈ B and an element

from Gp, while in the support of
∑

a∈A

αaa there exists an element of Ap, it is almost

apparent that gp = apbp for some ap ∈ Ap and bp ∈ Bp. This follows because of the

fact that b ∈ ABp; bpt

= b′p
t

for some t ∈ �
so that b′ ∈ A ∩ B since gph

′ ∈ A and

gph
′b′ ∈ A for some h′ ∈ G. Thus x may be written as x = ap

∑
g∈G

fggbp. Finally

x ∈ Ap((1 + Ip(FG; B)) ∩ S(PA)) = Ap(1 + Ip(PA; A ∩ B)), as well. This finishes
the proof in general. �

The next fact is valuable.

Remark. In some instances (B ∩ A)(1 + I(PA; A ∩ B)) ⊇ B(1 + Ip(FG; B)) ∩{
V (PA)

AS(PA)
⊃ (B ∩ A)(1 + Ip(PA; A ∩ B)).

Now, we are in a position to present the following announcement in [8].
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Theorem 2. Assume that F is perfect. Then 1 + Ip(FG; B) is a basic subgroup
of S(FG), and B(1 + Ip(FG; B)) is a p-basic subgroup of V (FG) provided G is

p-mixed.

���������
. We shall show below that the three necessary conditions from the

definition of a basic and a p-basic subgroup are satisfied, respectively.

1. “direct sums of cyclics”. And so, according to Theorem 1, 1 + Ip(FG; B)/Bp

is direct sum of cyclics. Clearly Bp is pure in Gp whence in S(FG), and so in
1 + Ip(FG; B) as a subgroup of S(FG). Consequently, a theorem of L. Kulikov [9,
p. 143, Theorem 28.2] ensures that 1 + Ip(FG; B) ∼= Bp × (1 + Ip(FG; B))/Bp. But
by the Lemma, Bp is a direct sum of cyclics, thus finishing the first step.

2. “purity”. In view of the fact that B is p-pure in G and some preliminaries

from [2], [3], we get (1 + Ip(FG; B)) ∩ Spn

(FG) = (1 + Ip(FG; B)) ∩ S(FGpn

) =
1 + Ip(FGpn

; Gpn ∩ B) = 1 + Ip(FGpn

; Bpn

) = (1 + Ip(FG; B))pn

, completing the

second step.

3. “divisibility”. Consider an element of the type 1+αg(1−gp), where α ∈ F, g ∈ G

and gp ∈ Gp. But G = BGp, whence g = bap where b ∈ B and a ∈ G. Besides, the

Lemma yields that Gp = BpG
p
p, hence gp = cdp where c ∈ Bp and d ∈ Gp. On the

other hand, 1−cdp = (1−c)dp+(1−dp), so furthermore αg(1−dp) = αbap(1−dp) =
αap(1−dp)−α(1−b)ap(1−dp) and 1+αg(1−gp) = [1+αap(1−dp)](1−α(1+αap(1−
dp))−1 ·ap(1−b)(1−dp)+α(1+αap(1−dp))−1 ·gdp(1−c)) ∈ Sp(FG)(1+Ip(FG; B)).
Because by [3] each element in S(FG) = 1 + I(FG; Gp) is a finite sum of members
of the above kind, then S(FG) = (1 + Ip(FG; B))Sp(FG), thus proving the third
step. Finally, we conclude that the first part is verified.

Next, the second half will be supplied.

The point 1. follows like this: By what we have just shown above B(1 +
Ip(FG; B))/B ∼= 1 + Ip(FG; B)/Bp is a direct sum of cyclics. But B is pure
in B(1 + Ip(FG; B)). In fact, B is p-pure in G hence in V (FG), and so in
B(1 + Ip(FG; B)) as a subgroup of V (FG). On the other hand, using the mod-
ular law [9], for each prime q 6=p we deduce that B ∩ [B(1 + Ip(FG; B))]q =
B ∩ [Bq(1 + Ip(FG; B))] = Bq(B ∩ (1 + Ip(FG; B))) = Bq · Bp = Bq. Thereby,
as we have just seen from [9], B(1 + Ip(FG; B)) ∼= B × (1 + Ip(FG; B))/Bp, which

guarantees our claim.

The point 2. holds for the following reason: It is well-known that ([13], [11])
V (FG) = G(1 + I(FG; Gp)). But by [2], [3], 1 + I(FG; Gp) = S(FG). Hence,
V (FG) = GS(FG). By making use of the intersection Proposition plus the mod-
ular law we compute [B(1 + Ip(FG; B))] ∩ (BS(FG))pn

= [B(1 + Ip(FG; B))] ∩
(Bpn

S(FGpn

)) = Bpn

([B(1 + Ip(FG; B))] ∩ S(FGpn

)) = Bpn

(1 + Ip(FGpn

; Gpn ∩
B)) = Bpn

(1 + Ip(FGpn

; Bpn

)) = [B(1 + Ip(FG; B))]p
n

. In this way, the modu-
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lar law and the fact from the Lemma that Gp = BpG
pn

p imply that [BS(FG)] ∩
[GS(FG)]p

n

= [BS(FG)]∩ [Gpn

Spn

(FG)] = Spn

(FG)[(BS(FG))∩Gpn

] = [(BGp)∩
Gpn

]Spn

(FG) = [(BGpn

p ) ∩ Gpn

]Spn

(FG) = (B ∩ Gpn

)Spn

(FG) = Bpn

Spn

(FG) =
[BS(FG)]p

n

. Owing to the transitivity of p-purity, we derive at once that B(1 +
Ip(FG; B)) is p-pure in V (FG), as required.
The point 3. can be justified as follows: We haveG = BGp and so by what we have

proved above S(FG) = Sp(FG)(1 + Ip(FG; B)). Hence, V (FG) = BGpSp(FG)(1 +
Ip(FG; B)) = B(1 + Ip(FG; B))[GS(FG)]p = B(1 + Ip(FG; B))V p(FG), as desired.
This completes the proof. �

Commentary. Inspired by the Intersection Remark, we note that the condition
stated in the second half of Theorem 2 on G being p-mixed is necessary.

We now come to the construction of proper basic subgroups of S(FG)/Gp and
V (FG)/G. In other words, we concentrate on

Theorem 3. Let F be perfect. Then Gp(1 + Ip(FG; B))/Gp is basic in

S(FG)/Gp, and G(1 + Ip(FG; B))/G is basic in V (FG)/G presuming Gt is p-

primary.

���������
. By virtue of Theorem 1, 1 + Ip(FG; B)/Bp is a direct sum of cyclic

groups, hence so is Gp(1 + Ip(FG; B))/Gp as its isomorphic group. Moreover, since

from Lemma Gp = BpG
pn

p , with this in hand or directly, with the aid of the
intersection Proposition we calculate [Gp(1 + Ip(FG; B))] ∩ Spn

(FG) = [Gp(1 +
Ip(FG; B))]∩S(FGpn

) = Gpn

p (1+ Ip(FGpn

; Gpn ∩B)) = Gpn

p (1+ Ip(FGpn

; Bpn

)) =
[Gp(1+Ip(FG; B))]p

n

, which shows that Gp(1+Ip(FG; B)) is pure in S(FG). There-
fore by [9] we infer that so is Gp(1 + Ip(FG; B))/Gp in S(FG)/Gp. On the other

hand, S(FG)/Gp/Gp(1 + Ip(FG; B))/Gp
∼= S(FG)/Gp(1 + Ip(FG; B)), which is di-

visible as an epimorphic image of the divisible group S(FG)/(1+ Ip(FG; B)), which
has been examined above. These conclusions mean that the first half is completed.

The equality V (FG) = GS(FG) leads us to V (FG)/G ∼= S(FG)/Gp, and thus

the proof of the second part is similar to the above demonstration. The theorem is
proved. �

We recall that any abelian p-group is said to be starred if it has the same cardinality
as its basic subgroup.

As an application of our main achievement, we formulate:

Theorem 4. Suppose F is perfect. Then S(FG) and S(FG)/Gp are direct sums

of divisible and starred groups.
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���������
. Taking into account Theorems 2 and 3, 1+Ip(FG; B) is basic in S(FG),

and Gp(1 + Ip(FG; B))/Gp is basic in S(FG)/Gp.

First of all, let B = 1, i.e. let G be p-divisible. It is obviously true that then

S(FG) is divisible, hence so is S(FG)/Gp.

Let now B 6= 1. We shall argue first that S(FG) must be a starred group. In
order to show this, it suffices to estimate the power of 1 + Ip(FG; B). If both F

and G are finite, S(FG) is finite whence starred. In the remaining case when F or
G is infinite, ℵ0 6 max(|F |, |G|). Besides, we may assume that Gp 6= 1, otherwise
S(FG) = 1. Next, when |G| > ℵ0, consider the set of elements 1+fg(1−gp)(1−b) =
1 + fg − fggp − fgb + fggpb where 0 6= f ∈ F , 1 6= g ∈ G \ h[〈gp〉 × {1, b, b−1}]
whenever h ∈ G and h 6= g, gp ∈ Gp \ B, b ∈ B \ Gp when Gp 6= Bp 6= B; or
1 + fg(1− bp) = 1 + fg− fgbp where 0 6= f ∈ F , 1 6= g ∈ G \ h〈bp〉 whenever h ∈ G

and h 6= g, 1 6= bp ∈ Bp when Gp = Bp 6= 1 or B = Bp 6= 1. If G = Gp = B we are
done. If |G| < ℵ0 but |R| > ℵ0, we consider 1 + f(1 − gp)(1 − b) or 1 + f(1 − bp),
respectively, where {0,±1} 6= f ∈ F .

In all of these situations, gp, b and bp are fixed elements while f and g are not.
Since the above constructed elements from the group algebra are in canonical form,

we obviously see that 1 + fg − fggp − fgb + fggpb = 1 + rh − rhgp − rhb + rhgpb,
respectively, 1 + fg − fgbp = 1 + rh − rhbp, if and only if f = r and g = h. So,
max(|F |, |G|) = |F | · |G| 6 |1 + Ip(FG; B)|. Finally, we infer that |1 + Ip(FG; B)| =
|S(FG)|, as promised.
For the other case, bearing in mind that Gp(1+Ip(FG; B))/Gp

∼= (1+Ip(FG; B))/
Bp, we examine the elements 1 + fg(1 − gp)(1 − b) when Bp = 1 or (1 + fg(1 −
bp))Bp otherwise, where f , g, gp, b and bp are defined as above. We treat the
variant of infinite G since in the remaining one Bp must be finite, whence |(1 +
Ip(FG; B))/Bp| = |1 + Ip(FG; B)| > ℵ0 and thus the first step is applicable. The
further conclusions, that we pursue, follow by the same arguments as the one given

above. So, |(1 + Ip(FG; B))/Bp| = max(|F |, |G|) = |S(FG)/Gp|. The proof is
complete. �

Remark. The last result strengthens in a certain way a similar fact established
by us in [6] and [7].

The following example is of an independent interest.

Example. There exists a p-primary starred summable Cλ-group of length Ω
which is not totally projective.

Indeed, as is well-known by Hill-Cutler ([10]–[1]), there is a p-group G of length

Ω which is Cλ and summable but not totally projective; it it not obvious whether
or not this group is starred. In view of ([4], [8, Theorem 8]) along with the previous
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Theorem 4, V (FG) is a p-torsion summable starred Cλ-group whenever F is a perfect

field with charF = p 6= 0. But it is not totally projective, because otherwise a
result of May (see, for instance, [14] or [11]) would imply that so is G, against our
construction.

Problems. Does it follow that the same conclusion as in the example holds true if
the starred p-groups are replaced by fully starred p-groups, that is, a more restricted
class of groups?

We only mention that the same arguments as in the example are not valid be-

cause of the fact that V (FG) is not fully starred since its subgroup G is not even
starred. However, we conjecture that V (FG)/G is fully starred under the considered

circumstances.

We close the study with

Concluding discussion

When F is not perfect, it is a difficult matter to determine whether or not 1 +
Ip(FG; B) is a basic subgroup of S(FG). However, some advance in this theme is the
following. Adapting the central result in [12], the countable union of all Spn

(FG)-
high subgroups of S(FG) will definitely be a basic subgroup of S(FG). A lot of
information is contained in a high subgroup H of S(FG), too. Indeed, H should be
pure in S(FG) and S(FG)/H should also be divisible; notice that H contains the
basic subgroup of S(FG) as it is well-known. Of central interest is then the problem
of finding these special subgroups of S(FG) (see, for instance, [8]). This, however,
is a work for a future occasion.
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