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Abstract. Given α, 0 < α < n, and b ∈ BMO, we give sufficient conditions on weights
for the commutator of the fractional integral operator, [b, Iα], to satisfy weighted endpoint
inequalities on

� n and on bounded domains. These results extend our earlier work [3],
where we considered unweighted inequalities on

� n .
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1. Introduction

Given α, 0 < α < n, define the fractional integral operator Iα by

Iαf(x) =
∫
�

n

f(y)
|x− y|n−α

dy;

for b ∈ BMO, define the commutator [b, Iα] by

[b, Iα]f(x) = b(x)Iαf(x)− Iα(bf)(x) =
∫
�

n

(b(x)− b(y))
f(y)

|x− y|n−α
dy.

Commutators were first introduced by Chanillo [1] who proved Lp estimates, 1 <

p < ∞. In [3] we proved the following endpoint estimate:

|{x ∈ � n : |[b, Iα]f(x)| > t}| 6 CΨ
(∫
�

n

B
(
‖b‖BMO

|f(x)|
t

)
dx

)
,

where B(t) = t log(e + t) and Ψ(t) = [t log(e + tα/n)]n/(n−α).
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We initially conjectured that the corresponding weighted inequality was

w({x ∈ � n : |[b, Iα]f(x)| > t}) 6 CΨ
(∫
�

n

B
(
‖b‖BMO

|f(x)|
t

)
w(x)1/q dx

)
,

where w ∈ A1 and q = n/(n− α). However, this conjecture proved to be false, and
we gave a counterexample [3, Example 1.8].

At the time, we were not able to make a new conjecture. One difficulty we had

was that locally, our original conjecture appeared to be true; the counterexample
works because it exploits the decay of the weight at infinity. Careful consideration

of this behavior yielded two results. First, we found the correct weighted endpoint
inequality for the commutator on � n . Second, we showed that if we restrict ourselves

to a bounded domain, then there is a sharper endpoint inequality which is even
simpler than our original conjecture.

Theorem 1.1. Given α, 0 < α < n, and a function b ∈ BMO, let B(t) =
t log(e + t), Ψ(t) = [t log(e + tα/n)]n/(n−α), Θ(t) = t1−α/n log(e + t−α/n), and q =
n/(n− α). Then for each weight w ∈ A1, there exists a constant C such that

(1.1) w({x ∈ � n : |[b, Iα]f(x)| > t}) 6 CΨ
(∫
�

n

B
(
‖b‖BMO

|f(x)|
t

)
Θ(w(x)) dx

)
.

But, given any bounded domain Ω ⊂ � n ,

(1.2) w({x ∈ Ω: |[b, Iα]f(x)| > t}) 6 C

(∫

Ω

B
(
‖b‖BMO

|f(x)|
t

)
w(x)1/q dx

)q

.

Remark 1.2. If we replace f by fχΩ, Ω unbounded, (1.1) yields a nominally
more general result for unbounded domains. However, in both (1.1) and (1.2), the

A1 weights are still defined on all of � n .

Theorem 1.1 is best understood by comparing inequalities (1.1) and (1.2) to the
weighted endpoint inequality for the fractional integral operators due to Mucken-

houpt and Wheeden [7]. They showed that if w ∈ A1, then

(1.3) w({x ∈ � n : |Iαf(x)| > t}) 6 C

(
1
t

∫
�

n

|f(x)|w(x)1/q dx

)q

.

Intuitively, Theorem 1.1 shows that the commutator [b, Iα] is more singular than Iα

itself, and that its singularity is worse at infinity.
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Theorem 1.1 should also be compared to the analogous result for commutators

of singular integral operators (formally corresponding to the case α = 0) due to
Pérez [9]. If T is a singular integral operator, b ∈ BMO and w ∈ A1, then

w({x ∈ � n : |[b, T ]f(x)| > t}) 6 C

∫
�

n

B
(
‖b‖BMO

|f(x)|
t

)
w(x) dx.

The proof of Theorem 1.1 follows the same outline as the proof of the unweighted
result on � n [3, Theorem 1.1]. The first step is to prove that the associated Orlicz

fractional maximal operator,

Mα,Bf(x) = sup
Q3x

|Q|α/n‖f‖B,Q,

satisfies inequalities analogous to (1.1) and (1.2).

Theorem 1.3. With the same notation and hypotheses as in Theorem 1.1, we
have that

(1.4) w({x ∈ � n : Mα,Bf(x) > t}) 6 CΨ
(∫
�

n

B
( |f(x)|

t

)
Θ(w(x)) dx

)

and

(1.5) w({x ∈ Ω: Mα,Bf(x) > t}) 6 C

(∫

Ω

B
( |f(x)|

t

)
w(x)1/q dx

)q

.

We prove Theorem 1.3 in Section 2 below; since we can do so with essentially no
more work, we prove a generalization that holds for a large class of Young functions.

The proof of Theorem 1.1 now proceeds as in the unweighted case. Here we sketch
the main steps, and we refer the reader to [3] for details. On the left-hand side

of (1.1) (or (1.2)) we replace |[b, Iα]f(x)| byMd([b, Iα]f)(x), whereMd is the dyadic
maximal operator. We then use the good-λ inequality relating M d and the sharp

maximal operator M# (Lemma 6.1 in [3], which remains true in the weighted case
since w ∈ A1) to replace this with M#([b, Iα]f)(x). Next, we apply the inequality

M#([b, Iα]f)(x) 6 C‖b‖BMO[Iαf(x) + Mα,Bf(x)]

(Theorem 1.3 in [3]), which then reduces the estimate to endpoint inequalities for Iα

and Mα,B . To complete the proof we apply inequality (1.3) and Theorem 1.3, and

use the fact that w1/q 6 Θ(w).
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2. Endpoint results for Orlicz fractional maximal operators

In this section we state and prove two endpoint inequalities for the Orlicz fractional
maximal operator. Theorem 1.3 will be an immediate consequence of these results.

Hereafter we will assume that the reader is familiar with the basic facts about Orlicz
spaces, maximal operators and Muckenhoupt Ap weights, and we refer the reader

to [4], [5], [6], [10] for further information. Also, we will draw heavily on our work [3],
and we urge the reader to consult that paper.

Remark 2.1. The conclusions of our main results in this section, Theorems 2.3
and 2.5, remain true if α = 0. (See Pérez [8].) However, to avoid technical difficulties,
we restrict ourselves to α > 0.

To state our results, we need one definition.

Definition 2.2. Given an increasing function ϕ, define a function hϕ by

hϕ(s) = sup
t>0

ϕ(st)
ϕ(t)

, 0 6 s < ∞.

The function hϕ could be infinite if s > 1, but if ϕ is doubling, then it is finite for
all 0 < s < ∞. (See Maligranda [6, Theorem 11.7].) If ϕ is submultiplicative, then
hϕ ≈ ϕ. Also, for all s, t > 0, ϕ(st) 6 hϕ(s)ϕ(t).

Theorem 2.3. Given α, 0 < α < n, let B be a Young function such that

B(t)/tn/α is decreasing for all t > 0, and let w ∈ A1. Then there exists a constant C

depending only on B and the A1 constant of w such that for all t > 0, Mα,B satisfies

the modular weak-type inequality

(2.1) Φ(w({x ∈ � n : Mα,Bf(x) > t})) 6 C

∫
�

n

B
(f(x)

t

)
hΦ(w(x)) dx

for all non-negative f ∈ LB( � n ), where

(2.2) Φ(s) =





0 if s = 0,

s

hB(sα/n)
if s > 0.

Inequality (1.4) follows easily from Theorem 2.3. Since B is submultiplicative,
hB ≈ B, so

Φ(t) ≈ t1−α/n

log(e + tα/n)
.
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The function Φ is invertible with

Φ−1(t) ≈ Ψ(t) = [t log(e + tα/n)]n/(n−α).

Thus, inequality (2.1) yields (1.4), provided that

hΦ(t) 6 CΘ(t) = Ct1−α/n log(e + t−α/n).

However, this follows from the definition: since hB is submultiplicative and hB ≈ B,

hΦ(s) = sup
t>0

Φ(st)
Φ(t)

= s sup
t>0

hB(tα/n)
hB((st)α/n)

6 shB(s−α/n) 6 CsB(s−α/n) = CΘ(s).

Remark 2.4. Note that if we let t = s−1 and use the fact that hB(t) > cB(t), we
get hΦ(s) > cΘ(s). Hence, Θ is the best possible function we can get by this means.

Theorem 2.5. Given a bounded domain Ω ⊂ � n and given α, 0 < α < n, let B be

a Young function such that B(t)/tn/α is decreasing for all t > 0. Suppose further
that there exists r, 1 6 r 6 n/α, such that hB(t) 6 Ctr for all t 6 6 diam(Ω)α. Then

for each w ∈ A1 there exists a constant C, depending on B, diam(Ω) and the A1

constant of w, such that for all non-negative f ∈ LB(Ω),

(2.3) w({x ∈ Ω: Mα,Bf(x) > t})1−rα/n 6 C

∫

Ω

B
(f(x)

t

)
w(x)1−rα/n dx.

Inequality (1.5) is an immediate consequence of Theorem 2.5. Since B(t) =
t log(e + t), hB ≈ B, so if t 6 6 diam(Ω), then hB(t) 6 C log(e + 6 diam(Ω))t.
Thus inequality (2.3) holds with r = 1, and this yields (1.5).
�������
	

of Theorem 2.3. Our proof is very similar to the proof of Theorem 3.3
in [3], and we refer the reader there for many lemmas and technical details.

Fix a non-negative function f and t > 0. Define Et = {x ∈ � n : Mα,Bf(x) > t}.
For each x ∈ Et there exists a cube Qx 3 x such that

|Qx|α/n‖f‖B,Qx > t.

The collection {Qx}x∈Et covers Et. Thus, by Lemma 3.14 in [3], there exists β > 0
and a collection of disjoint dyadic cubes {Pj} such that Et ⊂

⋃
j

3Pj and

|Pj |α/n‖f‖B,Pj > βt.
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By the properties of the Luxemburg norm on Orlicz spaces and by Definition 2.2,

1 <
1
|Pj |

∫

Pj

B
( |Pj |α/nf(x)

βt

)
dx(2.4)

6 ChB(|3Pj |α/n)
|3Pj |

∫

Pj

B
(f(x)

t

)
dx

=
C

Φ(|3Pj |)

∫

Pj

B
(f(x)

t

)
dx.

The growth conditions assumed on B imply (see Lemma 3.12 in [3]) that

Φ(w(Et)) 6 Φ
(∑

j

w(3Pj)
)

6
∑

j

Φ(w(3Pj)).

Hence, if we combine the two inequalities above and apply Definition 2.2, we get

Φ(w(Et)) 6 C
∑

j

Φ(w(3Pj))
Φ(|3Pj |)

∫

Pj

B
(f(x)

t

)
dx

6 C
∑

j

hΦ

(w(3Pj)
|3Pj |

) ∫

Pj

B
(f(x)

t

)
dx;

since w ∈ A1 and the Pj ’s are disjoint,

Φ(w(Et)) 6 C
∑

j

∫

Pj

B
(f(x)

t

)
hΦ(w(x)) dx

6 C

∫
�

n

B
(f(x)

t

)
hΦ(w(x)) dx.

This completes the proof. �

The proof of Theorem 2.5 requires two lemmas.

Lemma 2.6. Given α, 0 < α < n, let B be a Young function such that B(t)/tn/α

is decreasing for all t > 0. Then hB(s) 6 sn/α for all s > 1.
�������
	

. Fix s > 1. Then for all t > 0,

B(st)
(st)n/α

6 B(t)
tn/α

, or equivalently,
B(st)
B(t)

6 sn/α.

Taking the supremum over all t we get the desired inequality. �
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Lemma 2.7. Given α, 0 < α < n, let B be a Young function such that B(t)/tn/α

is decreasing for all t > 0. If Q and Q̄ are cubes and f is a function such that

supp(f) ⊂ Q ⊂ Q̄, then

|Q̄|α/n‖f‖B,Q̄ 6 |Q|α/n‖f‖B,Q.

�������
	
. Let s = |Q̄|/|Q| > 1. Then by the definition of the Luxemburg norm

and by Lemma 2.6,

|Q̄|α/n‖f‖B,Q̄ = |Q|α/n‖sα/nf‖B,Q̄

= |Q|α/n inf
{

λ > 0:
1
|Q̄|

∫

Q̄

B
(sα/n|f(x)|

λ

)
dx 6 1

}

6 |Q|α/n inf
{

λ > 0:
1
|Q̄|

∫

Q

hB(sα/n)B
( |f(x)|

λ

)
dx 6 1

}

6 |Q|α/n inf
{

λ > 0:
1
|Q|

∫

Q

B
( |f(x)|

λ

)
dx 6 1

}

= |Q|α/n‖f‖B,Q.

�
�������
	

of Theorem 2.5. The proof of this result is nearly the same as the proof of
Theorem 2.3. The major difference is that we must show that we can restrict the size

of the cubes used to compute Mα,B . Fix x ∈ Ω, and let Q be any cube containing x.
If `(Q) > diam(Ω), then we can maximize the quantity |Q|α/n‖f‖B,Q by taking Q

to be such that Ω ⊂ Q. Further, by Lemma 2.7 we can increase this quantity by
choosing Q such that `(Q) 6 diam(Ω). Consequently, in computing Mα,B we can

restrict ourselves to cubes whose sidelength is at most the diameter of Ω.
Thus, in the proof of Theorem 2.3, when we cover the set Et by cubes Qx, we

may assume that each of these cubes has sidelength bounded by diam(Ω). We then
use Lemma 3.14 in [3] to replace these cubes by a collection of dyadic cubes Pj . But

from the proof of this lemma (see [2], [8]) we see that the sidelength of each Pj is
bounded by twice the largest sidelength of the Qx’s; therefore `(Pj) 6 2 diam(Ω) for
all j.
By assumption, hB(t) 6 Ctr for t 6 6 diam(Ω)α. Therefore, hB(|3Pj |α/n) 6

|3Pj |rα/n for all j. Hence, we can modify the argument that yielded (2.4) to get

1 <
C

|3Pj |1−rα/n

∫

Pj

B
(f(x)

t

)
dx.

If we now let Φ(t) = t1−rα/n, then hΦ(t) = Φ(t) and we can repeat the remainder
of the argument in the proof of Theorem 2.3 to get (2.3). �
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