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Abstract. Two species of animals are competing in the same environment. Under what
conditions do they coexist peacefully? Or under what conditions does either one of the two
species become extinct, that is, is either one of the two species excluded by the other? It
is natural to say that they can coexist peacefully if their rates of reproduction and self-
limitation are relatively larger than those of competition rates. In other words, they can
survive if they interact strongly among themselves and weakly with others. We investigate
this phenomena in mathematical point of view.

In this paper we concentrate on coexistence solutions of the competition model

Au+ ul(a—g(u

,0)) =0,
Av+v(d—h(u,v)) =0 inQ,
ulpg = vlpn = 0.
This system is the general model for the steady state of a competitive interacting system.
The techniques used in this paper are elliptic theory, super-sub solutions, maximum princi-

ples, implicit function theorem and spectrum estimates. The arguments also rely on some
detailed properties of the solution of logistic equations.

Keywords: elliptic theory, maximum principles

MSC 2000: 35J55, 35J60

1. INTRODUCTION

A lot of research has been focused on reaction-diffusion equations modeling various
systems in mathematical biology, especially the elliptic steady states of competitive
and predator-prey interacting processes with various boundary conditions. In ear-
lier literature, investigations into mathematical biology models were concerned with
studying those with homogeneous Neumann boundary conditions. Later on, the
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more important Dirichlet problems, which allow flux across the boundary, became

the subject of study.

Suppose two species of animals, rabbits and squirrels for instance, are competing
in a bounded domain Q. Let u(z,t) and v(x,t) be densities of the two habitats in
the place = of 2 at time t. Then we have the following biological interpretation of
terms.

(A) The partial derivatives us(z,t) and v:(z,t) mean the rate of change of densities
with respect to time t.

(B) The laplacians Au(x,t) and Av(z,t) stand for the diffusion or migration rates.

(C) The rates of self-reproduction of each species of animals are expressed as mul-
tiples of some positive constants a, d and current densities u(z,t), v(z,t),
ie. au(z,t) and dv(z,t) which will increase the rate of change of densities in
(A), where a > 0, d > 0 are called the self-reproduction constants.

(D) The rates of self-limitation of each species of animals are multiples of some pos-
itive constants b, f and the frequency of encounters among themselves u?(z, ),
v?(x,t), i.e. bu?(z,t) and fv?(x,t) which will decrease the rate of change of
densities in (A), where b > 0, f > 0 are called the self-limitation constants.

(E) The rates of competition of each species of animals are multiples of some positive
constants ¢, e and the frequency of encounters of each species with the other
u(x, t)v(x,t), i.e. cu(z,t)v(z,t) and eu(x,t)v(x,t) which will decrease the rate
of change of densities in (A), where ¢ > 0, e > 0 are called the competition
constants.

(F) We assume that none of the species of animals is staying on the boundary of €.

Combining all those together, we have the dynamic model

ug(w,t) = Au(x,t) + au(z, t) — bu?(z,t) — cu(x, t)v(x,t),
ve(z,t) = Av(x,t) + dv(x,t) — fo*(z,t) — eu(x, t)v(z,t) in Q x [0, 0),
u(z,t) =v(zr,t) =0 for z € 041,
or equivalently,
us(x,t) = Au(x, t) + u(z, t)(a — bu(x, t) — cv(a, t)),
ve(x,t) = Av(z,t) + v(z, t)(d — fo(x,t) —eu(x,t)) in Q x [0, 00),
u(z,t) =v(z,t) =0 for z € 0.

Here we are interested in the time independent, positive solutions, i.e. the positive
solutions u(x), v(z) of

Au(z) + u(x)(a — bu(x) — cv(z)) =0,
Av(z) +v(x)(d — fv(z) —eu(xz)) =0 in Q,
uloq = vlaa =0,
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which are called the coexistence state or the steady state. The coexistence state is
the positive density solution depending only on the spatial variable x, not on the time
variable ¢, and so its existence means the two species of animals can live peacefully
and forever.

A lot of work about the existence and uniqueness of the coexistence state of the
above steady state model has already been done during the last decade. (See [1], [2],
31, [6], [7), [9], [10].)

In this paper we study rather general types of the system. We are concerned with
the existence and uniqueness of positive coexistence when the relative growth rates
are nonlinear, more precisely, the existence and uniqueness of a positive steady state

of
Au+ u(a — g(u,v)) =0,
Av+ov(d —h(u,v)) =0 in Q,
ulo = v|oa =0,

where a, d are positive constants, g, h are C*' functions, € is a bounded domain in
R™ and u, v are densities of the two competitive species.

The following are questions raised in the general model with nonlinear growth
rates.

Problem 1: Under what conditions do the species coexist? Under what conditions
do they have a unique steady state? When does either one of the species become
extinct?

Problem 2: Assuming that they can coexist and the coexistence state is unique at
a fixed self-reproduction (a, d), can they still coexist regardless of a slight change of
that self-reproduction?

Problem 3: This is a generalization of Problem 2. If we have existence and unique-
ness of the coexistence state on the left boundary of a closed convex region I' for the
reproduction (a,d), can we extend the region I' to an open set including I" without
losing the uniqueness?

We will need some information on the solutions of the logistic equation. (cf. [9])

Au+uf(u)=0 in Q,
u|352:07 U>0,

where () is a bounded domain in R" and

(A) f is a strictly decreasing C! function,

(B) there exists c¢g > 0 such that f(u) < 0 for u > ¢o.

(1) If £(0) > A1, where )\ is the first eigenvalue of —A with homogeneous bound-
ary condition, then the above equation has a unique positive solution.

(2) If £(0) < A1, then u = 0 is the only nonnegative solution of the above equation.
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In the case (1), we denote this unique positive solution as 6. The main property
of this positive solution is that 0y is larger provided f is larger, i.e. 0, < 0y if g < f.
In Section 2, some sufficient conditions guaranteeing the existence and uniqueness of
positive solutions are obtained, and we can also see that there is no positive solution
for small self-reproduction rates, mainly by using upper-lower solutions and spectrum
estimates, which solves Problem 1. In Sections 3 and 4, we answer Problems 2 and
3 using elliptic theory, maximum principles and implicit function theorem.

2. EXISTENCE, NONEXISTENCE AND UNIQUENESS OF STEADY STATE

We consider the elliptic system

Au+u(a — g(u,v)) =0,
(1) Av+ov(d — h(u,v)) =0 in Q,

u|aQ = ’U|aQ =0.

Here Q) is a bounded, smooth domain in R" and

(U1) g,h € C! are strictly increasing functions with respect to u, v,

(U2) there exist k1, ko > 0 such that g(u,0) > a for u > k1 and h(0,v) > d for v > ks.
If there were no competition between the species, that is, if we consider

Au +u(a — g(u,0)) =0,
Av+o(d—h(0,0)) =0 inQ,
u=v=0 on 0f),

then the condition @ > A1, d > A1 (i.e. reproductions are relatively large) were
sufficient to guarantee the existence of a positive density solution 6,_g. 0y, a—n(o,.)-
But, if there is some competition between them, then as we see in the following
Theorem 2.1, we should have larger lower bounds for reproduction rates a and d,
i.e. we have stronger conditions a > Ay + ¢(0,k2), d > A1 + h(k1,0) to guarantee
their coexistence. (Le.the reproductions should be much larger.)

The following theorem is the main result:

Theorem 2.1. (A) If a > A\ + ¢(0,k2) and d > A1 + h(k1,0), then (1) has a
positive solution (u,v) with

ea,g(.7k2) <u< Ga,g(.yo), ed,h(kl’.) <v < ed,h(oy,).

Conversely, any positive solution (u,v) to (1) must satisfy these inequalities.
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(B) Ifa > A\ + g(0,k2) and d > Ay + h(k1,0) and
sigf () (52) = s g2 (s (57)) s g2 (s (51))
+ 2 sup (%) sup (%),

where B = [0, k1] x [0, k2], then (1) has a unique coexistence state.
(C) If a < A1 or d < Ay, then (1) has no positive solution.

Biologically, we can interpret the conditions in Theorem 2.1 as follows. The con-
stants a,d and functions g, h describe how species 1 (u) and 2 (v) interact among
themselves and with each other. Hence, both the conditions in (A) and (B) imply
that species 1 interacts strongly among themselves and weakly with species 2. Simi-
larly for species 2, they interact more strongly among themselves than they do with
species 1. The inequalities in the assertion (A) imply that the densities with com-
petitions (u and v) are less than those without competition (6,_g(.,0) and 8q_p(0,.))-
Furthermore, (C') says that if one of the species has small reproduction, then it may
be extinct, which means that the two species can not coexist.

Proof. (A) The proof of the existence has already been done in [10]. Here
we concentrate on proving the inequalities for the solution. Let u = 0,_4(.0), 7 =
04—n(o,.)- Then since g is increasing, we have

Similarly, we have
AT+ 0(d — h(u, 7)) < 0.

So, (@, ) is an upper solution of (1).
Let u = 04_g(. ks)»¥ = 04_n(k,,.)- Then by the Maximum Principle we obtain

Since g is increasing, we get

Au+u(a — g(u,v)) = Au+ ula — g(u, k2) + g(u, k2) — g(u,v))

Similarly, we get
Av +v(d — h(u,v)) = 0.

Therefore, (u,v) is a lower solution of (1).
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=0 =0 on OfL.
solution (u,v) with

Furthermore, u < 7 and v < 7in Q and u v
( a

u =
So, by the upper-lower solution method, (1) has

Oa—g(-ka) <U<ba—g(0),  banh,) <V <ba_po,)

Suppose (u,v) is a positive solution to (1). By the Mean Value Theorem, there is v*
such that

og(u,v*
o) = g(u,0) + 22
Then 5 .
Au+ ul(a — g(u,0)) = %uv > 0 in Q.
v

Hence, u is a subsolution to

{Az+z(ag(z,0)) =0 1in Q,

z|aQ =0.
Any sufficiently large positive constant is a upper solution to

{Az—i—z(a—g(z,O)) =0 in{,

z|an = 0.
Therefore, by the upper-sub solution method, we have
(2) U< O4_g(0)-
The same argument shows
(3) v < 0g-_n(o,)-
For sufficiently small ¢ > 0,

eA04_n0,) + €0a—n(o,)(d — (0,204 _1(0,))
= e[A0g_n(0,) + Oa—n(0,)(d — h(0,€04_n(o,)))]
> E[Aedfh(o,-) + Gdfh(O.,-)(d — h(0, deh(O;)))] =01in ,

and so £0_p(o,.) is a sub solution to

{Az+z(d h(0,2)) =0 1in Q,

Z|aQ =0.
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Since d — h(0, ko) < 0, ko is a upper solution to

{Az—f—z(d— h(0,2)) =0 inQ,

Z|3Q =0.
Hence, by the upper-sub solution method again,
Oa—n(o,) < ka-

So,
g(uv U) < g(”v deh(O;)) < g(ua k2)

since g(u, z) is increasing. Therefore,
Au+ u(a — g(u, ko)) < Au+ u(a— g(u,v)) =0 in Q.
Hence, u is a upper solution to

{ Az+ z(a—g(z,k2)) =0 in Q,

z|an = 0.
Let ¢ be the first eigenvector of

{Aqu)\leinQ,

Z|3Q =0.
Then for sufficiently small € > 0,
a—g(epr,ke) — A1 >0 in Q,

and

Alepr) +epi(a — glepr, ka))
= e[A(epr) + p1(a — glegr, k2))]e(Apr + A1) =0 in Q.

Consequently, €¢; is a sub solution to

Az+z(a—g(z,k2)) =0 in Q,
zloa = 0.

Hence, by the upper-sub solution method again,

(4) ea,g(.7k2) < u.
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The same argument shows

(5) edfh(kl,-) <.

From (2) to (5), we have

(6) Oa—g(- kz) < U< Oag(0), Oa—n(ky,) <V < O4_po,.)-

Consequently, for any positive solution (u,v) of (1), the inequalities (6) hold.
(B) Suppose (u1,v1) and (us,v2) are positive solutions to (1). Let p = uy — ug
and ¢ = v; — v3. Then

Ap+ (a — g(u,v1))p = Auy — Aug + (a — glug,v1))(u1 — uz)
= —Aus — (a — g(u1,v1))us
= —Aug —uz(a — g(ua, va2) + g(ua,va) — g(ug,v1))
= —uz(g(uz,v2) — g(u1,v1))
= —ug(g(uz,v2) — g(u1,v2) + g(u1,v2) — g(u1,v1))
— _u2(M(_p) + M(_q)>

ou ov
0g(zx, 0 , T .
= Uo (p g(guw) +q g(g; w)) in Q,

where T, T are from Mean Value Theorem depending on uy, us, v1, v2. Hence,

ag(‘i‘ﬂn) 69(/“17‘%)
ou ta v

(M Ap+(a—gluv))p—us(p )=0 mo.

Similarly, we can get

6h(g7 Ul) + qah(u27 y)

®) A+ (d—hu,v))g v (p7 5

):o in Q,

where ¢, 7 are from Mean Value Theorem depending on wuy, ug, v1, ve. Since A1(a —
g(u1,v1)) = 0, by the Variational Characterization of the first eigenvalue we obtain

(9) / 2(—Az — (a — g(u1,v1))z)dx >0

Q
for any z € C%(Q) and z|sq = 0. The same argument shows that
(10) / w(—Aw — (d — h(ug,ve))w)dx = 0

Q
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for any w € C%(Q) and w|sn = 0. From (7) and (8) we have

69(‘%71)2) ag(ulaj)
. _ _ 2
pAp — (a — g(u1,v1))p +U2p(p R )

6h(g7 Ul)
ou

=0,

~gAq — (d = hluz,v2))* + vrq(p +q2G2D) —0 Q.

Using (9) and (10), we conclude

/Q {Wp(pag(jvw) +q39(ul,f)>+U1q<p8h(ﬂ,v1)+q8h(uz,ﬂ)>} <0.

ou v ou v
Hence,
ag(‘%’vz) 2 8g(u17j) ah(gavl) 8h(u27y) 2
T 72) TR I) 21 <.
/Q {u2 du © * <u2 v o ou )pq tu ERE } <0

Therefore, p = ¢ = 0 if we can show that

_ ~ 2 ~ _
<u269(u17x) + 6h(y,’01)> *4’&21}1 89(1:71)2) 8h(u27y)

Ov T 00 ou Ov <0 in&,

which is true if

ag(ula‘f) 2 6h(g,’l}1) 2 ag(uh‘f) 6h(g,’01)
2( I\ ) 2 (Y V1)
u2< ov ) t i ( ou ) +2uztn ov ou

N 4’[,L2’U1 89(1:71)2) 8h(u27y) <0 in Q,

ou ov

ie.,
69(1‘71}2) 8h(u2ag) 2 89(U1,i’) 2 2 6h(yav1) 2
duzvr 1o} ov 2( ov ) Ul( ou )
0 , ) Oh(y,
+ 2u9v1 g(gl 7) (guvl) in €,
or

99(Z,v2) Oh(uz,§) _ w2 (0g(u1,2)\2  vi (Oh(F,v1)\?2
4 ou ov > vy ( ov ) + U9 ( ou )
3g(u1,s€) 6h(g,1}1) n Q

2
+ ov ou

This is the case from the hypothesis of the theorem and (6), and so the uniqueness
is proved.
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(C) Assume a < A;. Suppose (u,v) is a nonnegative solution to (1). Then since g
is an increasing function with respect to u and v,

Au+ula = g(u,0)) = Au+ua = g(u,v) + g(u,v) = g(u,0))
u(g(u,v) = g(u,0)) = 0.

Therefore, u is a sub solution to

Au+ u(a—g(u,0)) =0 in Q,
u|aQ =0.

Any constant larger than k; is a upper solution to

{Au+u(ag(u,0)) =0 1inQ,

u|aQ =0.
Hence, by the upper-lowersolution method, there is a solution u of

{Au—l—u(a—g(u,())) =0 in{,

ulogg =0

such that 0 < u < @. But, since a < A\, 4 =0, and so u = 0.

3. UNIQUENESS UNDER SMALL PERTURBATION OF REPRODUCTION RATES

We consider the model

Au+u(a — g(u,v)) =0,
(11) Av+ov(d — h(u,v)) =0 in Q,

ulan = v|an = 0.

Here Q) is a bounded, smooth domain in R" and

(P1) g,h € C! are strictly increasing functions with respect to u and v, and
9(0,0) = h(0,0) =0,

(P2) there are k1, k2 > 0 such that g(u,0) > a > A for u > ky and h(0,v) > d > M\
for v > ko.

The following theorem is the main result.
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Theorem 3.1. Suppose
(A) a> A1(9(0,04-n(0,)), d > A1(R(Ba—g(.,0):0)),
(B) (11) has a unique coexistence state (u,v),
(C) the Fréchet derivative of (11) at (u,v) is invertible.
Then there is a neighborhood V' of (a,d) in R? such that if (ag,do) € V, then (11)
with (a,d) = (ag,do) has a unique coexistence state.

Theorem 3.1 looks like a consequence of Implicit Function Theorem. However,
the inverse function theorem only guaranteed the uniqueness locally. Theorem 3.1
yields the global uniqueness. The techniques we will use includes naturally Implicit
Function Theorem and a priori estimates on solutions of (11).

Biologically, the first condition in this theorem indicates that the rates of self-
reproduction are large. The condition of invertibility of the Fréchet derivative also
illustrates that the rates of self-limitation are relatively larger than those of com-
petition which will appear in Theorem 3.3. Then the conclusion says that a small
perturbation of reproduction rates does not cause the loss of existence and unique-
ness of a positive steady state, i.e. the species can still coexist peacefully even if there
is some slight change of the reproduction rates.

Proof. Since the Fréchet derivative of (11) at (u, v) is invertible, by the Implicit
Function Theorem there is a neighborhood V of (a,d) in R? and a neighborhood W of
(u,v) in [C3T*(Q)]? such that for all (ag,dy) € V, there is a unique positive solution
(ug,v0) € W of (11). Suppose the conclusion of the theorem is false. Then there
are sequences (Gn,dn, Un, Vn), (G, dn, ul, ) in V x [C21*(Q))? such that (u,,v,)
and (u},v}) are positive solutions with (a,d) = (an,d,) and (un,v,) # (ul,v) and
(an,dn) — (a,d). By the standard elliptic theory, (u,,v,) — (@, ) and (uf,v}) —
(u*,v*) in C%?, and (4,D), (u*,v*) are solutions of (11). We claim @ > 0, o > 0,
uw* >0, v* > 0. It is enough to show that @ and @ are not identically zero because of
the Maximum Principle. Suppose not, then by the Maximum Principle again, one of
the following cases should occur: (1) @ is identically zero and ¢ > 0. (2) @ > 0 and
¥ is identically zero. (3) @ is identically zero and 7 is identically zero.

Without loss of generality, assume @ is identically zero.

Let @y, = un/||tn|oo, Un = vp, for all n € N. Then

{ Aty + ﬁn(an - g(unyﬁn)) =0,
0

Aby, + b (dy — h(tn, 5y)) in Q.

From the elliptic theory, %, — % and

At + 4(a — ¢(0,7)) =0,
AT+ 9(d—h(0,5)) =0 in Q,

since g, h are continuous, i.e., a = A1 (g(0, 7)).
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(1) If 5 = 0, then by the monotonicity of g and A1, a = A\1(g(0,7)) = A1(g(0,0)) <
A1(9(0,04-n(0,-))), which contradicts our assumption.

(2) If ¥ is not identically zero, then o = 6;_p(,) and so a = Ai(g(0,7)) =
A1(g(0, Gd h(0,-))), Which is also a contradiction to our assumption. Consequently,
(@,?) and (u*,v*) are coexistence states for (a,d). But, since the coexistence state

with respect to (a,d) is unique, (4,7) = (u*,v*) = (u,v). But, since (un,v,) #

(u¥,v?}), this contradicts the Implicit Function Theorem.
The proof of the theorem also tells us that if one of the species becomes extinct,
in other words, if one is excluded by the other, then that means the reproduction

rates are small, i.e. the condition of reproduction rates (A4) is reasonable.

Theorem 3.2. If (an,dy,tun,v,) — (a,d,u,v) and if w = 0 or v = 0, then
a < A(9(0,04-p(0,)) or d < Ai(h(0a—g(.,0),0)).
The condition, invertibility of the Fréchet derivative, in Theorem 3.1 is too arti-

ficial. Now we turn out attention to get conditions guaranteing the invertibility of
the Fréchet derivative.

Theorem 3.3. Suppose (u,v) is a positive solution to (11). If

9g(z,y) . . Oz, y) dg(z,y) Oh(z,y) o2

4inf
m Or dy dy U sup ox

uv > [sup

)

then the Fréchet derivative of (11) at (u,v) is invertible.

Proof. The Fréchet derivative at (u,v) is

—A+g(u,v) + u@gg;, V) _ a u(’)gg;, v)
A=
5‘h(u v) Oh(u,v)
5 —A+ h(u,v) +v 5 —d

We need to show that N(A) = {0} by the Fredholm alternative. If

p) P
—Ag+ (glu,v) + u% —a)p+ %uw —0,
A+ ahg: Y v + (h(u,v) + v% - d)w -0,

then

0g(u, dg(u,
[Vl + (atu.) + u 220 )2y Q0 0p)

(vl + 2 i () +0 80 )] =0,

S~ S—
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Since A1(g(u,v) —a) = A1 (h(u,v) — d) = 0, we have

1QVﬂ?+@wﬂofwwﬂ>o

ANVWI+WWJQ*@¢ﬂ>0

Hence,
9g(u,v) o = 9g(u,v)
<
/Q(u Ou v ov ugmb)\(),
Oh(u,v) Oh(u,v) o
/Q( ou vy + ov vw><0'
Therefore,
0g(u,v) o dg(u,v) Oh(u,v) Oh(u,v) o
_ < 0.
/Q[u Ju <p+< v ut ou U>(pw+ v M/J}\O

Consequently, if

4inf<%> inf(%:;’y)yw > {(Sup(%?))qu (Sup(%))v] ,

then the integrand on the left hand side is a positive definite form in €2, which means
¢ =1 = 0. Therefore, the above Fréchet derivative A is invertible.

Combining Theorems 2.1, 3.1 and 3.3, we have the following Corollary which is
actually the main result in this section.

Corollary 3.4. Suppose
(A) a> M +g(0, kg), d> M+ h(kl,O), and

. Og(z,y) . Oh(w,y) 9g(,y) Oh(w,y) - Ga-nio,)
(B) 41%f x I%f Jy > [Sup Oy sup Ox P ea*g(wkz)]
dg(z,y) fa—g(.0) Oh(z,y)
x {SUP oy " Od—h(ki,) T }7

where B = [071431] X [O,kz]
Then there is a neighborhood V' of (a,d) in R? such that if (ag,do) € V, then (11)
with (a,d) = (ag,do) has a unique coexistence state.

Proof. From 0,40 < k1, 04—n(,) < k2, and the monotonicity of g(0,-),
h(-,0) we have
1(9(059d—h(0,‘)))7

{a>)\1+g(0,k2) A
A1 (h(@a,g(.ﬂo),())).

d> )\ —l—h(/ﬁ,O)
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Further,

sy g P [
o 2o oty 2551
= {sup 395917, y)} 2 sup zia_hg((];f_)) +sup 59(81; ) sup 3h((9:1; y)
+ sup 99:—;((;; o>) s :j_ghf,;:) s 895;!; 9 gup 8h(8:;, v)
[ G

since 9a79(~,0) > ea,g(.7k2), ed,h(oy.) > edfh(kl,-)-
Therefore, (11) has a unique coexistence state (u,v) by Theorem 2.1. Furthermore,
by the estimate of the solution in the proof of Theorem 2.1,

99(x,y) . .
T B

0, o
dg(z,y) sup Jazet0 o Oh(z,y)
edfh(kl,-) 895
up Oh(z,y) g} [Sup dg(z,y) u 3h(w,y)].

+s
ox u "

04 100
Oh(z,y) - [Sup dg(z,y) + sup Oh(z,y) sup 24 h(m)}
0y dy )

4inf
Hé 8:17 6‘1_9('7162

dy v L

Thus, we obtain

dg(z,y) f Oh(z,y)
0

dg(z,y) Oh(z,y) ”]2
i B Y ’

4 i%f uv > [Sup ay U + sup

Thus Theorem 3.3 implies that the Fréchet derivative of (11) at (u,v) is invertible.
Therefore, the theorem follows from Theorem 3.1.
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4. UNIQUENESS IN A REGION OF REPRODUCTION RATES

Consider the model

Au+ ula — g(u,v)) =
(12) Av +v(d — h(u,v)) =

)

in Q

)

u|aQ = ’U|aQ =0.

Here Q) is a bounded smooth domain in R” and g,h € C! are strictly increasing
functions with respect to u and v, and ¢(0,0) = h(0,0) = 0.
The following theorem is the main result.

Theorem 4.1. Suppose
(A) T is a closed, convex region in R? such that for all (a,d) € T, a > A\1(g(0,
Ba—n(o.) and d > Ay (h(Ba—y(..0),0)),
(B) there exist ¢g > 0 and ¢; > 0 such that for all (a,d) € T, g(x,0) > a > A\ for
x> co and h(0,y) > d > A\ for y > ¢y,
(C) (12) has a unique positive solution for every (a,d) € OpT', where 9T =
{(Ag,d) € T'|for any fixed d, \q = inf{a|(a,d) € T'}},
(D) for all (a,d) € T, the Fréchet derivative of (12) at every positive solution to (12)
is invertible.
Then for all (a,d) € T', (12) has a unique positive solution. Furthermore, there is
an open set W in R? such that I' C W and for every (a,d) € W, (12) has a unique
positive solution.

Theorem 4.1 goes even further than Theorem 3.1 which states uniqueness in the
whole region of (a,d) whenever we have uniqueness on the left boundary and invert-
ibility of the linearized operator at any particular solution inside the domain.

Proof. Foreach fixed d, let \? = sup{a: (a,d) € T'} and \; = inf{a|(a,d) € T'}.
We need to show that for every a such that Ay < a < A%, (12) has a unique
positive solution. Since (12) with (a,d) = (Ag,d) has a unique positive solution
(u,v) and the Fréchet derivative of (12) at (u,v) is invertible by Theorem 3.1,
there is an open neighborhood V' of (\4,d) in R? such that if (ag,dy) € V, then
(12) with (a,d) = (ag,dp) has a unique positive solution. Let Ay = sup{\ >
Ad: (12) has a unique coexistence state for Ay < a < A}. We need to show that
As > A% Suppose A\, < A%. By the definition of A, there is a sequence {\,} such
that A, — A, and a sequence (uy,vy,) of the unique positive solutions of (12) with
(a,d) = (A\n,d). Then by the elliptic theory, there is (ug, vg) such that (u,v,) con-
verges to (ug, vg) uniformly and (ug,vp) is the solution to (12) with (a,d) = (As, d).
We claim that wug is not identically zero and vg is not identically zero. Suppose this
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is false. Then by the Maximum Principle, one of the following cases should occur:
(1) wo is identically zero and vg is not identically zero. (2) wug is not identically zero
and vy is identically zero. (3) Both ug and vy are identically zero. The argument is
similar to what we had in the previous section.

(1) Suppose uy is identically zero. Let @, = wn/||tn|0o and v, = v, for all n € N.
Then

Aty + Un (A — g(tn, 0)) =0,
{ Ay + Up(d — h(un, 0p)) =0 in Q.

We know u,, — u from the elliptic theory, and

Au + ﬂ’()‘s - g(O, UO)) = 05
Avg + Uo(d — h(O,’Uo)) =0 in Q,

since g, h are continuous. Hence, vo = 04_p(0,.) and A\s = A1(g(0,v0)). If vg is
identically zero, then by the monotonicity of g and A; we have As = A1(g(0,v9)) =
A1(9(0,0)) < Ai(9(0,04-p(0,.y)) < Aa, which is impossible. If vy is not identically
zero, then vy = 0g_p(0,.y and so As = A1(g(0,v0)) = A1(9(0,04-n(0,.))) < Ag, which is
also impossible.

(2) Suppose vy is identically zero.

Let @, = u, and ¥,, = v, /||vn|leo for all n € N. Then

Aty + ﬁn()‘n - g(anavn)) =0,
Ay + Up(d — h(tn,vy)) =0 in Q.

Again 9,, — v by the elliptic theory, and

A’LLO + uO()\s - g(UO, 0)) =0,
Ab+3(d—h(up,0) =0 in 0

since g, h are continuous. Hence, d = Ai(h(ug,0)). If ug is identically zero,
then by the monotonicity of h and A\; we have d = A1 (h(ug,0)) = A1(R(0,0)) <
M (A(0x,—g(-0),0)) < A1(A(0xa_g(.0),0)), which is impossible since (A% d) € T.
If uo is not identically zero, then ug = 0y _4¢.0) and so d = Ai(h(ug,0)) =
A (P03, —g(-0),0)) < M (A(xa_g(.0),0)), which is also impossible since (A%, d) € T.
Consequently, ug > 0, vo > 0 in Q, that is, (ug,vo) is a coexistence of (12) with
(a,d) = (As,d). Since (Ag,d) € T, by the assumption, the Fréchet derivative of
(12) with (a,d) = (As,d) at (ug,vo) is invertible. Hence, by the Implicit Function
Theorem, there is an open neighborhood U of Ay and an open neighborhood V' of
(up, vp) such that if @ € U, then (12) has a unique coexistence state in V. But, by
the definition of A4, there is a sequence {\/,} C U such that A/, — AT and there is
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a sequence {(ul,v! )} of coexistence states of (12) with (a,d) = (A\,d) such that

n’ - n

(ul,,vl,) ¢ V for all n € N. By the elliptic theory again, u], — vy, v, — v and
by the same argument as above, (u(,v)) ¢ V is also a coexistence of (12) with
(a,d) = (As,d). Since (\s,d) € T, by the assumption again, the Fréchet derivative of
(12) at (ug,v)) is invertible. Hence, by the Implicit Function Theorem again, there
is an open neighborhood U’ of As and an open neighborhood V' of (ug,v() such
that if a € U’, then (12) has a unique coexistence state in V’. Consequently, there
are points on the left hand side of Ay such that (12) has two different coexistence
states. That is a contradiction to the definition of A,. Hence, A\s > A% and the first
part of the theorem is proved. Furthermore, by the assumption, for each (a,d) € T,
the Fréchet derivative of (12) at the unique solution (u,v) is invertible. Hence,
Theorem 3.1 concludes that there is an open neighborhood V(4 4) of (a,d) in R?
such that if (ao, do) € V(q,q), then (12) with reproduction rates (ao, do) has a unique
coexistence state. Let W = U(a,d)er Via,a)- Then W is an open set in R? such that
I' C W and for each (ag,do) € W, (12) has a unique coexistence state.

Apparently, Theorem 4.1 generalizes Theorem 3.1 and consequently, we have the
following result which is actually the main conclusion in this section.

Corollary 4.2. Suppose
(A) T is a closed, convex region in R?,
(B) there exist ki,ks > 0 such that for all (a,d) € T, a > A\ + g(0,k2), d >
A1+ h(k1,0), a — g(k1,0) < 0, d — h(0, k2) < 0,

C) 4inf inf > | su + su sup ——>~
() 4 =0 [su dy P or w,direa,g(.,kg)}
9g(z,y) fa—g(-.0) Oh(z,y)
X | su sup ————— +sup ———|,
[ Py (a,d)zr Oa—n(k:,) P o }

where B = [0, k1] x [0, ko].
Then there is an open set W in R? such that ' C W and for every (a,d) € T, (12)
has a unique positive solution.

The condition (B) means T" is a set of large self-reproduction rates, and the condi-
tion (C) implies that the self-limitation rates are relatively larger than competition
rates. Then the conclusion says that the existence and uniqueness of a coexistence
state are guaranteed on I' and the region I' can be extended to a larger set without
losing the uniqueness.

Proof. From 0,_4.0) < ki, 04-n(,) < k2 and the monotonicity of g(0,-),
h(-,0) we have
1(9(0,04-n(0,)),

{a > A1+ g(0, k2)
1(h<9afg(~,0)a0))

=
d> M + h(ki,0) >
for all (a,d) € T.
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By the condition (C), for every (a,d) € JT,

sing c’)g(z’ ) inf ahg; S g [Sup aggz s e ahf’)fc S wp Gid_gtf;j)}
oM st )
= [Sup %@’y)} *su ;;%((]:?)) + sup 39%1; ). 6h((9:c$, y)
oo B
Oa—n(o,-
+ [ sup 3h((;; y)} ? sup aj_g}??,;:)
> [sup 39592 y) } 2 wp 09;%(;0)) + 2sup 395;3; v) sup 6h§;x’ y)
o B

since O,_g(..0) > Ga—g(-,ks)> Od—n(0,) > Od—n(k,,)- Therefore, by Theorem 2.1, (12)
has a unique coexistence state for all (a,d) € OT'. Furthermore, by the estimate of
the solution in the proof of Theorem 2.1, if (u, v) is a positive solution for (a,d) € T,
then

dg(z,y)
ox

Oh(z,y) dg(x,y) Oh(z,y)  Bi-n,)
ay > [sup oy =+ sup oz sup 6(1_9('7162)}

99(z,y)  bag(.0) oh(x,y)
sup —— + sup
8y edfh(kl,-) ox

9g(z,y) oh(z,y) v 9g(z,y) u Oh(z,y)
> + — A — 7,
= {sup » sup - |[sup y v sup - }

4inf inf
B B

X [sup

Thus, we obtain

dg9(z,y) . . Oh(z,y)
Or %f Jy

69(:175 y) 6/1(:67 y) 2
9y u + sup o v]“.

4inf

in uv > [sup
This implies that if (u,v) is a positive solution of (12) for (a,d) € T, then the Fréchet
derivative of (12) at (u,v) is invertible by Theorem 3.3. Therefore, the theorem

follows from Theorem 4.1.

Acknowledgment. The author would like to express his gratitude to his thesis
advisor Professor Zheng Fang Zhou and his colleague Professor Shandelle Henson for
their kind help and encouragement.

1182



1]

2]

[10]

[11]

[12]

References

R. S. Cantrell and C. Cosner: On the steady-state problem for the Volterra-Lotka com-
petition model with diffusion. Houston Journal of mathematics 18 (1987), 337-352.

Zbl 0644.92016
R. S. Cantrell and C. Cosner: On the uniqueness and stability of positive solutions in the
Volterra-Lotka competition model with diffusion. Houston J. Math. 15 (1989), 341-361.

Zbl 0721.92025
C. Cosner and A. C. Lazer: Stable coexistence states in the Volterra-Lotka competition
model with diffusion. Siam J. Appl. Math. 44 (1984), 1112-1132. Zbl 0562.92012
D. Dunninger: Lecture note for applied analysis at Michigan State University.
R. Courant and D. Hilbert: Methods of Mathematical Physics, Vol. 1. Interscience, New
York, 1961.
C. Gui and Y. Lou: Uniqueness and nonuniqueness of coexistence states in the Lotka-
Volterra competition model. Comm. Pure and Appl. Math. 12 (1994), 1571-1594.

Zbl 0829.92015
J. L. Gomez and J. P. Pardo: Existence and uniqueness for some competition models
with diffusion. Zbl 0741.92018
P. Hess: On uniqueness of positive solutions of nonlinear elliptic boundary value prob-
lems. Math. Z. 165 (1977), 17-18. Zbl 0352.35046
L. Li and R. Logan: Positive solutions to general elliptic competition models. Differential
and Integral Equations 4 (1991), 817-834. Zbl 0751.35014
A. Leung: Equilibria and stabilities for competing-species, reaction-diffusion equations
with Dirichlet boundary data. J. Math. Anal. Appl. 73 (1980), 204-218.

Zbl 0427.35011
M. H. Protter and H.F. Weinberger: Maximum Principles in Differential Equations.
Prentice Hall, Englewood Cliffs, N. J., 1967. Zbl 0549.35002
I. Stakgold and L. E. Payne: Nonlinear Problems in Nuclear Reactor Analysis. In nonlin-
ear Problems in the Physical Sciences and Biology, Lecture notes in Mathematics 322,
Springer, Berlin, 1973, pp. 298-307.

Author’s address: Department of Mathematics, Andrews University, Berrien Springs,

MI. 49104, U.S.A., e-mail: kang@andrews.edu.

1183



		webmaster@dml.cz
	2020-07-03T16:23:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




