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(Received May 25, 2004)

Abstract. Let G be a multigraph. The star number s(G) of G is the minimum number of
stars needed to decompose the edges of G. The star arboricity sa(G) of G is the minimum
number of star forests needed to decompose the edges of G. As usual λKn denote the λ-fold
complete graph on n vertices (i.e., the multigraph on n vertices such that there are λ edges
between every pair of vertices). In this paper, we prove that for n > 2

s(λKn) =

{ 1
2λn if λ is even,

1
2 (λ+ 1)n − 1 if λ is odd,

(1)

sa(λKn) =

{ d 12λne if λ is odd, n = 2, 3 or λ is even,

d 12λne+ 1 if λ is odd, n > 4.
(2)
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1. Introduction

A star is the complete bipartite graph K1,m for some positive integer m. A star

forest is a forest each component of which is a star. Let G be a multigraph. The
star number s(G) of G is the minimum number of stars needed to decompose the

edges of G. The star arboricity sa(G) of G is the minimum number of star forests
needed to decompose the edges of G. In the literature the star number and the star

arboricity were investigated for simple graphs.
For a graph G, the independence number α(G) of G is defined to be the maximum

size of a set A of vertices in G such that every pair of vertices in A are nonadjacent;
the covering number β(G) of G is defined to be the minimum size of a set B of
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vertices in G such that every edge of G is incident with at least one vertex in B. It is

well known [5] that α(G)+β(G) = |V (G)|. And it is easy to see that β(G) = s(G) if
G is a simple graph. Star numbers, independence numbers and star arboricities were
studied for some specific families of graphs. The star number was determined for the

power of a cycle [12] (here the power of a cycle is a special case of circulant graphs).
The independence numbers were determined for the following graphs: the Cartesian

product of two odd cycles [8], the direct product of two paths, or two cycles, or a
path and a cycle [10], and some specific family of circulant graphs [13]. The star

arboricities were studied for the following graphs: complete bipartite graphs [6], [7],
[15], complete regular multipartite graphs [3], cubes [15], crowns [11], and planar

graphs [2], [9].

For a graph G and a positive integer λ, we use λG to denote the graph obtained
from G by replacing each edge e of G by λ edges with the same ends as e. Hence

λKn is a multigraph on n vertices such that there are λ edges joining every pair
of vertices. We call λKn a λ-fold complete graph or a complete multigraph. In this

paper the star number and the star arboricity of λKn are determined. To avoid
trivialities we assume that n > 2.

2. Star number and star aboricity of a complete multigraph

The arboricity a(G) of a multigraphG is the minimum number of forests needed to
decompose the edges ofG. It is trivial from the definitions that a(G) 6 sa(G) 6 s(G).
The arboricity of any nontrivial multigraph is determined by the following well-known
formula of Nash-Williams.

Proposition 1 ([4], [14]). Let G be a nontrivial multigraph. Then

a(G) = max d|E(H)|/(|V (H)| − 1)e

where the maximum is taken over all nontrivial induced subgraphs H of G.

It follows easily from Proposition 1 that a(λKn) = d 1
2λne. The inequality that

a(λKn) > d 1
2λne can also be seen easily, since any forest in λKn has at most n −

1 edges. To determine s(λKn) and sa(λKn), we first consider the easy case of λ even.
For a positive integer k, we use Sk to denote the star with k edges.

Lemma 2. For an even integer λ, sa(λKn) = s(λKn) = 1
2λn.

���������
. By the above discussions, we have 1

2λn 6 a(λKn) 6 sa(λKn) 6 s(λKn).
It suffices to show that s(λKn) 6 1

2λn. Trivially the edges of λKn can be decomposed
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into 1
2λ copies of 2Kn and the edges of 2Kn can be decomposed into n copies of Sn−1.

Thus the edges of λKn can be decomposed into 1
2λn copies of Sn−1, which implies

s(λKn) 6 1
2λn. This completes the proof. �

Now we determine s(λKn).

Theorem 3.

s(λKn) =

{
1
2λn if λ is even,
1
2 (λ + 1)n − 1 if λ is odd.

���������
. Due to Lemma 2, we only need to show that for an odd integer λ,

s(λKn) = 1
2 (λ + 1)n − 1.

First prove s(λKn) > 1
2 (λ + 1)n − 1. Let D be an arbitrary star decomposition

of λKn. We need to show |D | > 1
2 (λ + 1)n − 1. Let v1, v2, . . . , vn be the vertices

of λKn. For i = 1, 2, . . . , n, let c(vi) be the number of stars in D which have centers

at vi (for a star with only one edge, we arbitrarily choose one end of the edge as
the center of the star). For 1 6 i < j 6 n, each edge joining vi and vj belongs to a

star in D which has center either at vi or at vj , and distinct edges joining vi and vj

belong to distinct stars. Thus λ 6 c(vi) + c(vj). We distinguish two cases.
Case 1. c(vi) > 1

2 (λ + 1) for i = 1, 2, . . . , n. Then

|D | = c(v1) + c(v2) + . . . + c(vn) > 1
2n(λ + 1) > 1

2 (λ + 1)n − 1.

This completes Case 1.

Case 2. c(vi) 6 1
2 (λ − 1) for some i, say c(v1) 6 1

2 (λ − 1). Then

|D | = c(v1) + c(v2) + . . . + c(vn)

=
n∑

i=2

(c(v1) + c(vi)) − (n − 2)c(v1)

> (n − 1)λ − 1
2 (n − 2)(λ − 1)

= 1
2 (λ + 1)n − 1.

This completes Case 2.

We have proved |D | > 1
2 (λ + 1)n− 1 for any star decomposition D of λKn. Thus

s(λKn) > 1
2 (λ + 1)n − 1. Now we prove the reverse inequality. Note that λKn can

be decomposed into 1
2 (λ − 1) copies of 2Kn and one copy of Kn. Since 2Kn can be

decomposed n copies of Sn−1, and Kn can be decomposed into n − 1 stars, namely
Sn−1, Sn−2, . . . , S1, we see that λKn can be decomposed into 1

2 (λ + 1)n − 1 stars.
Thus s(λKn) 6 1

2 (λ + 1)n − 1. This completes the proof. �
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Now we determine sa(λKn). Due to Lemma 2, we only need to consider the case
of λ odd. Note that sa(Kn) has been determined by J. Akiyama and M. Kano as
follows.

Proposition 4 ([1], [9]).

sa(Kn) =

{
d 1

2ne, n = 2, 3,

d 1
2ne + 1, n > 4.

The following lemma is helpful for our discussions.

Lemma 5. Let λ be any odd integer and n be an integer at least 3. Suppose

that F is a family of edge-disjoint subgraphs of λKn such that each member in F is

isomorphic to Sn−1. Then |F | 6 1
2 (λ − 1)n+1. Furthermore, if |F | = 1

2 (λ−1)n+1,
then there are 1

2 (λ + 1) stars in F with centers at one specific vertex of λKn, and

there are 1
2 (λ− 1) stars in F with centers at each of the remaining vertices of λKn.

���������
. Let v1, v2, . . . , vn be the vertices of λKn. For i = 1, 2, . . . , n, let

c(vi) denote the number of stars in F which have centers at vi. Without loss of
generality, assume that c(v1) > c(vi) for i = 2, 3, . . . , n. For each i with 2 6 i 6 n,

every Sn−1 in F with center at v1 contributes an edge joining v1 and vi; so does
every Sn−1 in F with center at vi. Combining these with the fact that there are

only λ edges joining v1 and vi in λKn, we have c(v1) + c(vi) 6 λ. Now we show that
|F | 6 1

2 (λ − 1)n + 1. We distinguish two cases.
Case 1. c(v1) 6 1

2 (λ − 1). Then

|F | = c(v1) + c(v2) + . . . + c(vn)

6 1
2n(λ − 1) < 1

2 (λ − 1)n + 1.

This completes Case 1.

Case 2. c(v1) > 1
2 (λ + 1).

Let c(v1) = 1
2 (λ+1)+s where s is a nonnegative integer. Then c(vi) 6 1

2 (λ−1)−s,
for 2 6 i 6 n. Hence

|F | = c(v1) + c(v2) + . . . + c(vn)(1)

6 ( 1
2 (λ + 1) + s) + (n − 1)( 1

2 (λ − 1) − s)

= 1
2 (λ − 1)n + 1 + (2 − n)s 6 1

2 (λ − 1)n + 1.

The last inequality is due to n > 3 and s being nonnegative. This completes Case 2.
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The required inequality that |F | 6 1
2 (λ− 1)n + 1 has thus been established. Now

we prove the “Furthermore” part. Since |F | = 1
2 (λ − 1)n + 1, only Case 2 in the

above discussion is possible and the inequalities in (1) become equalities; from the
last inequality, we have s = 0 since n > 3, and from the first inequality, we have

c(v2) = c(v3) = . . . = c(vn) = 1
2 (λ − 1) − s = 1

2 (λ − 1),

c(v1) = 1
2 (λ + 1) + s = 1

2 (λ + 1).

Thus the required conclusion holds. �

The above lemma is used in the following.

Lemma 6. For an odd integer λ > 3, sa(λKn) = 1
2 (λ − 1)n + sa(Kn).

���������
. It is easy to see that sa(λK2) = λ for any λ > 1. Thus the required

equality holds for n = 2. So we let n > 3.
By the definition of star arboricity, sa(λKn) 6 sa((λ − 1)Kn) + sa(Kn) for λ > 2.

Now λ is odd. By Lemma 2, sa((λ − 1)Kn) = 1
2 (λ − 1)n. Thus sa(λKn) 6 1

2 (λ −
1)n + sa(Kn). We now prove the reverse inequality.
Let D be an arbitrary star forest decomposition of λKn. We need to show that

|D | > 1
2 (λ− 1)n + sa(Kn). Let D ′ be a subfamily of D consisting of members which

are isomorphic to Sn−1. By Lemma 5, |D ′| 6 1
2 (λ − 1)n + 1. Consider two cases:

Case 1: |D ′| = 1
2 (λ − 1)n + 1, Case 2: |D ′| 6 1

2 (λ − 1)n.

Case 1. |D ′| = 1
2 (λ − 1)n + 1.

Let v1, v2, . . . , vn be the vertices of λKn. From the “Furthermore” part of

Lemma 5, D ′ is a family consisting of the following stars: 1
2 (λ + 1) Sn−1’s with

centers at a specific vertex, say v1, and 1
2 (λ − 1) Sn−1’s with centers at each of the

remaining vertices. Thus
⋃

G∈D′
E(G) is an edge set consisting of the following edges:

λ edges joining v1 and vi for every i with 2 6 i 6 n, and λ − 1 edges joining vi and
vj for every pair i, j with 2 6 i < j 6 n. We then see that λKn − ⋃

G∈D′
E(G) is a

disjoint union of Kn−1 and K1 (to be specific, the complete graph on the vertices
v2, v3, . . . , vn and the trivial graph on the vertex v1). Thus D − D ′ is a star forest

decomposition of Kn−1, which implies |D − D ′| > sa(Kn−1). Hence

|D | = |D ′| + |D − D ′|
> 1

2 (λ − 1)n + 1 + sa(Kn−1) > 1
2 (λ − 1)n + sa(Kn).

The last inequality is due to the fact sa(Kn) 6 sa(Kn−1)+1, which follows from the
definition of star arboricity. This completes Case 1.
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Case 2. |D ′| 6 1
2 (λ − 1)n.

Note that each member in D ′ has exactly n− 1 edges and each member in D −D ′

has at most n − 2 edges. Hence

|E(λKn)| 6 |D ′|(n − 1) + |D − D ′|(n − 2)

= |D |(n − 2) + |D ′| 6 |D |(n − 2) + 1
2 (λ − 1)n.

Thus λ
(

n
2

)
6 |D |(n − 2) + 1

2 (λ − 1)n, which implies that

(n − 2)|D | > λ

(
n

2

)
− 1

2 (λ − 1)n = 1
2λn(n − 2) + 1

2n.

Hence

|D | > 1
2λn + n

2(n−2) = 1
2 (λ − 1)n + n(n−1)

2(n−2)

> 1
2 (λ − 1)n + 1

2 (n + 1) > 1
2 (λ − 1)n + d 1

2ne.

Thus |D | > 1
2 (λ − 1)n + d 1

2ne + 1.
Combining this with Proposition 4, we obtain

|D | > 1
2 (λ − 1)n + sa(Kn).

This completes Case 2.
Since we have proved that |D | > 1

2 (λ − 1)n + sa(Kn) for any star forest decom-
position D of λKn, we obtain sa(λKn) > 1

2 (λ − 1)n + sa(Kn). This completes the
proof. �

Now we have the star arboricity of λKn as follows.

Theorem 7.

sa(λKn) =

{
d 1

2λne if λ is odd, n = 2, 3 or λ is even,

d 1
2λne + 1 if λ is odd, n > 4.

���������
. By Lemma 2, the formula holds for even λ. By Proposition 4, the

formula holds for λ = 1. As to odd λ > 3, by Lemma 6 and Proposition 4,

sa(λKn) = 1
2 (λ − 1)n + sa(Kn) =

{
1
2 (λ − 1)n + d 1

2ne, n = 2, 3,

1
2 (λ − 1)n + d 1

2ne + 1, n > 4

=

{
d 1

2λne, n = 2, 3,

d 1
2λne + 1, n > 4.

This completes the proof. �
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