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Abstract. In this paper, we use Zorn’s Lemma, multiplicatively closed subsets and satu-
rated closed subsets for the following two topics:
(i) The existence of prime submodules in some cases,
(ii) The proof that submodules with a certain property satisfy the radical formula.
We also give a partial characterization of a submodule of a projective module which

satisfies the prime property.
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0. Introduction

Throughout the paper R will denote a commutative ring with identity. LetM be a
unitary module over R. Let B and C be two submodules ofM . Then it is clear that

the set {r ∈ R : rC 6 B} is an ideal of R, denoted by (B : C). A proper submoduleN

of M with P = (N : M) is said to be P-prime if rm ∈ N for r ∈ R and m ∈ M

implies that r ∈ P or m ∈ N . It is well-known that a proper submodule N of M is
prime if and only if P = (N : M) is a prime ideal in R and the R/P-module M/N

is torsion free. For any submodule N of M , the radical of N in M is defined to be
the intersection of all prime submodules of M containing N , denoted by M -radRN .

Also M -radR0 is defined to be the intersection of all prime submodules of M . If
there is no prime submodule containing N , then M -radRN = M . The radical of

submodules has been studied in recent years (see, for example, [6], [8], [8]). In this
paper we continue these investigations for a certain case.

The first author was supported by the Scientific Research Project Administration of
Akdeniz University.
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Section 1 is concerned with the existence of prime submodules. We also prove a

consequence of the Prime Avoidance Theorem for modules and give its application.
In Section 2, the main aim is to give a necessary and sufficient condition for

the equality M -radRN =
√

(N : M)M where N is a submodule of a projective

R-module M . For a submodule N of a finitely generated projective module M , we
prove that N is prime if and only if (N : M) is prime and M/N is a projective

R/P -module. Moreover, we show that M -radRN =
√

(N : M)M + N = REM (N)
for a submodule N of a module M provided M/N is projective. In particular, we

show that M -radR0 =
√

(0 : M)M for a projective R-module M .

1. S-closed subset of modules

In the first half of this section, we give a consequence of the Prime Avoidance

Theorem for modules to which Lu extended the Prime Avoidance Theorem for rings
in [4] and we give an application of them. Now we start by recalling the Prime

Avoidance Theorem for modules.

Theorem 1.1 (Prime Avoidance Theorem [4]). Let M be an R-module. Let

N1, N2, . . . , Nn be a finite number of submodules of M and let N be a submodule

of M such that N ⊆ N1 ∪ . . .∪Nn. Assume that at most two of the Ni’s (1 6 i 6 n)
are not prime and that (Nj : M)

�
(Nk : M) whenever j 6= k. Then N ⊆ Ni for

some i.

Now we extend [11, Theorem 3.64] to the module case by using Theorem 1.1.

Theorem 1.2. Let M be an R-module. Suppose that N1, . . . , Nr are prime

submodules of M such that (Ni : M)
�

(Nj : M) for i 6= j where r > 1, let N be a

submodule of M and let m ∈ M be such that mR + N
� r⋃

i=1

Ni. Then there exists

n ∈ N such that m + n /∈
r⋃

i=1

Ni.

���������
. Suppose that m lies in each of N1, . . . , Nk but in none of Nk+1, . . . , Nr.

If k = 0 then m = m + 0 /∈
r⋃

i=1

Ni and so there is nothing to prove. Now we assume

that our claim is true for k > 1.

Now N
� k⋃

i=1

Ni, for otherwise by the Prime Avoidance Theorem we would have

a contradiction. Thus there exists d ∈ N \ (N1 ∪ . . . ∪Nk). Hence we have Nk+1 ∩
. . . ∩Nr

�
N1 ∪ . . . ∪Nk. Otherwise, since Nj is a prime submodule, by the Prime

Avoidance Theorem we get a contradiction. Thus there exists b ∈ (Nk+1 : M)∩ . . .∩
(Nr : M) \ ((N1 : M) ∪ . . . ∪ (Nk : M)). Let n = bd ∈ N . On the other hand,
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n ∈
r⋂

j=k+1

Nj . Then n = bd /∈ N1 ∪ . . . ∪Nk. Otherwise, bd ∈ Ni for 1 6 i 6 k Since

Ni is prime, either d ∈ Ni or b ∈ (Ni : M). Then n ∈ (Nk+1∩. . .∩Nr)\(N1∪. . .∪Nk).

Therefore, since m ∈ (N1 ∪ . . . ∪Nk), it follows that m + n /∈
r⋃

i=1

Ni. �

Now our main aim is to use Zorn’s Lemma for the existence of prime submodules

under a certain condition. It is concerned with a subset which is closed relative to
a multiplicatively closed subset in a commutative ring. Throughout this section,

we assume that every multiplicatively closed subset of R contains 1, but does not
contain 0. Let S be a multiplicatively closed subset of a ring R and let M be an
R-module. Then following [4], a non-empty subset S∗ of M is said to be S-closed if
sm ∈ S∗ for every s ∈ S and m ∈ S∗. Further, an S-closed subset S∗ is saturated if
the following condition is satisfied: whenever rm ∈ S∗ for r ∈ R and m ∈ M , then

r ∈ S and m ∈ S∗.
Let N be a prime submodule of an R-module M . Evidently, if S∗ = M \N and

S = R \ (N : M), then S∗ is a saturated S-closed subset of M . Now we give the
main theorem of this section.

Theorem 1.3. Let N be a submodule of an R-module M and let S be a
multiplicatively closed subset of R. Also suppose that S∗ is an S-closed subset of M
with N ∩ S∗ = ∅ and P = (N : M) is a maximal ideal in R \ S such that M/PM is

a finitely generated R-module. Then the set

Ψ = {K 6 M : N 6 K, K ∩ S∗ = ∅ and (K : M) = (N : M)}

of submodules ofM has at least one maximal element, and any such maximal element

of Ψ is a prime submodule of M . Moreover, it is a maximal submodule in M \ S∗.
���������

. Clearly the set Ψ is non-empty. Let ∆ be a non-empty totally ordered
subset of Ψ. Then Q =

⋃
Ki∈∆

Ki is a submodule of M such that N ⊆ Q and

Q ∩ S∗ = ∅. Since M/PM is finitely generated, we have (Q : M) = (N : M). Thus
Q is an upper bound for ∆ in Ψ and so it follows from Zorn’s Lemma that Ψ has at
least one maximal element.

Let U be an arbitrary maximal element of Ψ. Then U is a proper submodule ofM .
Take a ∈ M \U .Then there exist s ∈ S∗, r ∈ R and u ∈ U such that s = u + ra. On

the other hand, S∩(N : M) = ∅. Take b ∈ R\(N : M). Then S∩((N : M)+Rb) 6= ∅
and so there exist s′ ∈ S, q ∈ P and r′ ∈ R such that s′ = q + r′b. Hence we have

ss′ = uq + ur′b + raq + rr′ab and so ab /∈ U . Thus U is prime.
For the second claim, let T be a submodule inM \S∗ such that U ⊂ T . Then (U :

M) is strictly contained in (T : M). Thus there exists an element x in (T : M) ∩ S.
But this yields that xs ∈ S∗ ∩ T = ∅ for any s ∈ S∗, a contradiction. �
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Let M be am R-module and let P be a prime ideal of R. Then we recall M(P),
the following subset of M from [8]: M(P) = {m ∈ M : Am ⊆ PM for some ideal
A
�

P}. It is clear that M(P) is a submodule of M and PM ⊆ M(P).

Corollary 1.4. Let N be a submodule of an R-module M and let S be a
multiplicatively closed subset of R Also suppose that S∗ is an S-closed subset of M
with N ∩ S∗ = ∅ and P = (N : M) is a maximal ideal in R \ S such that M/PM is

a finitely generated R-module. Then

(1) there exists a prime submodule P of M such that P = (P : M);
(2) P = (PM : M);
(3) M(P) is a P-prime submodule of M .

The following corollary is clear by Proposition 1.8 in [8] but we give it here as an
illustration of Corollary 1.4.

Corollary 1.5. Let M be a finitely generated faithful module and P a prime

ideal of R. Then there is a prime submodule P of M such that (P : M) = P.
���������

. By using the determinant argument, we get that P = (PM : M). Also
we can get a maximal submodule N of M containing PM . Let S = R \ P and

S∗ = M \N . Since N is a prime submodule of M , S∗ is an S-closed subset of M .
Now the result follows from Corollary 1.4. �

We now turn our attention to the characterization of submodules which satisfy the

radical formula by using a saturated closed subset ofM . First we recall the following
elementary definitions.

Let N be a submodule of an R-module M with N 6= M . The envelope of N

in M is defined by {rm : r ∈ R and m ∈ M such that rnm ∈ N for n ∈ 	 } and
is denoted by EM (N). We use REM (N) to denote the submodule of M generated
by EM (N). Following [7], we say that N satisfies the radical formula (s.t.r.f.) in M

provided M -radRN = REM (N), and M is said to s.t.r.f. if every submodule of M

s.t.r.f. in M and analogously a ring R s.t.r.f. whenever every R-module s.t.r.f.

Let N be a submodule of an R-module M . Also suppose that M -radRN is gener-
ated by the set U . We say that N satisfies (∗) if Rm∩N = 0 whenever m ∈ U \N .

Clearly N satisfies (∗) provided that N is a summand submodule ofM -radRN . Fur-
ther ifM is a 
 -module 
 /2 
 ⊕ 
 /8 
 and N = 
 /2 
 ⊕0 thenM -radRN is generated

by the set {(1 + 2 
 , 0+ 8 
 ), (0+2 
 , 2+8 
 )} and so N satisfies (∗).
Let N be a submodule of an R-module M with (∗) and let Q = (N : M) be a

non-zero ideal of R. Then M -radRN is equal to N provided N contains the torsion
subset T (M) = {m ∈ M : there exists 0 6= r ∈ R such that rm = 0}.
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Theorem 1.6. Let N be a submodule of an R-moduleM with (∗). Also suppose
that Q = (N : M) is a non zero prime ideal of R. If Q contains the set of all zero
divisors on M then M -radRN = REM (N). In particular, whenever N is summand

M -radRN = N .
���������

. Let M -radRN be generated by the set U . It is enough to show that
M -radRN ⊆ REM (N). Take b ∈ M -radRN with b /∈ REM (N) and look for a
contradiction. Write b = r1m1 + . . .+rnmn for some ri ∈ R and mi ∈ U (1 6 i 6 n).
Without loss of generality, we can assume that r1m1 /∈ REM (N). Hence m1 /∈ N

and for all t ∈ 	 , rt
1m1 /∈ N . Let S = R \Q and S∗ = Sm1. Then S∗ is an S-closed

subset of M and clearly, r1m1 ∈ S∗ and S∗ ∩N = ∅. By Theorem 1.3, there exists
a prime submodule P containing N such that P ∩ S∗ = ∅ and (P : M) = Q. It
follows that r1m1 /∈ P and so r1m1 /∈ M -radRN . So we get a contradiction and this
completes the proof. �

Let M be an R-module. Note that M is said to be a multiplication module
provided for each submodule N ofM there exists an ideal I of R such that N = IM .

In particular, invertible and more generally projective ideals of R are multiplication
R-modules. On the other hand, cyclic modules are multiplication modules. (For

more details, see for example [1]).
For the rest of this section, we assume R to be a ring in which every ideal is cyclic,

M to be a multiplication R-module and S∗ to be an S-closed subset of M relative
to a multiplicatively closed subset S of R. Our aim is to prove that every subset

of M is contained in a minimal saturated closed subset. In [4, Theorem 4.3] Lu
assumes M to be a cyclic R-module. Now we take one more step and assume M to
be a multiplication module.

Lemma 1.7. Let R, M , S∗ and S be as above. Let N be a maximal submodule

in M \ S∗. If S∗ is saturated, then the ideal (N : M) is maximal in R \ S so that
(N : M) is a prime ideal of R.

Thus due to Lemma 1.7, [4, Theorem 4.8] can be improved. Hence we have

Lemma 1.8. Let R, M , S∗ and S be as above. Then S∗ is a saturated S-closed
subset ofM if and only if S∗ = M \ ⋃

i∈I

Pi and S = R \ ⋃
i∈I

Pi where Pi is a Pi-prime

submodule of M such that Pi ∩ S∗ = ∅ for all i.

Assume that M is a multiplication R-module. For any subset T of M , define

T = M \ ⋃
i∈I

Pi and S = R\ ⋃
i∈I

Pi where Pi is a Pi-prime submodule ofM such that

Pi ∩ T = ∅ for all i. Now we have

605



Theorem 1.9. Let R, M , S, T and T be as above. Then T is a minimal

saturated S-closed subset of M containing T .
���������

. Clearly T is a saturated S-closed subset of M . Assume that K is
a saturated S0-closed subset of M such that T ⊆ K ⊆ T . Then by Lemma 1.8,

K = M \ ⋃
Qi and S0 = R \ ⋃Qi where Qi is a Qi-prime submodule of M such

that Qi ∩K = ∅ for all i. Let x ∈ T = M \⋃
Pi. Hence, x /∈ ⋃

Pi and so x /∈ ⋃
Qi.

Therefore, K = T and S = S0. This completes the proof. �

2. Projective modules

In this section we deal with the radicals of a submodule. In [6], McCasland and

Moore proved that M -radRN =
√

(N : M)M for a finitely generated multiplica-
tion R-module M . And in [1], El-Bast and Smith proved the same result for any

multiplication R-module. In this section the main aim is to give a necessary and
sufficient condition for the equality M -radRN =

√
(N : M)M for a submodule N of

a projective R-module M .
Let P be a prime ideal of R. Recall that a submodule N of an R-module M is

said to be P-primary if rm ∈ N for r ∈ R and m ∈ M implies that either m ∈ N or
r ∈

√
(N : M) = P. It is well known that PF is a prime submodule of F such that

(PF : F ) = P for a free R-module F . Hence we have the following known lemma

Lemma 2.1. Let F be a free R-module and P a P-primary ideal of R. Then

PF is a P-primary submodule of F .

Theorem 2.2. Let M be a projective R-module. Then either PM = M or PM

is a P-primary submodule of M for every P-primary ideal P of R.
���������

. Let M be a projective R-module. Thus F = M ⊕A where F is a free
module and A is an R-module. Let {fi = mi +ai}i∈I be a basis for F where mi ∈ M

and ai ∈ A. Assume that PM 6= M for aP-primary ideal P of R. First, we show that√
(PM : M) = P. Take a non-zero element r ∈

√
(PM : M) but not in P. Then for

some integer n we have rnM 6 PM 6 PF . Then by Lemma 2.1 we get M 6 PF .
Let x ∈ M and so x =

∑
rifi where ri ∈ P . Then x−∑

rimi =
∑

riai ∈ M ∩A = 0
and hence x ∈ PM . It follows that PM = M , a contradiction. Therefore, we get√

(PM : M) = P.

Let r ∈ R and m ∈ M be such that rm ∈ PM with r /∈ P. Then m ∈ PF and so
m ∈ PM . This completes the proof. �

As corollaries to Theorem 2.2 we have
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Corollary 2.3. Let M be a projective R-module and let P be a prime ideal

of R. Then the following statements are equivalent.

(1) PM is a prime submodule of M .

(2) There exists a prime submodule U of M such that P = (U : M).
(3) (PM : M) = P.

Corollary 2.4. Let M be a projective R-module. Then either M(P) = PM or

M(P) = M for every prime ideal P of R.

Lemma 2.5. Let N be a submodule of a projective R-module M . Then

M -radR[(N : M)M ] =
√

(N : M)M.

���������
. Let U be a prime submodule of M containing (N : M)M . Then

(N : M) ⊆ (U : M) and so
√

(N : M)M ⊆ (U : M)M ⊆ U . This means that√
(N : M)M ⊆ M -radR[(N : M)M ]. For the converse, let P be a prime ideal of R

such that (N : M) ⊆ P. Then PM is a prime submodule of M or PM = M .
So we have M -radR[(N : M)M ] ⊆ ⋂

(PM). Since M is a projective R-module,

M -radR[(N : M)M ] ⊆ ⋂
(PM) = (

⋂
P)M =

√
(N : M)M . This completes the

proof. �

Let N be a proper submodule of a moduleM . Now we give the following definition

to prove our main aim in this paper: We say that N satisfy the prime property

(s.t.p.p.) in M provided (N : M) ⊆ P for a prime ideal P of R, N ⊆ PM .

Example 2.6.

(i) Let M be an R-module and let I be an ideal of a ring R. Then it is easy to
check that the submodule IM s.t.p.p. in M .

(ii) Let M be the 
 -module 
 ⊕
36 
 and N = 6 
 ⊕

36 
 . Then (N : M) = 12 
 .
It can be seen that N s.t.p.p. in M .

By using the prime property and projective modules, we obtain a characterization
for a prime submodule. Now we recall the fact from [3] that if R is a domain and

M is a torsion-free R-module then M is flat if and only if (I ∩ J)M = IM ∩ JM for
all ideals I and J of R. It is also known that a finitely generated flat module over a

domain is projective. Hence we have
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Proposition 2.7. Let M be a finitely generated projective R-module and let

N be a submodule which s.t.p.p. in M . Then N is a prime submodule if and only if

P = (N : M) is a prime ideal of R and M/N is a projective R/P -module.

���������
. Sufficiency is evident. Let N be a prime submodule of M which

s.t.p.p. in M . Then P = (N : M) is a prime ideal of R and (I ∩ J )(M/N) =
I(M/N) ∩J (M/N) for all ideals I and J in R/P. Then the result follows from [3,
Theorem 1 and Corollary 1]. �

Corollary 2.8. Let M be a finitely generated projective R-module. Then

M/PM is a projective R/P-module for every prime ideal P of R.

The prime property gives also another characterization for radical submodules.

Theorem 2.9. Let N be a submodule of a projective R-module M . Then N

s.t.p.p. in M if and only if M -radRN =
√

(N : M)M . In particular, if N s.t.p.p.

in M then N s.t.r.f. in M .

���������
. Sufficiency is evident. Assume that N s.t.p.p. in M . Let P be a prime

submodule of M containing [(N : M)M ]. Thus we have (N : M) ⊆ P = (P : M).
Then by the prime property, we get N ⊆ PM ⊆ P . Therefore, M -radRN ⊆
M -radR[(N : M)M ]. Now the result follows from Lemma 2.5. �

Corollary 2.10. Let N be a submodule of an R-module M such that M/N is

a projective R-module. Then M -radRN =
√

(N : M)M + N = REM (N).

���������
. Clearly the zero submodule of M/N s.t.p.p. in M/N . Since M/N is

a projective R-module we have M/N -radR0 =
√

0 : (M/N)(M/N). On the other
hand, M/N -radR0 = M -radRN/N and

√
0 : (M/N)(M/N) = (

√
N : MM + N)/N .

Therefore, M -radRN =
√

N : MM + N = REM (N). �

Using Corollary 2.10 we can improve the result [2, Corrollary 8].

Corollary 2.11. If M is a projective R-module then M -radR(0) = REM (0) =√
0 : MM .

Compare the next corollary with [10, Corollary 1.5].
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Corollary 2.12. Let M be a primary projective R-module. Then the radical

of M is a prime submodule of M .
���������

. Since M is a projective R-module M contains a prime submodule and

so M -radR0 is not equal to M . Therefore we can prove that M -radR0 =
√

0 : MM

is a prime submodule of M by using the same argument as in Theorem 2.2. �

If N is a primary submodule of a projective R-moduleM which s.t.p.p. inM then
by Theorem 2.2 and Theorem 2.9, the radical of N in M is a prime submodule of M

or M -radRN = M . On the other hand, the following example shows that a partial
converse of Theorem 2.9 is not true in general.

Example 2.13. Let R be a principal ideal domain and M = R ⊕R. Let
N be a non-zero cyclic submodule of M . It can be easily seen that M -radRN 6=√

(N : M)M . Hence N s.t.r.f. but not s.t.p.p. in M .

Let N =
⊕

Ni be a submodule of an R-module M . Then provided Ni s.t.p.p.

in M for all i = 1, . . . , n, N s.t.p.p. in M . But the converse is not true in general
(see Example 2.6 (ii)). However, for the converse we can state the following: Let

N =
⊕

Ni. Also assume that N s.t.p.p. in M . If
√

(Ni : M) =
√

(N : M) for
some i then Ni s.t.p.p. in M .

Let M =
⊕

Mi be an R-module. Consider the submodule N =
⊕

Ni of M such
that Ni is a submodule of Mi for all i ∈ I . It can be proved that if N s.t.p.p. in M

then Ni s.t.p.p. in Mi for all i ∈ I . For the converse, if Ni s.t.p.p. in Mi for all i ∈ I

with
√

Ni : Mi =
√

N : M , then N s.t.p.p. in M .

Now we turn our attention to primary submodules. First, we give a character-
ization for primary submodules of M such that M =

⊕
Mi is a direct sum of

modules Mi (i ∈ I). For each i, let Ni be a submodule of Mi and N =
⊕

Ni.

Theorem 2.14. Let M and N be as above. Assume that P is a prime ideal

of R. Then N is a P-primary submodule of M if and only if Ni is a P-primary

submodule of Mi whenever Ni 6= Mi for all i.
���������

. Let N be a P-primary submodule of M . Since N 6= M , there is a non-

empty subset J of I such that Nj 6= Mj for all j ∈ J and so N =
⊕

Nj ⊕ (
⊕

Mi).
First we prove that

√
(Nt : Mt) = P for all t ∈ J .

Let r ∈ P. Choose an elementmt ∈ Mt but not in Nt. Letm = (0, . . . , mt, . . . 0) ∈
M . Then for a positive integer l, we have rl(0, . . . , mt, . . . 0) ∈ N and so rlmt ∈ Nt.

Hence r ∈
√

(Nt : Mt) and so P ⊆
√

(Nt : Mt). Now take elements r ∈
√

(Nt : Mt)\
P and m = (mi) ∈ M such that

m = (mi) =

{
mi ∈ Ni if i 6= t,

mt ∈ Mt \Nt if i = t.
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Then for a positive integers li we have rlimi ∈ Mi. Let k = max{li} and so rkm ⊆ N .

Since m /∈ N , we get that r ∈ P. Therefore P =
√

(Nj : Mj) for all j ∈ J .
Take a submodule Nj for any j ∈ J and rmj ∈ Nj where r ∈ R and mj ∈ Mj .

Choose an element

m = (mi) =

{
mi = mj if i = j,

mi = 0 if i 6= j

of M . Then rm ∈ N . Since N is primary, it follows that either m ∈ N or r ∈ P.
Hence either mj ∈ Nj or r ∈ P. Therefore Nj is a primary submodule of Mj for all

j ∈ J .
Conversely, assume that N =

⊕
Nj ⊕ (

⊕
Mi) is such that for all j ∈ J ⊆ I , Nj is

a P-primary submodule in Mj . Take elements r ∈ R and m ∈ M such that rm ∈ N .
Then m = (mi) ∈

⊕
Mi and so rm = (rmi) ∈

⊕
Nj ⊕ (

⊕
Mi). Now assume that

for some j ∈ J , we have mj /∈ Nj . Then rmj ∈ Nj and so r ∈ P. This means that
N is a P-primary submodule of M . �

Corollary 2.15. Let N and M be as in Theorem 2.14. Also suppose that N is

a primary submodule of M . Then N s.t.p.p. in M if and only if Ni s.t.p.p. in Mi for

all i ∈ I .

For the rest of this section, we assume R to be a principal ideal domain and

M = R ⊕ R. We close this paper by giving equivalent conditions to the prime
property. Let N be a submodule of M . If N is generated by (a, b) then clearly
M -radRN = gcd{a, b}R and it does not satisfy the prime property. Now assume
N is generated by {(a, b), (c, d)} and let ∆ = ad−bc. Then it is routine to check that

there is an element k of R such that ∆ = k gcd(a, b, c, d) and (N : M) = kR where
gcd(a, b, c, d) denotes the greatest common divisor of the elements a, b, c and d. Let

∆ = pt where p is a prime element of R and t ∈ 	 . Then N is a prime submodule
whenever t = 1. Otherwise N is a primary submodule of M .

Theorem 2.16. LetN be a submodule ofM = R⊕R generated by {(a, b), (c, d)}
and let (N : M) = kR for some k ∈ R. Let k = pt1

1 . . . ptn
n and s = p1 . . . pn where

for each i, pi is a prime element in R and ti ∈ 	 for all i = 1, 2, . . . , n. Then the

following statements are equivalent.

(1) s divides a, b, c and d.

(2) N s.t.p.p. in M .

(3) M -radRN = REM (N) =
√

kRM .
���������

. It is sufficient to prove the equivalence of (1) and (2).
(1) ⇒ (2): Let pR be a prime ideal containing (N : M). Then p = pi for some 1 6

i 6 n and so there exist t1, t2, t3, t4 ∈ R such that (a, b) = p(t1, t2), (c, d) = p(t3, t4).
Hence N s.t.p.p. in M .
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(2) ⇒ (1): Let p be a prime element of R such that p divides s. Then kR ⊆ sR ⊆
pR. Hence (a, b), (c, d) ∈ pRM . It follows that (a, b) = p(t1, t2), (c, d) = p(t3, t4) for
t1, t2, t3, t4 ∈ R. Therefore, s divides a, b, c and d. �

Now we close this paper by the following observation.
Let M , N and ∆ be as above. If ∆ = pt where p is a prime element of R and

p divides a, b, c and d, then M -radRN = pM is a prime submodule of M .
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