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To the memory of Laurent Schwartz

Abstract. In this paper we use a duality method to introduce a new space of generalized
distributions. This method is exactly the same introduced by Schwartz for the distribution
theory. Our space of generalized distributions contains all the Schwartz distributions and
all the multipole series of physicists and is, in a certain sense, the smallest space containing
all these series.
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1. Introduction

Distribution theory was introduced by Laurent Schwartz [16] in order to allow the

derivation of any order in the space of locally integrable functions in an open (non
empty) subset Ω of

� N . For this purpose Schwartz extended the concept of function

and completely justified the use of the so called Dirac function (and its derivatives)
introduced by Heaviside [8], [9] and largely used by Dirac in quantum mechanics [3].

The distribution space D ′(Ω) is defined by Schwartz as the strong dual of the space
D(Ω) of C∞ functions with compact support in Ω, equipped with an appropriate
topology. This topology, which is not an easy one, uses some properties of inductive
limits established previously by Dieudonné and Schwartz [2]. The space D ′(Ω) is a
Montel space and, in particular, is reflexive, its dual being D(Ω), and a sequence
(Tn)n∈ � tends to zero in D ′(Ω) iff the scalar sequence Tn(ϕ) tends to zero for all
ϕ ∈ D(Ω).

Partially supported by FCT/POCTI/FEDER through the Research Unit number 1/89.
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In order to define the Fourier transform, Schwartz introduced also the space S ′ of

tempered distributions: it is the strong dual of the Schwartz space S of C∞ rapidly
decreasing functions in

� N , equipped with an appropriate topology. The classical
Fourier transform is a vectorial and topological isomorphism of S onto itself and

Schwartz extended it, by duality, to the space S ′ of tempered distributions.

The motivation for the generalization of distributions is the series of multipoles

∑

α∈ � N

aα∂
αδa

used by physicists, where the aα are scalars and δa is the Dirac distribution at the

point a ∈ Ω. This series is not convergent in D ′(Ω) (except in the trivial case where
all but a finite number of the aα are null) and therefore we may be tempted to

use other spaces than D ′(Ω). One way to do this is to modify the test function
space D(Ω), the main difficulty being the construction of subspaces still dense in
D(Ω). One attempt done by Lions and Magenes [11], using functions introduced
by Gevrey [5], led to the so called Gevrey classes of ultradistributions. Komatsu

[10] did the same with the classes of ultradifferentiable functions. Guelfand and
Chilov [7] replaced D(Ω) by the space of analytic functions; the disadvantage is
that this space is not included in D(Ω). Another way established by Sebastião e
Silva [17, 18] and developed by Oliveira [13] is to extend the Fourier transform to

a space bigger than S ′, maintaining, if possible, the isomorphism property in that
bigger space; unfortunately this space does not contain D ′(Ω). We remark that
an extension of the Fourier transform to D ′(Ω) was done by Ehrenpreis [4], but the
automorphism property is lost. A space close to that of Sebastião e Silva and Oliveira
was axiomatically introduced by Menezes [12] and revisited by Luísa Ribeiro [14].

For other generalizations of the distributions see the book of Lions and Magenes [11]
or the thesis of Luísa Ribeiro [15] and the references presented in these works.

Our approach is the construction of a very simple subspace of D(Ω), much simpler
than those introduced by Gevrey or Komatsu. The advantages of our method are:
(i) our space includes D ′(Ω) and we very easily characterize the distributions (The-
orem 1); (ii) our theory is closely related to the well-known Schwartz theory; (iii)
the notion of ultra-support localizes the singular behavior of our generalized distri-

butions; (iv) the definition of support is quite natural and has nice properties (which
is not the case with the spaces of Sebastião e Silva, Oliveira and Luísa Ribeiro); (v)

the extension of the theory to differentiable manifolds seems straightforward; (vi) we
think that the extension of the Fourier transform to a subspace of our space can be

done by linearity and continuity in a natural way (we hope to publish a paper on
that matter in the future).
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We are grateful to the late prof. Laurent Schwartz who read the manuscript and

made very useful suggestions in a letter dated 24 June 1993. In particular the
theorems in Section 6 were established by prof. Schwartz.

2. The space UW (Ω)

Let Ω be an open non empty subset of
� N ; we writeK (Ω) for the set of all compact

subsets of
� N included in Ω and W (Ω) for the set of all subsets W of Ω such that

K ∩W is finite for each K ∈ K (Ω). Note that W (Ω) is closed under intersections
and finite unions. If W ∈ W (Ω), then W is countable, closed in Ω, all its points are
isolated, all its limit points belong to the boundary of Ω and W0 ∈ W (Ω) for all W0

included in W . If K ∈ K (Ω) and W ∈ W (Ω), there exists an open neighbourhood
O of K such that O ∈ K (Ω) and O \K is disjoint from W . For W ∈ W (Ω) and
m ∈ � , we define UW,m(Ω) as the subset of D(Ω) of all ϕ such that ∂αϕ(x) = 0 for
all α ∈ � N , |α| > m, and all x ∈ W . It is a closed vector subspace of D(Ω) and we
have UW,m(Ω) = D(Ω) iff W = ∅. We denote by UW (Ω) the union of all UW,m(Ω),
when m ∈ � ; as UW,m(Ω) is included in UW,m′ (Ω) whenever m 6 m′, we see that
UW (Ω) is a vector subspace of D(Ω), equal to D(Ω) iff W = ∅.

Proposition 1. The space UW (Ω) is dense in D(Ω).
�������
	

. Let ϕ ∈ D(Ω); we know, by the Weierstrass theorem, that there is
a sequence of polynomials (pn)n∈ � such that, for all K ∈ K (Ω) and all α ∈ � N ,

the sequence (∂αpn)n∈ � converges uniformly in K to ∂αϕ. Fix a neighbourhood
O of suppϕ, with O ∈ K (Ω), such that O \ suppϕ is disjoint from W and choose

ψ ∈ D(Ω) such that ψ = 1 in suppϕ and suppψ ⊂ O ; we have ψpn → ϕ in D(Ω)
and ψpn ∈ UW (Ω), and this shows that UW (Ω) is dense in D(Ω). �

We introduce in UW,m(Ω) the topology induced by D(Ω). Recall the following
result on inductive limits (for a proof see Grothendieck [6]; for a brief study of

inductive limits see Viegas [19]): Let E be the inductive limit of a sequence of
locally convex spaces (En)n∈ � such that En ⊂ En+1, the topology of En is the one

induced by En+1 and En is closed in En+1; then, if all the En are Montel spaces, E
is also a Montel space.

Proposition 2. The space UW,m(Ω) is a Montel space.
�������
	

. Let (Ωn)n∈ � be a sequence of non void relatively compact open subsets
of Ω such that Ω =

⋃
n∈ �

Ωn and, for all n ∈ � , Ωn ⊂ Ωn+1 and ∂Ωn ∩W = ∅. Write

Kn = Ωn.
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We first prove that the topology of UW,m(Ω) is the inductive limit topology of the
spaces UW,m(Ω)∩DKn(Ω) equipped with the topology induced by DKn(Ω). From a
general result on inductive limits (see [1]) we know that the inductive limit topology
of the spaces UW,m(Ω) ∩ DKn(Ω) is finer than the UW,m(Ω) topology. We have to
show that the UW,m(Ω) topology is also finer than the inductive limit topology of the
spaces UW,m(Ω) ∩ DKn(Ω). Let V be a closed absolutely convex neighbourhood in
the inductive limit topology of the spaces UW,m(Ω)∩DKn(Ω); then, for each n ∈ � ,
V ∩DKn(Ω) is a neighbourhood in UW,m(Ω)∩DKn(Ω) and, as the topology of these
spaces is the one induced by DKn(Ω), we know that (see [16]), for each n ∈ � , there
exist εn > 0 and kn ∈ � such that, if ϕ ∈ UW,m(Ω) verifies |∂αϕ(x)| 6 εn for

all α ∈ � N , |α| 6 kn, and suppϕ ⊂ Kn, then ϕ ∈ V . Obviously we may choose
the sequence (εn)n∈ � strictly decreasing converging to 0 and the sequence (kn)n∈ �
strictly increasing.
Now we fix once for all a sequence (ψn)n∈ � of functions such that:

ψn ∈ UW,m(Ω); suppψn ⊂ (Kn+2 \ Ωn); ψn > 0;
∞∑

n=0

ψn = 1.

The existence of such a sequence is a consequence of the fact that the intersection of

W with each Kn is finite. For ϕ ∈ UW,m(Ω) we have

ϕ =
∞∑

n=0

1
2n+1

2n+1ψnϕ

and, since V is closed and convex, this equality shows that ϕ ∈ V whenever each

function 2n+1ψnϕ belongs to V .
Let (λn)n∈ � be a decreasing sequence of strictly positive real numbers, converging

to 0, and let (rn)n∈ � be an increasing and unbounded sequence of positive real
numbers. As the topology of UW,m(Ω) is the one induced by D(Ω), we know (see
[16]) that the set V0 of functions of UW,m(Ω) satisfying

∀x 6∈ Kn ∀α ∈ � N , |α| 6 rn |∂αϕ(x)| 6 λn

is a neighbourhood in UW,m(Ω). But, if ϕ verifies the above condition, then

∀x 6∈ Kn ∀α ∈ � N , |α| 6 rn |2n+1∂α(ψnϕ)(x)| 6 cnλn

where, for each n ∈ � , cn is a constant > 0.
Choose (λn)n∈ � such that cnλn 6 εn for all n ∈ � and put rn = kn; if ϕ ∈ V0,

then 2n+1ψnϕ ∈ V , and consequently ϕ ∈ V . We see that V0 ⊂ V and so V is a
neighbourhood in UW,m(Ω).
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We have just proved that the topology of UW,m(Ω) is the inductive limit topology
of the spaces UW,m(Ω) ∩ DKn(Ω) equipped with the topology induced by DKn(Ω).
But the spaces UW,m(Ω)∩DKn(Ω) are Fréchet, thus they are barrelled; the DKn(Ω)
are Montel spaces, thus the UW,m(Ω) ∩ DKn(Ω) are also Montel spaces. For each
n ∈ � the topology of UW,m(Ω) ∩ DKn(Ω) is the topology induced by UW,m(Ω) ∩
DKn+1(Ω), and the first space is closed in the second one. This shows that the
inductive limit UW,m(Ω) of the Montel spaces UW,m(Ω)∩DKn(Ω) is a Montel space.

�

Note that, for all m,m′ ∈ � , m 6 m′, we have UW,m(Ω) ↪→ UW,m′(Ω) ↪→ D(Ω),
where ↪→ means continuous injection (we use ↪→ for continuous injections,

c
↪→ for

compact injections and
d
↪→ for continuous and dense injections). We equip UW (Ω)

with the inductive limit topology of the sequence (UW,m(Ω))m∈ � .

Proposition 3. The space UW (Ω) is a Montel space.
�������
	

. For each m ∈ � , UW,m(Ω) is a Montel space (Proposition 2),
UW,m+1(Ω) induces in UW,m(Ω) its topology and UW,m(Ω) is closed in UW,m+1(Ω).

�

We remark that a sequence (ϕn)n∈ � tends to zero in UW (Ω) iff the following three
conditions are satisfied:

(i) ∃p ∈ � ∀n ∈ � ∀x ∈ W ∀α ∈ � N , |α| > p ∂αϕn(x) = 0
(ii) ∃K ∈ K (Ω) ∀n ∈ � suppϕn ⊂ K (1)
(iii) ∀α ∈ � N ∂αϕn → 0 uniformly in Ω.
The proof of this statement is very easy. First, if (i), (ii) and (iii) are satisfied,

then ϕn tends to zero in UW,p(Ω) and, a fortiori, in UW (Ω). Conversely, if ϕn tends

to zero in UW (Ω), then ϕn is bounded and, as UW (Ω) is the strict inductive limit of
the spaces UW,m(Ω) and each UW,m(Ω) is closed in UW,m+1(Ω), there exists p ∈ �
such that ϕn belongs to UW,p(Ω); for this kind of inductive limits the topology of
each UW,m(Ω) is the one induced by UW (Ω), and so ϕn tends to zero in UW,p(Ω),
that is (i), (ii) and (iii) are satisfied.

Let W1,W2 ∈ W (Ω), with W1 ⊂ W2; then we have UW2 (Ω) ↪→ UW1 (Ω), and we
are able to prove that this injection is dense.

Proposition 4. Let W1,W2 ∈ W (Ω), W1 ⊂ W2; then UW2(Ω) is dense in
UW1(Ω).
�������
	

. If W1 is empty we are reduced to Proposition 1. Suppose that W1

is not empty; given ϕ ∈ UW1 (Ω) choose a neighbourhood O of suppϕ, with O ∈
K (Ω), such that O \ suppϕ does not intersect W2, fix ψ ∈ D(Ω) with ψ = 1 in
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an open neighbourhood of suppϕ and suppψ ⊂ O , and choose a sequence (pn)n∈ �
of polynomials such that, for each α ∈ � N , ∂αpn → ∂αϕ uniformly in the compact
subsets of Ω. Choose disjoint open neighbourhoods Ω1 and Ω2 of W1 ∩ suppϕ and
(W2 \W1)∩ suppϕ, respectively, with Ω1,Ω2 ∈ K (Ω), write Ω0 = Ω\ (W2∩ suppϕ),
and let (ψ0, ψ1, ψ2) be a partition of unity subordinate to the open cover (Ω0,Ω1,Ω2)
of Ω. The sequence ψ1ψϕ + ψ2ψpn + ψ0ψpn is in UW2 (Ω) and converges to ϕ in
UW1(Ω). �

3. The Space U ′
W (Ω)

Let U ′
W (Ω) be the strong dual of UW (Ω); we shall denote the duality product

between T ∈ U ′
W (Ω) and ϕ ∈ UW (Ω) by 〈T, ϕ〉W,Ω or simply by 〈T, ϕ〉. The space

U ′
W (Ω) is a Montel space, because it is the dual of the Montel space UW (Ω). A
sequence (Tn)n∈ � tends to zero in the space U ′

W (Ω) iff 〈Tn, ϕ〉 → 0 for all ϕ ∈
UW (Ω). From UW (Ω)

d
↪→ D(Ω) we see that D ′(Ω) ↪→ U ′

W (Ω) and 〈T, ϕ〉W,Ω =
〈T, ϕ〉

D′(Ω),D(Ω) for all T ∈ D ′(Ω) and all ϕ ∈ UW (Ω). From UW (Ω) ⊂ U ′
W (Ω) and

from the reflexivity of UW (Ω) we conclude that UW (Ω)
d
↪→ U ′

W (Ω), which implies

D ′(Ω)
d
↪→ U ′

W (Ω). Thus, for W1,W2 ∈ W (Ω), with W1 ⊂ W2, we may write the
inclusions:

UW2 (Ω)
d
↪→ UW1(Ω)

d
↪→ D(Ω)

d
↪→ D ′(Ω)

d
↪→ U ′

W1
(Ω)

d
↪→ U ′

W2
(Ω).

An element T ∈ U ′
W2

(Ω) belongs to U ′
W1

(Ω) iff T can be extended to UW1(Ω) as
a linear continuous (for the UW1(Ω) topology) functional; T belongs to D ′(Ω) iff T
can be extended to D(Ω) as a linear continuous (for the D(Ω) topology) functional.
We denote by U ′(Ω) the union of all U ′

W (Ω), when W ∈ W (Ω). It is a vector
space that we call the space of generalized distributions in Ω.

Lemma. For all W1,W2 ∈ W (Ω) we have U ′
W1

(Ω) ∩U ′
W2

(Ω) = U ′
W1∩W2

(Ω).
�������
	

. AsW1∩W2 is included in W1 and in W2, we have U ′
W1∩W2

(Ω) included
in both spaces U ′

W1
(Ω) and U ′

W2
(Ω), that is U ′

W1∩W2
(Ω) ⊂ (U ′

W1
(Ω) ∩U ′

W2
(Ω)).

We have to prove that (U ′
W1

(Ω) ∩ U ′
W2

(Ω)) ⊂ U ′
W1∩W2

(Ω). Let Ω1 ⊂ Ω and
Ω2 ⊂ Ω be such that: Ω1 is an open neighbourhood of W1 disjoint from W2 \W1;
Ω2 is an open neighbourhood of W2 disjoint from W1 \W2. Write Ω0 = Ω \ (W1 ∪
W2) and let (ψ0, ψ1, ψ2) be a partition of the unity subordinate to the open cover
(Ω0,Ω1,Ω2) of Ω. Let T ∈ U ′

W1
(Ω) ∩ U ′

W2
(Ω); for each ϕ ∈ UW1∩W2(Ω), we define

〈T, ϕ〉
U ′

W1∩W2
(Ω),UW1∩W2 (Ω) by:

〈T, ϕ〉
U ′

W1∩W2
(Ω),UW1∩W2 (Ω) = 〈T, ψ0ϕ〉W1∪W2,Ω + 〈T, ψ1ϕ〉W1,Ω + 〈T, ψ2ϕ〉W2,Ω .
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The previous equation shows that T can be extended as a linear continuous functional

on UW1∩W2(Ω), and thus T ∈ U ′
W1∩W2

(Ω). �

An immediate consequence of the previous lemma is that, if T ∈ U ′(Ω) belongs to
U ′

W1
(Ω)∩U ′

W2
(Ω), whereW1 andW2 are two disjoint sets in W (Ω), then T ∈ D ′(Ω).

Theorem 1. Let I be a nonempty index set and, for each i ∈ I , let Wi ∈ W (Ω);
write W =

⋂
i∈I

Wi. Then we have
⋂
i∈I

U ′
Wi

(Ω) = U ′
W (Ω).

�������
	
. For each i ∈ I we have W ⊂ Wi; this implies that, for each i ∈ I ,

U ′
W (Ω) ⊂ U ′

Wi
(Ω), that is U ′

W (Ω) ⊂ ⋂
i∈I

U ′
Wi

(Ω).

It remains to prove that
⋂
i∈I

U ′
Wi

(Ω) ⊂ U ′
W (Ω). Let T ∈ ⋂

i∈I

U ′
Wi

(Ω); we have

to prove that we can extend T as a linear functional in UW (Ω), continuous for the
UW (Ω) topology.
Let ϕ ∈ UW (Ω) and let K ∈ K (Ω) be such that suppϕ ⊂ K. As the set K ∩W

is finite we may fix a finite subset JK of I such that K ∩ W = K ∩
( ⋂

j∈JK

Wj

)
.

From ϕ ∈ UW (Ω) we see that ϕ ∈ UK∩W (Ω) (because (K ∩ W ) ⊂ W ), that is

ϕ ∈ UK∩(
⋂

j∈JK
Wj)(Ω). As K contains the support of ϕ, this function is identically

null outside of K. This implies that ϕ ∈ U⋂
j∈JK

Wj
(Ω). Now, as T belongs to⋂

i∈I

U ′
Wi

(Ω) and this set is included in the finite intersection
⋂

j∈JK

U ′
Wj

(Ω), we have

T ∈ ⋂
j∈JK

U ′
Wj

(Ω). By the lemma, taking into account that JK is a finite set, we

have T ∈ U ′⋂
j∈JK

Wj
(Ω). So far we have proved that T is in U ′⋂

j∈JK
Wj

(Ω) and ϕ is

in U⋂
j∈JK

Wj
(Ω); thus we may write, by definition,

〈T, ϕ〉W,Ω = 〈T, ϕ〉⋂
j∈JK

Wj ,Ω .

The previous equality shows that T can be extended as a linear continuous functional
on UW (Ω), and thus T ∈ U ′

W (Ω). �

Next we give an important example of a generalized distribution which is not a

distribution. Let a ∈ Ω, W = {a} and (βα)α∈ � N a given multi-sequence of complex
numbers. We define T ∈ U ′

W (Ω) by

(2) 〈T, ϕ〉 =
∑

α∈ � N

(−1)|α|βα∂
αϕ(a)

for all ϕ ∈ UW (Ω). Note that (2) defines indeed an element T of U ′
W (Ω) that

cannot be extended as a linear continuous functional to D(Ω) unless all but a finite
number of the scalars βα are null; note also that the previous series reduces, for each
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ϕ ∈ UW (Ω), to a finite sum with a number of terms depending on ϕ. The generalized
distribution T defined by (2) is called the multipole series at the point a associated
with the multi-sequence (βα)α∈ � N .

4. Ultra-support. Restriction. Support

Let T ∈ U ′(Ω); we call ultra-support of T , and we denote by usuppT , the in-
tersection of all W ∈ W (Ω) such that T ∈ U ′

W (Ω). We have usuppT ∈ W (Ω)
and T ∈ D ′(Ω) iff usuppT = ∅; by Theorem 1 we see that T ∈ U ′

usuppT (Ω).
For notational purposes, we adopt the following convention: if T ∈ U ′(Ω) and
ϕ ∈ Uusupp T (Ω), the symbol 〈T, ϕ〉 means always 〈T, ϕ〉usuppT,Ω.

Let T ∈ U ′(Ω) and let Ω0 be an open non empty subset of
� N included in Ω. We

introduce the restriction of T to Ω0 as the element %T ∈ U ′
W (Ω0), whereW ∈ W (Ω0)

is the set W = Ω0 ∩ usuppT , defined by 〈%T, ϕ〉W,Ω0
= 〈T, ϕ0〉 for all ϕ ∈ UW (Ω0),

where ϕ0 is the trivial extension of ϕ to Ω. The mapping % : U ′
W (Ω) → U ′

W (Ω0) just
defined is linear continuous and usupp(%T ) ⊂ (usuppT ∩ Ω0).
Let T ∈ U ′(Ω). We write ΩT for Ω \ usuppT . We associate to T the distribution

γT ∈ D ′(ΩT ) defined by 〈γT, ϕ〉
D′(ΩT ),D(ΩT ) = 〈T, ϕ0〉, where ϕ0 is the trivial

extension of ϕ to Ω (ϕ0 equals ϕ on ΩT and ϕ0 is zero outside ΩT ); in other words,

γT is the restriction of T to the open set ΩT . We define the support of T by suppT =
usuppT ∪ supp(γT ), where supp(γT ) is the usual support of the distribution γT .
Obviously, if T ∈ D ′(Ω), the support of T as a generalized distribution is the same
as the support as a distribution. For T, S ∈ U ′(Ω) and a scalar α 6= 0, we have the
relations usupp(T + S) ⊂ (usuppT ∪ usuppS) and usupp(αT ) = usuppT ; for the
supports we have also supp(T + S) ⊂ (suppT ∪ suppS) and supp(αT ) = suppT .

Theorem 2. Let T ∈ U ′(Ω) and let ϕ ∈ D(Ω) be such that suppϕ∩usuppT = ∅.
Then 〈T, ϕ〉 = 〈γT, ϕ〉

D′(Ω),D(Ω).

�������
	
. This is a consequence of the definition of γT . �

The support of a generalized distribution T ∈ U ′(Ω) may be defined without the
help of the distribution γT . We say that T is null on an open subset O of Ω if
〈T, ϕ〉 = 0 for all ϕ ∈ Uusupp T (Ω) such that suppϕ is included in O . We say that
T, S ∈ U ′(Ω) are equal on O iff T − S is null on O . Let (Ωi)i∈I be a family of open

subsets of Ω, covering Ω, and let (Ti)i∈I be a family (indexed by the same index
set I) of generalized distributions, with Ti ∈ U ′(Ωi); then, if Ti and Tj are equal in

Ωi ∩ Ωj whenever this intersection is non void and if
⋃
i∈I

usuppTi ∈ W (Ω), there is

one and only one generalized distribution T ∈ U ′(Ω) such that T is equal to Ti in Ωi.
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Before the proof of this property, we mention that it is the analog of the “principe

du recollement des morceaux“ for Schwartz distributions, and that it enables us to
given another (equivalent) definition of the support of T : it is the complement of the
union of all open subsets of Ω where T is null.
Now we have to prove the property mentioned above. Let (ψi)i∈I be a partition

of the unity subordinated to the open cover (Ωi)i∈I of Ω. Write W =
⋃
i∈I

usuppTi;

recall that, by assumption, W ∈ W (Ω). Let ϕ ∈ UW (Ω) and write K = suppϕ.
Because K is compact we know that there exists a finite subset of I , say JK , such
that, if i /∈ JK , ψi is identically null on K. Thus we may write

ϕ =
∑

j∈JK

ψjϕ.

This equation shows that, if there exists a generalized distribution T ∈ U ′(Ω) with
the required properties, T is in U ′

W (Ω) and

(3) 〈T, ϕ〉W,Ω =
∑

j∈JK

〈T, ψjϕ〉W,Ω =
∑

j∈JK

〈Tj , ψjϕ〉Wj ,Ωj
.

Equation (3) shows the uniqueness of T ∈ U ′(Ω) such that T is equal to Ti in Ωi.

To prove the existence it is sufficient to see that equation (3) defines indeed a linear
and continuous functional T on UW (Ω) such that T is equal to Ti in Ωi. This is

straightforward and we leave the proof to the reader.
It is easily seen that 〈T, ϕ〉 = 0 whenever ϕ = 0 in a neighbourhood of suppT . As

ϕ has a compact support, this implies that 〈T, ϕ〉 = 0 whenever suppT and suppϕ
are disjoint sets.
Let E (Ω) be the vector space of C∞ functions in Ω with the (usual) topology of

uniform convergence of the function and its derivatives in the compact subsets of Ω.
ForW ∈ W (Ω), we denote by VW (Ω) the vector subspace of E (Ω) of the functions ψ
such that there is m ∈ � (depending on ψ) with ∂αψ(x) = 0 for all α ∈ � N , |α| > m

and all x ∈ W . Obviously we have UW (Ω) ⊂ VW (Ω).
Let T ∈ U ′

W (Ω), ϕ ∈ VW (Ω) and K = suppT ∩ suppϕ. We are going to show
that, if K ∈ K (Ω), we still can define 〈T, ϕ〉. We fix an open neighbourhood O ⊂ Ω
of K and a function µ ∈ D(Ω) such that µ = 1 in O. We put, by definition,

(4) 〈T, ϕ〉 = 〈T, µϕ〉 .

It is easily seen that the value 〈T, ϕ〉 does not depend on the choices of O and µ. In
fact, if O′ ⊂ Ω is another open neighbourhood of K and ν ∈ D(Ω) another function
such that ν = 1 in O′, we have

〈T, µϕ〉 − 〈T, νϕ〉 = 〈T, (µ− ν)ϕ〉 = 0

551



because supp(µ−ν) is included in Ω\(O∩O′) which is disjoint form a neighbourhood
of K; a fortiori, supp(µ− ν)ϕ is disjoint from a neighbourhood of the support of the
generalized distribution T .

5. Derivatives, multiplication and translation

Let T ∈ U ′(Ω) and let α ∈ � N . As the operator ∂α is linear continuous from
Uusupp T (Ω) into Uusupp T (Ω), we may extend it, by duality, to the space U ′

usuppT (Ω),
defining ∂αT as follows: 〈∂αT, ϕ〉 = (−1)|α| 〈T, ∂αϕ〉, for all ϕ ∈ Uusupp T (Ω). The
operator ∂α is linear continuous from U ′

usuppT (Ω) into U ′
usupp T (Ω) and, on D ′(Ω),

equals the usual derivative operator. Note that the generalized distribution T defined
by (2), that is the multipole series at the point a associated with the sequence

(βα)α∈ � N , verifies

(5) T =
∑

α∈ � N

βα∂
αδa.

This series is convergent in U ′
{a}(Ω) but is not convergent in D ′(Ω), except in the

trivial case where all but a finite number of the βα are null. It is very easy to prove

the following properties of the multipole series T defined by (5):

suppT ⊂ {a};
suppT = ∅ iff ∀α ∈ � N βα = 0;

usuppT = {a} iff there are infinitely many non null scalars βα;

usuppT = ∅ iff all but a finite number of the scalars βα are null;

T =
∑

α∈ � N

γα∂
αδb iff a = b ∧ ∀α ∈ � N βα = γα.

As ψϕ belongs to UW (Ω) whenever ϕ ∈ UW (Ω) and ψ ∈ VW (Ω), we may define,
by duality, the product of ψ by an element T ∈ U ′

W (Ω): 〈ψT, ϕ〉 = 〈T, ψϕ〉, for all
ϕ ∈ UW (Ω). The mapping T → ψT is linear continuous from U ′

W (Ω) into itself
and usupp(ψT ) ⊂ usuppT . The Leibniz formulas for the derivatives of the product
remain valid.

Let f ∈ C(
� N ) and let h ∈ � N ; the translation operator τh : C(

� N ) → C(
� N )

is defined by τhf(x) = f(x − h). Obviously, if f ∈ C∞(
� N ), we have ∂α(τhf) =

τh(∂αf) for all α ∈ � N . This implies that, if W ∈ W (
� N ) and ϕ ∈ UW (

� N ),
then τhϕ ∈ Uh+W (

� N ), where h + W is the subset of
� N of points x of the form

x = y + h with y ∈ W . We define the operator τh,W : U ′
W (
� N ) → U ′

h+W (
� N )

by 〈τhT, ϕ〉h+W, � N = 〈T, τ−hϕ〉W, � N for all ϕ ∈ Uh+W (
� N ). Obviously τh,W is a
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vectorial and topological isomorphism from U ′
W (
� N ) onto U ′

h+W (
� N ), the inverse

being the operator τ−h,h+W . We now define the operator τh : U ′(
� N ) → U ′(

� N )
as follows: for T ∈ U ′(

� N ), τhT = τh,usuppTT . The operator τh is a vectorial and
topological isomorphism from U ′

usuppT (
� N ) onto Uh+usuppT (

� N ), the inverse being
τ−h. The translation operator in U ′(

� N ) has the following properties:

τhτkT = τh+kT for all T ∈ U ′(
� N ) and all h, k ∈ � N ;

∂α(τhT ) = τh(∂αT ) for all T ∈ U ′(
� N ) and all α ∈ � N ;

usupp(τhT ) = h+ usuppT for all T ∈ U ′(
� N ).

Theorem 3. Let T ∈ U ′(
� N ) be such that τchT = T for some h ∈ � N \ {0} and

all c ∈ �
; then T ∈ D ′(

� N ).
�������
	

. From τchT = T we have usupp(τchT ) = usuppT ; then usuppT =
ch+ usuppT for all c ∈ �

and, since the intersections of usuppT with the compacts
are finite, this implies usuppT = ∅, that is (Theorem 1) T ∈ D ′(

� N ). �

Lemma. Let T ∈ U ′(
� N ) be such that ∂jT = 0 (∂j is the derivative with respect

to xj) for some j ∈ {1, . . . , N}. Then τcejT = T for all c ∈ �
, where ej is the j-vector

of the canonical basis of
� N .

�������
	
. Suppose, for simplicity, that j = 1. Fix c ∈ �

and writeW = usuppT ∪
usupp(τce1T ). Suppose that τce1T 6= T ; then there is a function ϕ ∈ UW (

� N ) such
that

(6) 〈τce1T − T, ϕ〉W, � N = 〈T, τ−ce1ϕ− ϕ〉W, � N 6= 0.

Define ψ :
� N → �

by ψ(x) =
∫ x1

−∞ ϕ(y, x2, . . . , xN )dy ; we have

(τ−ce1ϕ− ϕ)(x) = ϕ(x+ ce1)− ϕ(x) = ∂1(ψ(x + ce1)− ψ(x)) = ∂1λ(x)

with λ(x) = ψ(x+ ce1)− ψ(x). But λ ∈ UW (
� N ), then, since ∂1T = 0,

〈T, τ−ce1ϕ− ϕ〉W, � N = 〈T, ∂1λ〉W, � N = −〈∂1T, λ〉W, � N = 0

which contradicts (6). �

Theorem 4. Let T ∈ U ′(Ω) and let α ∈ � N . If ∂αT = 0, then T ∈ D ′(Ω).
�������
	

. The theorem is a consequence of the lemma and Theorem 3. �
Note that, if T ∈ U ′(Ω) verifies ∂αT = 0 for all α such that |α| is grater then a

given m ∈ � , and if Ω is connected, then T is a polynomial of degree less then |α|.
If T ∈ U ′(Ω) verifies ∂αT = 0 for some α ∈ � N , then T is a pseudopolynomial of

degree less then |α|.
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Theorem 5. Let T ∈ U ′(
�
) be such that xnT = 0 for some n ∈ � \ {0}; then

T = a1δ + . . .+ anδ
(n).

�������
	
. Consider first the case n = 1. We know that 0 = 〈xT, ϕ〉 = 〈T, xϕ〉

for all ϕ ∈ Uusupp T (
�
); writing H = {ψ ∈ Uusupp T (

�
);ψ(x) = xϕ(x), ϕ ∈

Uusupp T (
�
)} we have 〈T, ψ〉 = 0 for all ψ ∈ H . But ψ ∈ H iff ψ ∈ UusuppT (

�
)

and ψ(0) = 0; thus H is a hyperplane of Uusupp T (
�
) and T is entirely determined

if we fix its value on a function ϕ0 ∈ UusuppT (
�
) \H . Let us fix 〈T, ϕ0〉 = λ, with

λ ∈ � . Now, for ϕ ∈ UusuppT (
�
), we have the unique decomposition ϕ = ψ + cϕ0

(c ∈ � ) and

〈T, ϕ〉 = 〈T, ψ〉+ 〈T, cϕ0〉 = cλ = λ
ϕ(0)
ϕ0(0)

= 〈c1δ, ϕ〉

with c1 = λ/ϕ0(0). This shows that T = c1δ. As xδ(n) = −nδ(n−1), the theorem
can easily be proved by induction on n. �

6. Structure of U ′
W (Ω)

In this section we prove a structure theorem for the space U ′
W (Ω). As we men-

tioned in the introduction this theorem was first proved by Laurent Schwartz; our

proof is slightly different.

Proposition 5. Let T ∈ U ′(Ω) and a ∈ Ω. We have suppT ⊂ {a} if f T =∑
α∈ � N

cα∂
αδa, where the cα are scalars uniquely determined by T .

�������
	
. If T =

∑
α∈ � N

cα∂
αδa we know that suppT ⊂ {a}. Suppose now that

suppT ⊂ {a}. Let ϕ ∈ U{a}(Ω); using the Taylor expansion of ϕ around the point
a, we have

ϕ(x) =
∑

α∈ � N

(x − a)α

α!
∂αϕ(a) + ψ(x),

where ψ ∈ E (Ω) and ∂αψ(a) = 0 for all α ∈ � N . Note that, for each ϕ ∈ U{a}(Ω),
the series reduces to a finite sum. As T has a compact support we may write

〈T, ϕ〉 =

〈
T,

∑

α∈ � N

(x − a)α

α!
∂αϕ(a)

〉
+ 〈T, ψ〉

=
∑

α∈ � N

〈T, (x− a)α〉 1
α!
∂αϕ(a) + 〈T, ψ〉

=
∑

α∈ � N

〈T, (x− a)α〉 (−1)|α|

α!
〈∂αδa, ϕ〉+ 〈T, ψ〉 =

∑

α∈ � N

cα∂
αδa + 〈T, ψ〉
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where

cα =
(−1)|α|

α!
〈T, (x− a)α〉 .

Now we have to prove that 〈T, ψ〉 = 0.
For each ε > 0 we write Bε = {x ∈ � N ; |x − a| < ε}. We fix r > 0 such that

Br ⊂ Ω. Let µ ∈ D(Ω) be such that suppµ ⊂ Br and µ = 1 in Br/2. For each

k ∈ � \ {0} we define ψk ∈ D(Ω) by

ψk(x) = µ(x)ψ(x)[1 − µ(k(x− a) + a)].

We have suppψk ⊂ Br/k and ψk = 0 in Br/2k. This last condition implies that, for
all k ∈ � \ {0}, 〈T, ψk〉 = 0.
Now it is sufficient to prove that ψk → µψ in U{a}(Ω) because, in that case,

〈T, ψ〉 = 〈T, µψ〉 = lim
k→+∞

〈T, ψk〉 = 0.

Let us prove the convergence ψk → µψ in U{a}(Ω). We have to show that gk → 0
in U{a}(Ω), where

gk(x) = µ(x)ψ(x) − ψk(x) = µ(x)ψ(x)µ(k(x − a) + a).

We have to verify conditions (1). Conditions (i) and (ii) are trivial, since ∂αgk(a) = 0
for all α ∈ � N and supp gk ⊂ Br/k ⊂ Br. It remains to prove condition (iii); for
α ∈ � N we have

∂αgk(x) =
∑

β6α

(
α

β

)
(∂α−β(µψ))(x)∂β(µ(k(x − a) + a))

=
∑

β6α

(
α

β

)
(∂α−β(µψ))(x)k|β|(∂βµ)(k(x − a) + a).

Now, since µψ = ψ in Br/2, we have, for k > 2:

sup
x∈Ω

|∂αgk(x)| = sup
x∈Br/k

|∂αgk(x)| 6
∑

β6α

cβk
|β| sup

x∈Br/k

|∂α−βψ(x)|

where cβ =
(
α

β

)
sup
x∈Ω

|∂βµ(x)|.
All the derivatives of the function ψ are equal to zero at the point a; the Taylor

expansion of ∂α−βψ around the point a shows the existence of a constant C > 0 such
that

|∂α−βψ(x)| 6 C|x− a||α|+1.
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This implies that

0 6 sup
x∈Br/k

|∂αgk(x)| 6
∑

β6α

cβk
|β|C sup

x∈Br/k

|x− a||α|+1 6
∑

β6α

cβk
|α|C

r|α|+1

k|α|+1
6 D

k

where D = Cr|α|+1
∑

β6α

cβ . This shows that ∂αgk → 0 uniformly in Ω. �

Proposition 6. Let T ∈ U ′(Ω) and a ∈ Ω; then T ∈ U ′
{a}(Ω) if f

(7 ) T = S +
∑

α∈ � N

cα∂
αδa

where S ∈ D ′(Ω) and the cα are scalars.
�������
	

. If T is of the form (7), then T ∈ U ′
{a}(Ω). Suppose now that T ∈

U ′
{a}(Ω); for m ∈ � , let Tm be the restriction of the functional T to the space

U{a},m(Ω). We have T ∈ U ′
{a},m(Ω) and, as the topology of U{a},m(Ω) is the one

induced by D(Ω), the Hahn-Banach theorem tells us that Tm can be extended to
D(Ω) as a linear continuous functional, which we denote by T̃m. We write

T = T̃m + (T − T̃m)

and, as T̃m ∈ D ′(Ω) and T − T̃m ∈ U ′
{a}(Ω), we just have to show, by Proposition 5,

that supp(T − T̃m) ⊂ {a}. But this is obvious because, for all ϕ ∈ D(Ω) with
suppϕ ⊂ Ω \ {a},

〈
T̃m, ϕ

〉
= 〈Tm, ϕ〉 = 〈T, ϕ〉, and this proves that T − T̃m is null in

the open set Ω \ {a}, that is supp(T − T̃m) ⊂ {a}. �

Proposition 7. Let T ∈ U ′
W (Ω) and let (Ωi)i∈I be an open cover of W such that

Ωi ⊂ Ω and Ωi ∩ Ωj ∩W = ∅ whenever i 6= j. Then

(8) T = S +
∑

i∈I

Ti

where S ∈ D(Ω), Ti ∈ U ′
W∩Ωi

(Ω) with suppTi ⊂ Ωi, and the series
∑
i∈I

Ti is conver-

gent in U ′
W (Ω).

�������
	
. We see that Ω \W together with (Ωi)i∈I is an open cover of Ω. We

consider a partition of unity relative to this open cover, let us say, ψΩ\W and (ψi)i∈I .

We define S ∈ D ′(Ω) by 〈S, ϕ〉 =
〈
T, ψΩ\Wϕ

〉
, for all ϕ ∈ D(Ω). For each i ∈ I

we define Ti ∈ U ′
W∩Ωi

(Ω) by 〈Ti, ϕ〉 = 〈Ti, ψiϕ〉, for all ϕ ∈ UW∩Ωi (Ω). We have
suppTi ⊂ Ωi.

The series
∑
i∈I

Ti is convergent in U ′
W (Ω) because, for each ϕ ∈ UW (Ω), it reduces

to a finite sum. Finally it is easily seen that the formula (8) is true. �
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Theorem 6. Let T ∈ U ′(Ω) and W ∈ W (Ω); then T ∈ U ′
W (Ω) if f

(9) T = S +
∑

w∈W

∑

α∈ � N

cw,α∂
αδw

where S ∈ D ′(Ω) and the cw,α are scalars.
�������
	

. For each w ∈ W we fix an open subset Ωw of Ω in such a way that
Ωw ∩W = {w} and, for all K ∈ K (Ω), all but a finite number of the sets Ωw are
disjoint from K. By formula (8) we see that

T = S0 +
∑

w∈W

Tw

with S0 ∈ D ′(Ω), Tw ∈ U ′
{w}(Ω) and suppTw ⊂ Ωw. By (7) we see that

Tw = Sw +
∑

α∈ � N

cw,α∂
αδw

where Sw ∈ D ′(Ω) and the cw,α are scalars. Then we have

T = S0 +
∑

w∈W

Sw +
∑

w∈W

∑

α∈ � N

cw,α∂
αδw

and it remains to prove the convergence of the series
∑

w∈W

Sw. But this is obvious

because, for each ϕ ∈ D(Ω), the series reduces to a finite sum. This proves (9), with
S = S0 +

∑
w∈W

Sw. �

From this theorem we can see that 〈T, ϕ〉 = 0 for all T ∈ U ′
W (Ω) and all ϕ ∈

UW (Ω) such that, for all α ∈ � N , ∂αϕ = 0 in the support of T .
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