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Abstract. We consider the solution operator S : Fµ,(p,q) → L2(µ)(p,q) to the ∂-operator

restricted to forms with coefficients in Fµ =
{
f : f is entire and

∫ �
n |f(z)|2 dµ(z) < ∞

}
.

Here Fµ,(p,q) denotes (p, q)-forms with coefficients in Fµ, L2(µ) is the corresponding L2-
space and µ is a suitable rotation-invariant absolutely continuous finite measure. We will
develop a general solution formula S to ∂. This solution operator will have the property
Sv ⊥ F(p,q) ∀ v ∈ F(p,q+1). As an application of the solution formula we will be able to
characterize compactness of the solution operator in terms of compactness of commutators
of Toeplitz-operators [Tzi , Tzi ] = [T

∗
zi

, Tzi ] : Fµ → L2(µ).

Keywords: Fock-space, Hankel-operator, reproducing kernel

MSC 2000 : 47B35, 32A15

1. Preliminaries

In many cases non-compactness of the solution operator already happens when
the solution operator is restricted to the corresponding subspace of holomorphic

functions. (See [11], [12], [18], [15] and [19].)

It is pointed out in [19] that compactness of the solution operator for ∂ on (0, 1)-
forms implies that the boundary of Ω—in this case Ω is a bounded convex domain—
does not contain any analytic variety of dimension greater or equal to 1. The proof

uses the fact that there is a compact solution operator to ∂ on (0, 1)-forms with holo-
morphic coefficients. In this case compactness of the solution operator restricted to

(0, 1)-forms with holomorphic coefficients implies already compactness of the solution
operator on general (0, 1)-forms.
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A similar situation appears in [15] where the Toeplitz C∗-algebra T (Ω) is consid-
ered and the relation between the structure of T (Ω) and the ∂-Neumann problem
is discussed.
Our work is motivated by the fact that in some cases the solution operator can be

interpreted as a Hankel-operator. See for example [4], [5], [6], [7], [8], [9], [10], [11]
and [12].

In [11] the canonical solution operator restricted to spaces of entire func-
tion is investigated. For (0, 0)-forms it is shown that the canonical solution
operator S : Fm =

{
f : f is entire and

∫ �
1 |f(z)|2e−|z|m dλ(z) < ∞

}
→

{
f :

f is measurable and
∫ �

1 |f(z)|2e−|z|m dλ(z) < ∞
}
is compact for m > 2 and that it

is not compact for m = 2. Here λ denotes the Lebesgue-measure. In [17] it is shown
that the canonical solution operator S : Fm,(0,1) → L2

m is not compact for all m.

Here m corresponds to the measure µ with dµ/dλ = e−|z|
m

:= e−(|z1|m+...+|zn|m). In
both cases the solution operator has a quite simple form. In this paper we develop a

solution operator for (p, q)-forms. In this general case the solution operator is much
more complicated. We will characterize compactness of the solution operator as an

application and will therefore be able to generalize the results from [11] and [17].
The question of compactness of the solution operator is of interest for various

reasons; see [2] for an excellent survey.
Let µ be a suitable rotation-invariant absolutely continuous finite measure with

density gµ such that 0 < C < gµ(z)−1 < ∞ for all z in arbitrary compact sets.
Furthermore let the monomials be an orthogonal system. Recall that we understand

under the generalized Fock-space Fµ the space of holomorphic functions that are
square integrable with respect to the measure µ. That is

Fµ =
{

f : f is entire and
∫
�

n

|f(z)|2 dµ(z) < ∞
}

.

We will abbreviate Fµ = F . Let us consider the following notations:

c2
k =

∫
�

n

|z|2k dµ(z).

Here k = (k1, . . . , kn) is a multi-index. We will call c2
k moments. The reproducing

kernel is given by

K(z, w) =
∞∑

k=1

ϕk(z)ϕk(w),

where {ϕk}∞k=1 is a complete orthonormal system of F . It is known [1], that

K(z, ω) = K(ω, z),

f(z) =
∫
�

n

K(z, ω)f(ω) dµ(ω) ∀ f ∈ F .
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It follows from our assumptions about the measure µ that {zm/cm : m ∈ � n} con-
stitutes an orthonormal system of F . Inserting this special orthonormal system one
can see, that

K(z, w) =
∑ zm

cm

wm

cm
.

Let L2
(p,q)(µ) be the space of (p, q)-forms with coefficients in

L2(µ) =
{

f : f is measurable and
∫
�

n

|f(z)|2 dµ(z) < ∞
}

.

That is

L2
(p,q)(µ) =

{∑′

I,J

fI,J dzI ∧ dzJ ; fI,J ∈ L2(µ)
}

.

Here, the prime denotes summation over strictly increasing q-tuples J and p-tuples I .
Furthermore

dzJ = dzj1 ∧ . . . ∧ dzjq .

The norm is ∥∥∥∥
∑′

I,J

fI,J dzI ∧ dzJ

∥∥∥∥
2

=
∑′

I,J

∫
�

n

|fI,J |2 dµ.

Recall that the ∂-operator acts via

∂

(∑′

I,J

fI,J dzI ∧ dzJ

)
=

n∑′

j=1

∑

J

∂fI,J

∂zj
dzj ∧ dzI ∧ dzJ .

The derivatives are taken in the distribution sense, and the domain of ∂ consists of

those (0, q)-forms where the right-hand side is in L2
(0,q+1)(µ). For a global survey of

the ∂-operator on the Bergman space see [2], [3].

2. The quasi-canonical solution operator

Several solution formulas to ∂ are known at the moment. See for instance [14]

for a solution formula restricted to (0, q)-forms with Bergman-space coefficients on a
bounded pseudoconvex domain. Furthermore solution formulas can be found as well

in [12]. There the special case of (n, n− 1)-forms is considered and n is the number
of different variables on which the coefficients depend and only the restriction to

Bergman-space coefficients is considered. The aim of this paper is to develop a solu-
tion formula to ∂ restricted to (p, q)-forms with generalized Fock-space coefficients.
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It will have the property

Sv ⊥ F(p,q)(∗)

and

∂Sv = v ∀ v ∈ F(p,q+1).

Here S denotes our solution formula and the second condition just means that S is

a solution formula to ∂ restricted to (p, q)-forms with Fock-space coefficients. Con-
dition (∗) is quite similar to the condition that the operator is the canonical solution
operator—but it is not quite the same.
We will need some facts about Hankel operators with unbounded symbols.

Definition 1. A linear operator

S = Sq : L2(µ)(p,q) ∩Ker(∂q) → L2(µ)(p,q−1)

is called a solution operator to ∂q−1 if

∂q−1Sqf = f, ∀ f ∈ L2(µ)(p,q) ∩ ker(∂q).

If we have
Sqf ⊥ F(p,q−1)

we call Sq a quasi-canonical solution operator.

Definition 2. Let 0 < % < 1 and k ∈ � . Then we define
f%(z) := f(%z)

and

f̃l,%(z) = zl
1f%(z).

The following Propositions are the more-dimensional analogue of [16].

Proposition 1. Let f ∈ F . Furthermore assume that {c2
i+l1

c−2
i %2i} is bounded

and 0 < % < 1. Then we have

f̃l,%(z) = zl
1f%(z) ∈ L2( � n , µ).

Remark 1. Generally multiplication operators with unbounded symbols are not
globally defined.
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Proposition 2. Let n ∈ � . Furthermore assume that the sequences c2
k+l1

c−2
k −

c2
kc−2

k−l1
and c2

i+lc
−2
i %2i ∀ 0 < % < 1 are bounded. Then the Hankel-operator with

symbol zl
1

Hzl
1
: F → F

⊥

is bounded.

���������
. We only carry out the proof for l = 1. Let k = (k1, . . . , kn) a multi-

index. Then k +11 = (k1 +1, k2, . . . , kn) and
∞∑

k=0

means summation over all positive

multi-indices.
∞∑

k=1

means summation over all positive multi-indices except those with

k1 = 0. For f(z) =
∞∑

k=0

akzk it follows by the methods from [16] that

∫
�

n

|f̃%(z)− P (f̃%)(z)|2 dµ(z)

= |a0|2c2
k+11

%2k +
∞∑

k=1

|ak|2c2
k%2k

(
c2
k+11

c2
k

− c2
k

c2
k−11

)
.

It follows from the boundedness of the sequence c2
k+11

c−2
k − c2

kc−2
k−11

that

∫
�

n

lim
%→1

|f̃%(z)− P (f̃%)(z)|2 dµ(z) 6 sup
0<%<1

∫
�

n

|f̃%(z)− P (f̃%)(z)|2 dµ(z)

6 C

∫
�

n

|f(z)|2 dµ(z).

Hence ∫
�

n

|Hz1f(z)|2 dµ(z) 6 C

∫
�

n

|f(z)|2 dµ(z)

and therefore the Hankel-operator is bounded. �

Remark 2. The above result is still valid if one replaces the multiplication with z1

by the one with zi.

Remark 3. It can be shown that in our case the Hankel-operator Hz1 has the
form

f 7→ F
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where

f(z) =
∞∑

k=0

akzk

and

F (z) = lim
N→∞

(
z1

N∑

k=0

akzk −
N∑

k=1

ak
c2
k

c2
k−11

zk−11

)
.

Remark 4. Let us define Hzi
: F(p,q) → L2(µ)(p,q) by

Hzi

∑′

|I|=p,|K|=q

fI,K dzK ∧ dzI =
∑′

|I|=p,|K|=q

Hzi
fI,K dzK ∧ dzI .

It is clear from the proof above that even Hzi
: F(p,q) → L2(µ)(p,q) is bounded if the

assumptions about the moments are fulfilled.

Remark 5. The assumptions about the moments are fulfilled in the case where
dµ/dλ = e−|z|

m

:= e−(|z1|m+...+|zn|m). Here λ is the Lebesgue-measure and m ∈ � .

Theorem 1. Let f =
∑′

I,J

fI,J dzI ∧ dzJ ∈ F(p,q+1). Then

Sf = (−1)p 1
q

∑′

I,|J∼|=q−1

∑′

J∼J∼

sgn(J ∼ J∼)

×
(∫

�
n

K(z, ω)(z + ω)|J∼J∼|fIJ) dµ(ω)
)

dzI ∧ dzJ∼

is a quasi-canonical solution operator to ∂. Here J∼ = (j∼1 , . . . , j∼q−1) ∼ J =
(j1, . . . , jq) if {j∼1 , . . . , j∼q−1} ∪ {i} = {j1, . . . , jq} for some i ∈ {1, . . . , n}. Further-
more |J∼ ∼ J | = jr if (j∼1 , . . . , j∼r−1, i, j

∼
r+1, . . . , j

∼
q−1) = (j1, . . . , jq). In this case we

define sgn(J∼ ∼ J) as (−1)r−1. We will use the following definitions:

gI,J∼ =
∑′

J∼J∼

(−1)p sgn(J ∼ J∼)(z|J∼J∼|fIJ)

and

g̃I,J∼ =
∑′

J∼J∼
(−1)p sgn(J ∼ J∼)(Hz|J∼J∼|fIJ).

Then S can be written as

Sf =
1
q

∑′

I,|J∼|=q−1

gI,J∼dzI ∧ dzJ∼ .
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���������
. Making the ansatz

u = S̃f =
1
q

∑′

I,J

q∑

r=1

(−1)r+p−1(zjrfIJ) dzI ∧ dzj1 ∧ . . . ∧ [dzjr ] ∧ . . . ∧ dzjq

leads to ∂u = f since

∂((zjrfIJ) dzI ∧ dzj1 ∧ . . . ∧ [dzjr ] ∧ . . . ∧ dzjq

= fIJ dzjr ∧ dzI ∧ dzjr ∧ dzj1 ∧ . . . ∧ [dzjr ] ∧ . . . ∧ dzjq

= (−1)r+p−1fIJ dzI ∧ dzj1 ∧ . . . ∧ dzjq .

Therefore

∂u =
1
q

∑′

I,J

q∑

r=1

(−1)r+p−1∂
(
(zjrfIJ) dzI ∧ dzj1 ∧ . . . ∧ [dzjr ] ∧ . . . ∧ dzjq

)

=
1
q

∑′

I,J

q∑

r=1

(−1)r+p−1(−1)r+p−1fIJ dzI ∧ dzj1 ∧ . . . ∧ dzjq

=
∑′

I,J

fIJ dzI ∧ dzj1 ∧ . . . ∧ dzjq = f.

We have

S̃f =
1
q

∑′

I,|J|=q

q∑

r=1

(−1)r+p−1(zjrfIJ) dzI ∧ dzj1 ∧ . . . ∧ dzjr ∧ . . . ∧ dzjq

=
1
q

∑′

I,|J∼|=q−1

∑′

J∼J∼
(−1)p sgn(J ∼ J∼)(z|J∼J∼|fIJ) dzI ∧ dzJ∼

=
1
q

∑′

I,|J∼|=q−1

gI,J∼ dzI ∧ dzJ∼ .

Since u = S̃f it follows from above that

∂

(
1
q

∑′

I,|J∼|=q−1

gI,J∼ dzI ∧ dzJ∼

)
= f.

Since we have ∂
∂zi

Pf = 0 ∀ i, f ∈ L2(µ)

Sf =
1
q

∑′

I,|J∼|=q−1

∑′

J∼J∼
(−1)p sgn(J ∼ J∼)(Hz|J∼J∼|fIJ) dzI ∧ dzJ∼

=
1
q

∑′

I,|J∼|=q−1

g̃I,J∼ dzI ∧ dzJ∼
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is a solution operator as well. Using the identity

f(z) =
∫
�

n

K(z, ω)f(ω) dµ(ω)

yields

Sf =
1
q

∑′

I,|J∼|=q−1

∑′

J∼J∼
(−1)p sgn(J ∼ J∼)(Hz|J∼J∼|fIJ) dzI ∧ dzJ∼

= (−1)p 1
q

∑′

I,|J∼|=q−1

∑′

J∼J∼
sgn(J ∼ J∼)

×
(∫

�
n

K(z, ω)(z + ω)|J∼J∼|fIJ) dµ(ω)
)

dzI ∧ dzJ∼ .

�

3. Applications of the quasi-canonical solution operator

In this section we will use our solution formula to characterize compactness of

the quasi-canonical solution operator in the case of (p, q)-forms with generalized
Fock-space coefficients without any restrictions on p and q. As an application we

will consider the measures µ where dµ/dλ = e−|z|
m

. It will turn out, that the
quasi-canonical solution operator is not compact in the case of several variables,

dµ/dλ = e−|z|
m

and p, q without any restrictions. Furthermore we will be able to
characterize compactness of the quasi-canonical solution operator restricted to forms

with generalized Fock-space coefficients in terms of compactness of commutators of
certain Toeplitz-operators.

Corollary 1. The quasi-canonical solution operator S : F(p,q+1) → L2(µ)(p,q)

to ∂ is compact if and only if the commutators [Tzi
, Tzi ] = [T ∗zi

, Tzi ] : F → L2(µ)
are compact ∀ i ∈ {1, . . . , n}. Here Tzi = PMzi is the Toeplitz-operator with the

symbol zi.

���������
. It is clear, that [Tzi

, Tzi ] is compact if and only if Hzi
is compact since

[Tzi , Tzi ] = Pzi(I − P )zi

and

Pzi(I − P )zi = H∗
zi

Hzi
.
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So it is clear from Theorem 1 that compactness of the commutators [Tzi , Tzi ] implies
compactness of the quasi-canonical solution operator. Conversely an easy argument
shows

[I − P ]zif = S

( ∑′

|I|=p,|K|=q

fI,K dzi ∧ dzK ∧ dzI

)
,

where f =
∑′

|I|=p,|K|=q

fI,KdzK ∧ dzI has holomorphic coefficients. So the restriction

of S to (p, q + 1)-forms of the form
∑′

|I|=p,|K|=q

fI,Kdzi ∧ dzK ∧ dzI coincides with the

Hankel-operator. This finishes the proof. �

Lemma 1. If the Hankel-operatorHzl
i
: F → L2(µ) is compact then the sequence

c2
m+li

c−2
m − c2

mc−2
m−li

tends to 0 as |m| =
n∑

i=1

mi →∞.
���������

. With calculations of [16] it follows that

H∗
zn

i
Hzn

i
(um)(w) =

(
c2
m+li

c2
m

− c2
m

c2
m−li

)
um(w)

if mi > l. Here um = zm/cm.

Since the set {um(z)} = {zm/cm : m = (m1, . . . , mn), m1, . . . , mn ∈ � } is or-
thonormal the result follows easily. �

Corollary 2. The quasi canonical solution operator S : F(p,q) → L2(e−|z|
m

)(p,q)

is not compact if n > 1.
���������

. This follows easily. �

Remark 6. For (0, 0)-forms—n = 0—it is shown in [11] that the canonical solu-
tion operator is compact if m > 2 and for (0, 1)-forms it is shown in [17] that the
canonical solution operator is not compact for all m.
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