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Abstract. In this paper we are concerned with the oscillation of solutions of a certain more
general higher order nonlinear neutral type functional differential equation with oscillating
coefficients. We obtain two sufficient criteria for oscillatory behaviour of its solutions.
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1. Introduction

We consider the higher order nonlinear differential equation

(1) [y(t) + P (t)y(τ(t))](n) +
m∑

i=1

Qi(t)fi(y(σi(t))) = 0

where n > 2; P (t), Qi(t), τ(t) ∈ C[t0, +∞) for i = 1, 2, . . . , m; P (t) is an oscillating
function, Qi(t) are positive valued for i = 1, 2, . . . , m; σi(t) ∈ C ′[t0, +∞), σ′i(t) > 0,
σi(t) 6 t; σi(t) → +∞ as t → ∞ for i = 1, 2, . . . , m; τ(t) → +∞ as t → ∞; fi(u) ∈
C( � , � ) are nondecreasing functions, ufi(u) > 0 for u 6= 0 and i = 1, 2, . . . , m.

Recently, much research has been done on the oscillatory and asymptotic behaviour

of solutions of higher order neutral type functional differential equations. Most of the
known results concern the cases when P (t) = c ∈ � and P (t) > 0 (or < 0) and hold
for special cases of the equation (1) and related equations; see, for example [1]–[10]
and the references cited therein.
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The purpose of this paper is to study oscillatory behaviour of solutions of equa-

tion (1). For the general theory of differential equations, one can refer to [1]–[5].
Many references to some applications of the differential equations can be found in [5].
As is customary, a solution of Eq. (1) is said to be oscillatory if it has arbitrarily

large zeros. Otherwise the solution is called nonoscillatory.
For the sake of convenience, the function z(t) is defined by

(2) z(t) = y(t) + P (t)y(τ(t)).

2. Some auxiliary lemmas

Lemma 2.1. Let y(t) be a function such that it and each of its derivatives up to
order (n − 1) inclusive is absolutely continuous and of constant sign in an interval
[t0, +∞). If y(n)(t) is of constant sign and not identically zero on any interval of
the form [t1, +∞) for some t1 > t0, then there exist a tx > t0 and an integer l,

0 6 l 6 n with n + l even for y(n)(t) > 0, or n + l odd for y(n)(t) 6 0, and such that
for every t > tx, l > 0 implies y(k)(t) > 0, k = 0, 1, 2, . . . , l− 1 and l 6 n− 1 implies
(−1)l+ky(k)(t) > 0, k = l, l + 1, . . . , n− 1 [1].

Lemma 2.2. If the function y(t) is as in Lemma 2.1 and

y(n−1)(t)y(n)(t) 6 0 for all t > tx,

then for every λ, 0 < λ < 1, there exists a constant M > 0 such that

|y(λt)| > Mtn−1|y(n−1)(t)| for all large t [1].

3. Main results

Theorem 3.1. Assume that n is odd and

(C1) lim
t→∞

P (t) = 0,

(C2)
∫ +∞

t0
sn−1

m∑
i=1

Qi(s) ds = +∞.
Then every bounded solution of Eq. (1) is either oscillatory or tends to zero as

t → +∞.
���������

. Assume that Eq. (1) has a bounded nonoscillatory solution y(t). With-
out loss of generality, assume that y(t) is eventually positive (the proof is similar
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when y(t) is eventually negative). That is, y(t) > 0, y(τ(t)) > 0 and y(σi(t)) > 0 for
t > t1 > t0 and i = 1, 2, . . . , m. Assume further that y(t) does not tend to zero as
t →∞. By (1), (2) we have for t > t1

(3) z(n)(t) = −
m∑

i=1

Qi(t)fi(y(σi(t))) < 0.

That is, z(n)(t) < 0. It follows that z(j)(t) (j = 0, 1, 2, . . . , n−1) is strictly monotone
and eventually of constant sign. Since P (t) is oscillatory function, there exists a
t2 > t1 such that if t > t2 then z(t) > 0. Since y(t) is bounded, by virtue of (C1) and
(2), there is a t3 > t2 such that z(t) is also bounded for t > t3. Because n is odd and
z(t) is bounded, by Lemma 2.1, when l = 0 (otherwise z(t) is not bounded) there
exists t4 > t3 such that for t > t4 we have (−1)kz(k)(t) > 0 (k = 0, 1, 2, . . . , n − 1).
In particular, since z′(t) < 0 for t > t4, z(t) is decreasing. Since z(t) is bounded,
we may write lim

t→∞
z(t) = L (−∞ < L < +∞). Assume that 0 6 L < +∞. Let

L > 0. Then there exists a constant c > 0 and a t5 > t4 such that z(t) > c > 0 for
t > t5. Since y(t) is bounded, lim

t→∞
P (t)y(τ(t)) = 0 by (C1). Therefore, there exists a

constant c1 > 0 and a t6 > t5 such that y(t) = z(t)−P (t)y(τ(t)) > c1 > 0 for t > t6.
So, we may find a t7 with t7 > t6 such that y(σi(t)) > c1 > 0 for t > t7. From (3)

we have

(4) z(n)(t) = −
m∑

i=1

Qi(t)fi(c1) < 0 (t > t7).

If we multiply (4) by tn−1 and integrate it from t7 to t, we obtain

(5) F (t)− F (t7) 6 −f(c1)
∫ t

t7

m∑

i=1

Qi(s)sn−1 ds

where

F (t) = tn−1z(n−1)(t)− (n− 1)tn−2z(n−2)(t) + (n− 1)(n− 2)tn−3z(n−3)(t)

− . . .− (n− 1)(n− 2)(n− 3) . . . 3 · 2tz′(t)

+ (n− 1)(n− 2)(n− 3) . . . 3 · 2 · 1z(t).

Since (−1)kz(k)(t) > 0 for k = 0, 1, 2, . . . , n − 1 and t > t4, we have F (t) > 0 for
t > t7. From (5) we have

−F (t7) 6 −f(c1)
∫ t

t7

m∑

i=1

Qi(s)sn−1 ds.

895



From (C2) we obtain

−F (t7) 6 −f(c1)
∫ t

t7

m∑

i=1

Qi(s)sn−1 ds = −∞

as t → ∞. This is a contradiction. So, L > 0 is impossible. Therefore, L = 0 is the
only possible case. That is, lim

t→∞
z(t) = 0. Since y(t) is bounded, by (C1) we obtain

lim
t→∞

y(t) = lim
t→∞

z(t)− lim
t→∞

P (t)y(t) = 0

from (2).

Now let us consider the case of y(t) < 0 for t > t1. By (1) and (2),

z(n)(t) = −
m∑

i=1

Qi(t)fi(y(σi(t))) > 0 (t > t1).

That is, z(n)(t) > 0. It follows that z(j)(t) (j = 0, 1, 2, . . . , n−1) is strictly monotone
and eventually of constant sign. Since P (t) is oscillatory function, there exists a
t2 > t1 such that if t > t2 then z(t) < 0. Since y(t) is bounded, by (C1) and (2) there
is a t3 > t2 such that z(t) is also bounded for t > t3. Assume that x(t) = −z(t).
Then x(n)(t) = −z(n)(t). Therefore, x(t) > 0 and x(n)(t) < 0 for t > t3. From
this we observe that x(t) is bounded. Since n is odd, by Lemma 2.1 there is a

t4 > t3 and l = 0 (otherwise, x(t) is not bounded) such that (−1)kx(k)(t) > 0 for
k = 0, 1, 2, . . . , n− 1 and t > t4. That is, (−1)kz(k)(t) < 0 for k = 0, 1, 2, . . . , n− 1
and t > t4. In particular, for t > t4 we have z′(t) > 0. Therefore, z(t) is increasing.
So, we can assume that lim

t→∞
z(t) = L (−∞ < L 6 0). As in the proof of y(t) > 0,

we may prove that L = 0. As for the rest, it is similar to the case of y(t) > 0. That
is, lim

t→∞
y(t) = 0. This contradicts to our assumption. Hence, the proof is completed.

�

Theorem 3.2. Assume that n is even and (C1) holds. If the following condition
is satisfied:

(C3) There is a function ϕ(t) such that ϕ(t) ∈ C ′[t0, +∞). Moreover,

lim
t→∞

sup
∫ t

t0

ϕ(s)
m∑

i=1

Qi(s) ds = +∞

and

lim
t→∞

sup
∫ t

t0

[
[ϕ′(s)]2

ϕ(s)σ′i(s)σ
n−2
i (s)

]
ds < +∞
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for ϕ(t) and i = 1, 2, . . . , m. Then every bounded solution of Eq. (1.1) is oscillatory.
���������

. Assume that Eq. (1) has a bounded nonoscillatory solution y(t). With-
out loss of generality, assume that y(t) is eventually positive (the proof is similar
when y(t) is eventually negative). That is, y(t) > 0, y(τ(t)) > 0 and y(σi(t)) > 0 for
t > t1 > t0. By (1), (2) we have for t > t1

(6) z(n)(t) = −
m∑

i=1

Qi(t)fi(y(σi(t))) < 0.

That is, z(n)(t) < 0. It follows that z(j)(t) (j = 0, 1, 2, . . . , n−1) is strictly monotone
and eventually of constant sign. Since P (t) is oscillatory function, there exists a
t2 > t1 such that for t > t2 we have z(t) > 0. Since y(t) is bounded, by (C1) and
(2) there is a t3 > t2, such that z(t) is also bounded for t > t3. Because n is even,
by Lemma 2.1 when l = 1 (otherwise, z(t) is not bounded) there exists t4 > t3 such

that for t > t4 we have

(7) (−1)k+1z(k)(t) > 0 (k = 0, 1, 2, . . . , n− 1).

In particular, since z′(t) > 0 for t > t4, z(t) is increasing. Since y(t) is bounded,
lim

t→∞
P (t)y(τ(t)) = 0 by (C1). Then there exists a t5 > t4 and a positive integer δ

such that by (2)

y(t) = z(t)− P (t)y(τ(t)) >
1
δ
z(t) > 0

for t > t5. We may find a t6 > t5 such that for t > t6 and i = 1, 2, . . . , m

(8) y(σi(t)) >
1
δ
z(σi(t)) > 0.

From (6), (8) and the properties of f we have

z(n)(t) 6 −
m∑

i=1

Qi(t)fi

(1
δ
z(σi(t))

)
(9)

= −
m∑

i=1

Qi(t)
fi

(
δ−1z(σi(t))

)

z(σi(t))
z(σi(t))

for t > t6. Since z(t) > 0 is bounded and increasing, lim
t→∞

z(t) = L (0 < L < +∞).
By the continuity of f , we have

lim
t→∞

fi

(
δ−1z(σi(t))

)

z(σi(t))
=

fi

(
L/δ

)

L
> 0.
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Then there is a t7 > t6 such that for t > t7, i = 1, 2, . . . , m we have

(10) lim
t→∞

fi

(
δ−1z(σi(t))

)

z(σi(t))
>

fi

(
L/δ

)

2L
= α > 0.

By (9) and (10),

(11) z(n)(t) 6 −α

m∑

i=1

Qi(t)z(σi(t)), for t > t7.

Let us set

(12) w(t) =
z(n−1)(t)

z
(
δ−1(σi(t))

) .

We know from (7) that there is a t8 > t7 such that for sufficiently large t > t8,

w(t) > 0. Therefore, derivativing (12) we obtain

w′(t) =
z
(
δ−1σi(t)

)
z(n)(t)− δ−1σ′i(t)z

′(δ−1σi(t)
)
z(n−1)(t)

z2
(
δ−1σi(t)

)(13)

=
z(n)(t)

z
(
δ−1σi(t)

) − 1
δ
w(t)

z′
(
δ−1σi(t)

)

z
(
δ−1σi(t)

) σ′i(t).

We know from (7) that for t > t9 we have z′(t) > 0 and z(n−1)(t) > 0. Since
z(t) > 0 is increasing, z(σi(t)) > z

(
δ−1σi(t)

)
> 0 for i = 1, 2, . . . , m. Therefore, by

Lemma 2.2, for λ = δ−1 and z′(t) there exist a constant M > 0 and a t10 > t9 such

that for t > t10 we have

z′
(1

δ
σi(t)

)
> δ(n− 1)Mσn−2

i (t)z(n−1)(σi(t)).

Since z(n−1)(t) is decreasing and σi(t) 6 t, we obtain

(14) z′
(1

δ
σi(t)

)
> Nσn−2

i (t)z(n−1)(t)

where N = δ(n− 1)M > 0. Hence, by (11), (13) and (14) we have

(15) w′(t) 6 −α
m∑

i=1

Qi(t)− (n− 1)Mw2(t)σn−2
i (t)σ′i(t).

From (15) we have

(16) α

m∑

i=1

Qi(t) 6 −w′(t)− (n− 1)Mw2(t)σn−2
i (t)σ′i(t) (t > t10).

898



If we multiply (16) by ϕ(t) and integrate it from t10 to t, we obtain

α

∫ t

t10

ϕ(s)
m∑

i=1

Qi(s) ds 6 −
∫ t

t10

ϕ(s)w′(s) ds

− (n− 1)M
∫ t

t10

ϕ(s)w2(s)σn−2
i (s)σ′i(s) ds

= − ϕ(t)w(t) + ϕ(t10)w(t10) +
∫ t

t10

ϕ′(s)w(s) ds

− (n− 1)M
∫ t

t10

ϕ(s)w2(s)σn−2
i (s)σ′i(s) ds

6 ϕ(t10)w(t10)− (n− 1)M
∫ t

t10

ϕ(s)σn−2
i (s)σ′i(s)

×
[
w(s)− ϕ′(s)

2(n− 1)Mϕ(s)σn−2
i (s)σ′i(s)

]2

ds

+
∫ t

t10

[ϕ′(s)]2

4(n− 1)Mϕ(s)σn−2
i (s)σ′i(s)

ds

6 ϕ(t10)w(t10) +
∫ t

t10

[ϕ′(s)]2

4(n− 1)Mϕ(s)σn−2
i (s)σ′i(s)

ds.

Therefore, by (C3)

+∞ = α lim
t→∞

sup
∫ t

t10

ϕ(s)
m∑

i=1

Qi(s) ds

6 ϕ(t10)w(t10) +
1

4(n− 1)M

∫ t

t10

[ϕ′(s)]2

ϕ(s)σn−2
i (s)σ′

i(s)
ds < +∞

for i = 1, 2, . . ..
Now let us consider the case of y(t) < 0 for t > t1. By (1.1) and (1.2) we have

z(n)(t) = −
m∑

i=1

qi(t)fi(y(σi(t))) > 0 (t > t1).

That is, z(n)(t) > 0. It follows that z(j)(t) (j = 0, 1, 2, . . . , n−1) is strictly monotone
and eventually of constant sign. Since P (t) is oscillating function, there exists a
t2 > t1 such that for t > t2 we have z(t) < 0. Since y(t) is bounded, by (C1)
and (2) there is a t3 > t2 such that z(t) is also bounded for t > t3. Assume that
x(t) = −z(t). Then x(n)(t) = −z(n)(t). Therefore, x(t) > 0 and x(n)(t) < 0 for
t > t3. Hence, we observe that x(t) is bounded. Since n is even, by Lemma 2.1 there
exist a t4 > t3 and l = 1 (otherwise, x(t) is not bounded) such that (−1)kx(k)(t) > 0
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for k = 0, 1, 2, . . . , n−1 and t > t4. That is, (−1)kz(k)(t) < 0 for k = 0, 1, 2, . . . , n−1
and t > t4. In particular, for t > t4 we have z′(t) > 0. Therefore, z(t) is increasing.
For the rest of proof, we can proceed the proof similar to the case of y(t) > 0. Hence,
the proof is completed. �
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