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Abstract. In this paper, we give the mapping theorems on ℵ-spaces and g-metrizable
spaces by means of some sequence-covering mappings, mssc-mappings and π-mappings.
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ℵ-spaces and g-metrizable spaces are two classes of generalized metric spaces, and
they play an important role in metrization theory. Papers [4], [7], [16], [17], [18], [19],

[20] have done wonderful work on ℵ-spaces or g-metrizable spaces, but they have only
investigated the internal characterizations of ℵ-spaces or g-metrizable spacs.

In 1965, R.W. Heath [12] proved that a space is developable if and only if it is
an open π-image of a metric space. In 1969, J. A. Kofner [13] proved that a space

is a symmetric space satisfying the weak Cauchy condition if and only if it is a
quotient π-image of a metric space. In 1972, D.K. Burke [14] proved that a space

is semimetrizable if and only if it is a countably bi-quotient (or pseudo-open) π-
image of a metric space. In 1976, K.B. Lee [15] proved that every g-metrizable space

is a quotient π-image of a metric space. In this paper, the relationships between
metric spaces and ℵ-spaces, or g-metrizable spaces are established by means of some

sequence-covering mappings, mssc-mappings and π-mappings.
In this paper, all spaces are regular and T1, all mappings are continuous and

surjective. � denotes the set of all natural numbers. ω denotes � ∪ {0}. For a
collection P of subsets of a space X and a mapping f : X → Y , denote f(P) =
{f(P ) : P ∈ P}. For two collections A and B of subsets of X , denote A ∧B =
{A ∩ B : A ∈ A and B ∈ B}. For the usual product space ∏

i∈ �
Xi, pi denotes the

projection from
∏

i∈ �
Xi onto Xi. Let us recall some basic definitions.
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Definition 1. Let f : X → Y be a mapping.

(1) f is a mssc-mapping [2] (i.e., metrizably stratified strong compact mapping)
if there exists a subspace X of the usual product space

∏
i∈ �

Xi of a collection

{Xi : i ∈ � } of metric spaces satisfying the following condition: for each y ∈ Y ,
there exists an open neighborhood sequence {Vi} of y in Y such that each

cl(pif
−1(Vi)) is compact in Xi.

(2) f is a strong sequence-covering mapping [6] if each convergent sequence (includ-

ing its limit point) of Y is the image of some convergent sequence (including its
limit point) of X .

(3) f is a sequence-covering mapping [9] if each convergent sequence (including its
limit point) of Y is the image of some compact subset of X .

(4) f is a π-mapping [10] if (X, d) is a metric space and for each y ∈ Y and each

open neighborhood V of y in Y , d(f−1(y), X − f−1(V )) > 0.

Definition 2. Let P be a cover of a space X .

(1) P is a k-network [11] for X if for each compact subset K of X and its open
neighborhood V , there exists a finite subcollection P ′ of P such that K ⊂⋃

P ′ ⊂ V .

(2) P is a cs-network for X if for each x ∈ X , its open neighborhood V and
a sequence {xn} converging to x, there exists P ∈ P such that {xn : n >
m} ∪ {x} ⊂ P ⊂ V for some m ∈ � .

(3) P is a cs∗-network for X if for each x ∈ X , its open neighborhood V and a

sequence {xn} converging to x, there exist P ∈ P and a subsequence {xnk
}

of {xn} such that {xnk
: k ∈ � } ∪ {x} ⊂ P ⊂ V .

A space X is called an ℵ-space if X has a σ-locally finite k-network.

Definition 3. Let P =
⋃{Px : x ∈ X} be a collection of subsets of a space X

satisfying that for each x ∈ X ,

(1) Px is a network of x in X . i.e., x ∈ ⋂
Px and for x ∈ U with U open in X ,

P ⊂ U for some P ∈ Px.

(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

P is called a weak-base for X [1] if whenever G ⊂ X is such that for each x ∈ G,
there exists P ∈ Px satisfying P ⊂ G, then G is open in X .

A space X is called a g-metrizable space [8] if X has a σ-locally finite weak-base.

We have the following implications for a space [7]:

metrizable =⇒ g-metrizable⇐⇒ symmetrizable+ ℵ-space.
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Theorem 4. The following are equivalent for a space X :

(1) X is an ℵ-space;
(2) X is the strong sequence-covering mssc-image of a metric space;

(3) X is the sequence-covering mssc-image of a metric space.


��������
. (1) =⇒ (2) Suppose X is an ℵ-space, then X has a σ-locally finite

cs-network by Theorem 4 of [4]. Let P =
⋃{Pi : i ∈ � } be a σ-locally finite cs-

network for X , where eachPi = {Pα : α ∈ Ai} is a locally finite collection of subsets
of X which is closed under finite intersections and X ∈ Pi ⊂ Pi+1. For each i ∈ � ,
endow Ai with discrete topology, then Ai is metrizable. Put

M =
{

α = (αi) ∈
∏

i∈ �
Ai : {Pαi : i ∈ � } ⊂ P

forms a network at some pointx(α) ∈ X

}
,

and endow M with the subspace topology induced from the usual product topology
of the collection {Ai : i ∈ � } of metric spaces, then M is a metric space. Since

X is Hausdroff, x(α) is unique in X for each α ∈ M . We define f : M → X

by f(α) = x(α) for each α ∈ M . Because P is a σ-locally finite cs-network, f is

surjective. For each α = (αi) ∈ M , f(α) = x(α). Suppose V is an open neighborhood
of x(α) in X , there exists n ∈ � such that x(α) ∈ Pαn ⊂ V , set W = {c ∈
M : the n-th coordinate of c is αn}, then W is an open neighborhood of α in M ,

and f(W ) ⊂ Pαn ⊂ V . Hence f is continuous. We will show that f is a strong
sequence-covering mssc-mapping.

(i) f is a mssc-mapping. For each x ∈ X and each i ∈ � , there exists an open
neighborhood Vi of x in X such that {α ∈ Ai : Pα ∩ Vi 6= ∅} is finite. Put

Bi = {α ∈ Ai : Pα ∩ Vi 6= ∅},

then pif
−1(Vi) ⊂ Bi. So cl(pif

−1(Vi)) ⊂ cl(Bi) = Bi. Thus cl(pif
−1(Vi)) is

compact in Ai. Hence f is a mssc-mapping.

(ii) f is a strong sequence-covering mapping. For each sequence {xn} converging
to x0, we can assume that all x′ns are distinct, and that xn 6= x0 for each n ∈ � .
Set K = {xm : m ∈ ω}. Suppose V is an open neighborhood of K in X . A

subcollection A of Pi is said to have the property F (K, V ) if:
(a) A is finite;

(b) for each P ∈ A , ∅ 6= P ∩K ⊂ P ⊂ V

(c) for each z ∈ K, exists unique Pz ∈ A such that z ∈ Pz

(d) if x0 ∈ P ∈ A , then K \ P is finite.
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Since P is a σ-locally finite cs-network, the above construction can be realized,

and we can assume that {A ⊂ Pi : A has the property F (K, X)} = {Aij : j ∈ � }.
For each n ∈ � , put

P ′
n =

∧

i,j6n

Pij ,

then P ′
n ⊂ Pn and P ′

n also has the property F (K, X).
For each i ∈ � , m ∈ ω and xm ∈ K, there is αim ∈ Ai such that xm ∈ Pαim ∈ P ′

i .
Let βm = (αim) ∈ ∏

i∈ �
Ai. It is easy to prove that {Pαim : i ∈ � } is a network of xm

in X . Then there is a βm ∈ M such that f(βm) = xm for eachm ∈ ω. For each i ∈ � ,
there is n(i) ∈ � such that αin = αi0 when n > n(i). Hence the sequence {αin}
converges to αi0 in Ai. Thus the sequence {βn} converges to β0 in M . This show
that f is a strong sequence-covering mapping.

(2) =⇒ (3) is obvious.
(3) =⇒ (1) Suppose X is the image of a metric spaceM under a sequence-covering

mssc-mapping f . Since f is a mssc-mapping, there exists the collection {Mi : i ∈ � }
of metric spaces satisfying Definition 1 (1). For each i ∈ � , Mi has a σ-locally finite
base Pi =

⋃
k∈ �

B
(i)
k , where each B

(i)
k is locally finite in Mi. For each i ∈ � and

k ∈ � , put

R
(k)
i =

{
M ∩

(⋂

j6i

p−1
j (Pj)

)
: Pj ∈ B

(i)
k and j 6 i

}
,

Ri =
⋂

k∈ �
R

(k)
i ,

R =
⋂

i∈ �
Ri,

then R is a base forM . For each x ∈ X , there exists an open neighborhood sequence
{Vi : i ∈ � } of x in X such that each cl(pif

−1(Vi)) is compact inMi. For each n ∈ �
and k ∈ � , put

V =
⋂

i6n

Vi,

then {Q ∈ f(R(k)
n ) : V ∩ Q 6= ∅} is finite. Thus f(R(k)

n ) is locally finite in X . So
f(R) is σ-locally finite in X .

Because sequence-covering mappings preserve cs∗-networks by Proposition 2.7.3
of [3], f(R) is a σ-locally finite cs∗-network for X . Hence X is an ℵ-space by [5,
Lemma 1.17, Theorem 1.4].
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Lemma 5 [2]. Suppose f is a quotient mapping from a k-space X onto a space Y .

IfB is a k-network for X and f(B) is point-countable in Y , then f(B) is a k-network

for Y .

Lemma 6 [7]. Suppose f is a quotient mapping from a metric space X onto a

space Y . Then Y is a symmetric space if and only if f is a π-mapping.

Theorem 7. The following are equivalent for a space X :

(1) X is a g-metrizable space;

(2) X is a strong sequence-covering, quotient, π, mssc-image of a metric space;

(3) X is a sequence-covering, quotient, π, mssc-image of a metric space;

(4) X is a quotient, π, mssc-image of a metric space.


��������
. (1) =⇒ (2) Suppose X is a g-metrizable space, then X is an ℵ-space.

By Theorem 4, X is the image of a metric spaceM under a strong sequence-covering

mssc-mapping f . Thus f is a quotient mapping by Proposition 2.1.16 (2) of [3].
Since X is symmetrizable, f is a π-mapping by Lemma 6. Hence X is a strong

sequence-covering, quotient, π, mssc-image of a metric space.

(2) =⇒ (3) =⇒ (4) are obvious.
(4) =⇒ (1) Suppose X is the image of a metric spaceM under a quotient, π, mssc-

mapping f . According to the proof of Theorem 4 (3) =⇒ (1), we can prove that there
exists a base R for M such that f(R) is σ-locally finite in X . By Lemma 5, f(R)
is a k-network for X . Hence X is an ℵ-space. By Lemma 6, X is symmetrizable.
Therefore X is a g-metrizable space.

Remark 8. (1) Theorem 7 affirmatively answers the following problem posed
in [8]:

Problem [8, problem 1.19]. Is every g-metrizable space a quotient π-image of a

metric space?

(2) D.K. Burke has pointed out that an open compact image of a metric space need

not be g-metrizable. For let Y be the space of Example B in [21]. Y is metacompact,
developable, and not metrizable, so not g-metrizable. But Y is an open compact

image of a metric space. Since a compact mapping defined on a metric space is a
π-mapping, then Y is an open π-image of a metric space. Thus an open π-image of

a metric space need not be g-metrizable. Hence the condition “mssc” in Theorem 7
cannot be omitted.
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