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Abstract. In [5] and [10], statistical-conservative and σ-conservative matrices were char-
acterized. In this note we have determined a class of statistical and σ-conservative matrices
studying some inequalities which are analogous to Knopp’s Core Theorem.
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1. Introduction

Let K be a subset of � , the set of all positive integers. The natural density δ of K

is defined by

δ(K) = lim
n

1
n
|{k 6 n : k ∈ K}|

where |{k 6 n : k ∈ K}| denotes the number of elements of K not exceeding n. A
sequence x is said to be statistically convergent to a number l, if δ({k : |xk − l| >
ε}) = 0 for every ε. In this case we write st-lim x = l, [3]. By S and S0 we denote
the space of all statistically convergent sequences and the space of sequences which

statistically convergent to zero, respectively. Note that a convergent sequence is also
statistically convergent and a statistically convergent sequence need not be bounded.

Let `∞ and c be the Banach spaces of bounded and convergent sequences x = (xk)
with the usual supremum norm. Let σ be a one-to-one mapping of � into itself and
T : `∞ −→ `∞ a linear operator defined by Tx = (Txk) = (xσ(k)). An element
ϕ ∈ `′∞, the conjugate space of `∞, is called an invariant mean or a σ-mean if and
only if i) ϕ(x) > 0 when the sequence x = (xk) has xk > 0 for all k, ii) ϕ(e) = 1
where e = (1, 1, 1, . . .) and iii) ϕ(Tx) = ϕ(x) for all x ∈ `∞. Let M be the set of
all σ-means on `∞. A sublinear functional P on `∞ is said to generate σ-means if
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ϕ ∈ `′∞ and ϕ 6 P ⇒ ϕ is a σ-mean, to dominate σ-means if ϕ 6 P for all ϕ ∈ M

where ϕ 6 P means that ϕ(x) 6 P (x) for all x ∈ `∞.
It is shown [7] that the sublinear functional

V (x) = sup
n

lim sup
p

tpn(x)

both generates and dominates σ-means where

tpn(x) =
1

p + 1
(xn + xσ(n) + . . . + xσp(n)), t−1,n(x) = 0.

A bounded sequence x is called σ-convergent to s if V (x) = −V (−x) = s. In this
case we write σ-lim x = s. Let Vσ denote the set of all σ-convergent sequences. We

assume throughout this paper that σp(n) 6= n for all n > 0 and p > 1, where σp(n)
is the pth iterate of σ at n. Thus, a σ-mean extends the limit functional onto c in

the sense that ϕ(x) = lim x for all x ∈ c, [8]. Consequently, c ⊂ Vσ .
By (iii), it is clear that (Tx − x) ∈ Z for x ∈ `∞, where Z is the set of all

σ-convergent sequences with σ-limit zero.
For x ∈ `∞, we write

l(x) = lim inf x, L(x) = lim sup x, W (x) = inf
z∈Z

L(x + z).

It is known that V (x) = W (x) on `∞, [7].

Let A = (ank) be an infinite matrix of real numbers and x = (xk) a real sequence
such that Ax = (An(x)) =

(∑
k

ankxk

)
exists for each n. Then the sequence Ax =

(An(x)) is called an A-transform of x. For two sequence spaces E and F we say that
the matrix A map E into F if Ax exits and belongs to F for each x ∈ E. By (E, F )
we denote the set of all matrices which map E into F . If E and F are equipped with
the limits E-lim and F -lim, respectively, A ∈ (E, F ) and F -lim

n
An(x) = E-lim

k
xk

for all x ∈ E, then we say that A regularly maps E into F and write A ∈ (E, F )reg.
We will call the matrices (c, c), (c, Vσ) and (c, S∩`∞) conservative, σ-conservative

and statistical (st-) conservative matrices. It is known [6] that A is conservative if

and only if ‖A‖ = sup
n

∑
k

|ank| < ∞, ak = lim
n

ank for each k, and a = lim
n

∑
k

ank. If

A is conservative, the number χ = χ(A) = a−∑
k

ak called the characteristic of A is

of importance in summability.
Schaefer [10] has proved that A is σ-conservative if and only if ‖A‖ < ∞, αk =

σ-lim
n

ank for each k, and α = σ-lim
∑
k

ank.

Kolk [5] has shown that a matrix A is st-conservative if and only if ‖A‖ < ∞,
tk = st-lim

n
ank for each k, and t = st-lim

∑
k

ank.
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In the case A is σ-conservative or st-conservative, similarly, we can define numbers
χσ = χσ(A) = α −∑

αk or χst = χst(A) = t −∑
tk. If χσ 6= 0, A is σ-coregular;

otherwise, it is σ-conull. The matrix A is called st-coregular if χst 6= 0; otherwise,
we call it st-conull.
For any real λ we write λ+ = max{0, λ}, λ− = max{−λ, 0}. Then λ = λ+ + λ−

and |λ| = λ+ − λ−.

Fridy and Orhan [3] have introduced the notions of the statistical boundedness,
statistical-limit superior (st-lim sup) and inferior (st-lim inf), and also determined
necessary and sufficient conditions for a matrix A to yield L(Ax) 6 β(x) for all
x ∈ `∞, where β(x) = st-lim sup x. Recently, Lie and Fridy [4] have characterized

the class of matrices A such that β(Ax) 6 β(x) for all x ∈ `∞.
Das [2] has characterized a class of conservative matrices in terms of inequalities

involving sublinear functionals on `∞. In this paper, we shall determine a class of
conservative, σ-conservative and st-conservative matrices using the same technique.
Now, we list some known results:

Lemma 1.1 [2, Theorem 1 (c)]. Let A = (ank(i)) be conservative. Then, for
some constant λ > |χ| and for all x ∈ `∞,

lim sup
n

sup
i

∑

k

(ank(i)− ak)xk 6 λ + χ

2
L(x)− λ− χ

2
l(x)

if and only if

(1.1) lim sup
n

sup
i

∑

k

|ank(i)− ak| 6 λ.

Lemma 1.2 [2, Lemma 1]. Let A = (ank(i)) be conservative and λ > 0. Then
(1.1) holds if and only if

lim sup
n

sup
i

∑

k

(ank(i)− ak)+ 6 λ + χ

2

and

lim sup
n

sup
i

∑

k

(ank(i)− ak)− 6 λ− χ

2
.
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2. Main results

Theorem 2.1. Let A be conservative. Then, for some constant λ > |χ| and for
all x ∈ `∞,

(2.1) lim sup
n

∑

k

(ank − ak)xk 6 λ + χ

2
β(x) +

λ− χ

2
α(−x)

if and only if

lim sup
n

∑

k

|ank − ak| 6 λ,(2.2)

lim
n

∑

k∈E

|ank − ak| = 0(2.3)

for every E ⊆ � with δ(E) = 0, where β(x) = st-lim sup x and α(x) = st-lim inf x.

���������
. Necessity: Since β(x) 6 L(x) and α(−x) 6 −l(x) for all x ∈ `∞, we

have

lim sup
n

∑

k

(ank − ak)xk 6 λ + χ

2
L(x)− λ− χ

2
l(x).

Hence, the necessity of (2.2) follows from the special case of Lemma 1.1.

To show (2.3), define bnk = ank − ak for k ∈ E; otherwise, let it be zero for all n,
where E is any subset of � with δ(E) = 0 . Since A is conservative, the matrix

B = (bnk) satisfies the conditions of Corollary 12 of [11]. So, there exits a y ∈ `∞
such that ‖y‖ 6 1 and

(2.4) lim sup
n

∑

k

|bnk| = lim sup
n

∑

k

bnkyk.

Now, for the same E we can choose a sequence (yk) as

yk =

{
1, k ∈ E,

0, k /∈ E.

Thus, since st-lim y = β(y) = α(y) = 0, combining the supposition and (2.4) we have

lim sup
n

∑

k∈E

|ank − ak| 6
λ + χ

2
β(x) +

λ− χ

2
α(−x) = 0,

which implies (2.3).
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Sufficiency: Let x ∈ `∞. If we write E1 = {k : xk > β(x) + ε} and E2 = {k : xk <

α(x)− ε} then δ(E1) = δ(E2) = 0. Hence the set E = E1 ∩E2 has also zero density.
It can be written that

∑

k

(ank − ak)xk =
∑

k∈E

(ank − ak)xk +
∑

k/∈E

(ank − ak)+xk −
∑

k/∈E

(ank − ak)−xk .

Thus, since (2.3) implies that the first sum on the right-hand side is zero, from the
special case of Lemma 1.2 we get

lim sup
n

∑

k

(ank − ak)xk 6 λ + χ

2
β(x) +

λ− χ

2
α(−x),

which completes the proof. �

In the case χ > 0 and λ = χ we conclude from Theorem 2.1 that for all x ∈ `∞

(2.5) lim sup
n

∑

k

(ank − ak)xk 6 χβ(x)

if and only if (2.3) holds and

lim
n

∑

k

|ank − ak| = χ.

Moreover, if A ∈ (c, c)reg and λ = χ, then since χ = 1 and ak = 0 for each k,

Theorem 2.1 is reduced to the Lemma of Fridy and Orhan [3].
If A is σ-conservative in Theorem 2.1, we have the following result which can be

proved with the same argument as Theorem 2.1:

Theorem 2.2. Let A be σ-conservative. Then, for some constant λ > |χσ | and
for all x ∈ `∞,

(2.6) lim sup
p

sup
n

∑

k

(a(p, n, k)− αk)xk 6 λ + χσ

2
β(x) +

λ− χσ

2
α(−x)

if and only if

lim sup
p

sup
n

∑

k

|a(p, n, k)− αk| 6 λ,(2.7)

lim
p

sup
n

∑

k∈E

|a(p, n, k)− αk| = 0(2.8)

for E ⊆ � with δ(E) = 0, where a(p, n, k) = (p + 1)−1
p∑

i=0

aσi(n),k.

When A ∈ (c, Vσ)reg and λ = χσ , Theorem 2.2 gives Theorem 2.3 of [1].
To the proof of the next theorem we need two lemmas:

795



Lemma 2.3. Let A be st-conservative and λ > 0. Then

st-lim sup
n

∑

k

|ank − tk| 6 λ

if and only if

st-lim sup
n

∑

k

(ank − tk)+ 6 λ + χst

2

and

st-lim sup
n

∑

k

(ank − tk)− 6 λ− χst

2
.

���������
. By the st-conservativeness of A we get

st-lim sup
n

∑

k

(ank − tk) = χst.

Therefore, the result follows from the relations

∑

k

(ank − tk) =
∑

k

(ank − tk)+ −
∑

k

(ank − tk)−

and
∑

k

|ank − tk| =
∑

k

(ank − tk)+ +
∑

k

(ank − tk)−.

�

Lemma 2.4. Let ‖A‖ < ∞ and st-lim
n
|ank| = 0. Then there exists a y ∈ `∞ such

that ‖y‖ 6 1 and

st-lim sup
∑

k

ankyk = st-lim sup
∑

k

|ank|.

���������
. If st-lim

n
|ank| = 0, then δ(E) = δ({n : |ank| > ε}) = 0 and so

|ank| 6 ε for n /∈ E. Since ‖A‖ < ∞,
(∑

k

|ank|
)

n
is a bounded sequence so that

st-lim sup
n

∑
k

|ank| < ∞.
Let γ = st-lim sup

n

∑
k

|ank| and let for a given ε > 0,

N(ε) =
{

n :
∑

k

|ank| > γ − ε

}
.
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Hence there exists an increasing sequence (nr) in N(ε)−E and a sequence (kr) such
that ∑

k6kr−1

|anr ,k| <
1
r
,

∑

k>kr−1

|anr,k| <
1
r
.

Now define a y ∈ `∞ such that for kr−1 6 k < kr

yk =

{
1, anr,k > 0,

−1, anr,k < 0.

Then by the same argument as in Lemma 2 of [2] we can see that

∑

k

anr ,kyk >
∑

k

|anr ,k| −
4
r

and applying the operator st-lim sup
r

we have

st-lim sup
r

∑

k

anr ,kyk > γ − ε.

Since (nr) and ε are arbitrary, we get

st-lim sup
n

∑

k

ankyk > γ,

which completes the proof, because for such a y it is always true that

st-lim sup
r

∑

k

anr ,kyk 6 γ.

�

Theorem 2.5. Let A be st-conservative. Then, for some constant λ > |χst| and
for all x ∈ `∞,

(2.9) st-lim sup
n

∑

k

(ank − tk)xk 6 λ + χst

2
L(x)− λ− χst

2
l(x)

if and only if

(2.10) st-lim sup
n

∑

k

|ank − tk| 6 λ.
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���������
. Necessity: Define B = (bnk) by bnk = (ank − tk) for all n, k. Then,

since A is st-conservative, the matrix B satisfies the hypothesis of Lemma 2.4. Hence
we have

st-lim sup
n

∑

k

|bnk| = st-lim sup
n

∑

k

bnkyk

6 λ + χst

2
L(y)− λ− χst

2
l(y)

6
(λ + χst

2
+

λ− χst

2

)
‖y‖ = λ,

which is (2.10).

Sufficiency: Let (2.10) hold and x ∈ `∞. Then for any ε > 0 there exits a k0 ∈ �
such that l(x)− ε < xk < L(x) + ε whenever k > k0. Now, we can write

∑

k

(ank − tk)xk =
∑

k6k0

(ank − tk)xk +
∑

k>k0

(ank − tk)+xk −
∑

k>k0

(ank − tk)−xk.

By the st-conservativeness of A and Lemma 2.3 we obtain

st-lim sup
n

∑

k

(ank − tk)xk 6 (L(x) + ε)
(λ + χst

2

)
− (l(x)− ε)

(λ− χst

2

)

=
λ + χst

2
L(x)− λ− χst

2
l(x) + λε,

which yields (2.9), since ε is arbitrary. �

Theorem 2.6. Let A be st-conservative. Then, for some constant λ > |χst| and
for all x ∈ `∞,

(2.11) st-lim sup
n

∑

k

(ank − tk)xk 6 λ + χst

2
β(x) +

λ− χst

2
α(−x)

if and only if (2.10) holds and

(2.12) st-lim
n

∑

k∈E

|ank − tk| = 0

for every E ⊆ � with δ(E) = 0.
���������

. Necessity: If (2.11) holds, since β(x) 6 L(x) and α(−x) 6 −l(x),
(2.10) follows from Theorem 2.5. To show the necessity of (2.12), for any E ⊆ �
with δ(E) = 0 let us define a matrix B = (bnk) by bnk = ank − tk, k ∈ E; otherwise
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it equals zero for all n. Then, clearly, B satisfies the conditions of Lemma 2.4 and

therefore there exists a y ∈ `∞ such that ‖y‖ 6 1 and

st-lim sup
n

∑

k

bnkyk = st-lim sup
n

∑

k

|bnk|.

Now, for the same E we choose the sequence y as

yk =

{
1, k ∈ E,

0, k /∈ E.

Hence, since st-lim y = β(y) = α(y) = 0, (2.11) implies that

st-lim sup
n

∑

k∈E

|ank − tk| 6
λ + χst

2
β(y) +

λ− χst

2
α(−y) = 0,

which is (2.12).

Sufficiency: Let the conditions of the theorem hold and let x ∈ `∞. Put the set E

as in Theorem 2.1. Now, we can write

∑

k

(ank − tk)xk =
∑

k∈E

(ank − tk)xk +
∑

k/∈E

(ank − tk)+xk −
∑

k/∈E

(ank − tk)−xk.

Thus, by (2.12) and Lemma 2.3, (2.11) is obtained since

st-lim sup
n

∑

k

(ank − tk)xk 6 λ + χst

2
β(x) +

λ− χst

2
α(−x) + λε

and ε is arbitrary. �

We also should state that Theorem 2.6 is the dual of Theorem 3 in [4] when
A ∈ (c, S ∩ `∞)reg and λ = χst.

Theorem 2.7. Let A be st-conservative. Then, for some constant λ > |χst| and
for all x ∈ `∞,

(2.13) st-lim sup
n

∑

k

(ank − tk)xk 6 λ + χst

2
V (x) +

λ− χst

2
V (−x)

if and only if (2.10) holds and

(2.14) st-lim
n

∑

k

|ank − an,σ(k) − (tk − tσ(k))| = 0.
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���������
. Necessity: Since qσ(x) 6 L(x) and qσ(−x) 6 −l(x) for all x ∈ `∞, the

necessity of (2.10) follows from Theorem 2.5. Define C = (cnk) by cnk = bnk−bn,σ(k)

for all n, k where bnk is as in Theorem 2.5. Then we have from Lemma 2.4 a y ∈ `∞
such that ‖y‖ 6 1 and

st-lim sup
n

∑

k

|cnk| = st-lim sup
n

∑

k

cnkyk.

Let us choose y such that yk = 0, k /∈ σ( � ). Hence, since (yk−yσ(k)) ∈ Z, (2.13) im-
plies that

st-lim sup
n

∑

k

|cnk| = st-lim sup
n

∑

k

cnkyσ(k)

= st-lim sup
n

∑

k

bnk(yk − yσ(k))

6 λ + χst

2
V (yk − yσ(k)) +

λ− χst

2
V (yσ(k) − yk) = 0,

which is (2.14).
Sufficiency: Let the conditions (2.10) and (2.14) hold. By the same argument as

in Theorem 23 of [9], one can easily see that for any x ∈ `∞
∑

k

bnk(xk − xσ(k)) =
∑

k

cnkxσ(k)

where the matrices B and C are as above.

Hence, since (xk − xσ(k)) ∈ Z, (2.14) implies that B ∈ (Z, S0 ∩ `∞). We also see
from the assumption that (2.9) holds. Thus, taking infimum over z ∈ Z in (2.9) we

get that

inf
z∈Z

(
st-lim sup

n

∑

k

bnk(xk + zk)
)

6 λ + χst

2
L(x + z)− λ− χst

2
l(x + z)

=
λ + χst

2
W (x) +

λ− χst

2
W (−x).

On the other hand, since st-lim Bz = 0 for z ∈ Z,

inf
z∈Z

(
st-lim sup

n

∑

k

bnk(xk + zk)
)

> st-lim sup
n

∑

k

bnkxk + inf
z∈Z

(
st-lim sup

n

∑

k

bnkzk

)

= st-lim sup
n

∑

k

bnkxk.

Since qσ(x) = W (x) for all x ∈ `∞, we conclude that (2.13) holds and the proof is
completed. �
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