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CHARACTERIZATION OF TOTALLY UMBILIC HYPERSURFACES

IN A SPACE FORM BY CIRCLES
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Abstract. In this paper we characterize totally umbilic hypersurfaces in a space form by a
property of the extrinsic shape of circles on hypersurfaces. This characterization corresponds
to characterizations of isoparametric hypersurfaces in a space form by properties of the
extrinsic shape of geodesics due to Kimura-Maeda.
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1.Introduction

A smooth curve γ = γ(s) on a Riemannian manifold M parameterized by its
arc length s is called a circle if it satisfies ∇γ̇∇γ̇ γ̇ = −k2γ̇ with some nonnegative

constant k, where∇γ̇ denotes the covariant differentiation along γ with respect to the
Riemannian connection ∇ on M . This condition is equivalent to the condition that

there exist a nonnegative constant k and a field of unit vectors Y = Y (s) along this
curve which satisfy the following differential equations: ∇γ̇ γ̇ = kY and ∇γ̇Y = −kγ̇.

We call the constant k the curvature of γ. As k = ‖∇γ̇ γ̇‖, we treat geodesics as circles
of null curvature. For given a point x ∈ M , an orthonormal pair of tangent vectors

u, v ∈ TxM and a positive constant k, by the existence and uniqueness theorem for
solutions of ordinary differential equations we have locally a unique circle γ = γ(s)
with the initial condition that γ(0) = x, γ̇(0) = u and ∇γ̇ γ̇(0) = kv. It is well-known
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that in Euclidean space a circle of positive curvature k is nothing but a circle of

radius 1/k in the sense of Euclidean geometry.

We are interested in getting some properties of a submanifold by observing the
extrinsic shape of circles on this submanifold. In this paper we restrict ourselves

to hypersurfaces in a space form. Here, a space form M̃n+1(c) of constant curva-
ture c is the Euclidean space � n+1 , the standard sphere Sn+1(c) or the hyperbolic
space Hn+1(c) according as c is zero, positive or negative. The purpose of this paper
is to prove the following:

Theorem 1. A connected hypersurfaceMn in a space form M̃n+1(c) of constant
curvature c is totally umbilic in M̃n+1(c) if and only if there exists k > 0 with the
following property: At each point x ∈ M , there is an orthonormal basis {v1, . . . , vn}
of TxM such that for each distinct i, j the circles γi,j , γi,−j of curvature k on M

with the initial conditions that

γi,j(0) = γi,−j(0) = x, γ̇i,j(0) = γ̇i,−j(0) = vi,

∇γ̇i,j γ̇i,j(0) = kvj , ∇γ̇i,−j γ̇i,−j(0) = −kvj

are circles in the ambient space M̃n+1(c).

The readers should compare our result with characterizations of isoparametric

hypersurfaces in a space form by the extrinsic shape of geodesics (see Theorems 2
and 5 in [1]). Our study on circles on a hypersurface gives much information on the

hypersurface.

2. Proof of our result

The “only if” part of Theorem 1 follows from the following well-known result.

Proposition. LetMn be a hypersurface isometrically immersed into a space form

M̃n+1(c). Then the following three conditions are equivalent:
(1) Mn is totally umbilic in M̃n+1(c).
(2) Every geodesic on Mn is a circle in M̃n+1(c).
(3) Every circle on Mn is a circle in M̃n+1(c).

The “if” part of Theorem 1 follows from the following result on a hypersurface in
a general Riemannian manifold.
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Theorem 2. A connected hypersurface Mn in a general Riemannian manifold

M̃n+1 is totally umbilic in M̃n+1 if there exists k > 0 satisfying the following condi-
tion. At each point x ∈ M , there is an orthonormal basis {v1, . . . , vn} of TxM such

that for each distinct i, j the circles γi,j , γi,−j of curvature k on M with the initial

conditions that

γi,j(0) = γi,−j(0) = x, γ̇i,j(0) = γ̇i,−j(0) = vi,

∇γ̇i,j γ̇i,j(0) = kvj , ∇γ̇i,−j γ̇i,−j(0) = −kvj

are circles in the ambient space M̃n+1.
���������

. We denote by ∇̃ the Riemannian connection of M̃ . Let γa,b = γa,b(s) be
a circle of curvature k satisfying the hypothesis at an arbitrary point x = γa,b(0) on
the hypersurface M . By use of the formulae of Gauss and Weingarten which assure

∇̃XY = ∇XY + 〈AX, Y 〉N and ∇̃XN = −AX

for vector fields X , Y on M , we find by regarding γa,b as a curve on M̃ that

∇̃γ̇a,b
γ̇a,b = ∇γ̇a,b

γ̇a,b + 〈Aγ̇a,b, γ̇a,b〉N,(1)

∇̃γ̇a,b
∇̃γ̇a,b

γ̇a,b = − k2γ̇a,b − 〈Aγ̇a,b, γ̇a,b〉Aγ̇a,b(2)

+ {3〈Aγ̇a,b,∇γ̇a,b
γ̇a,b〉+ 〈(∇γ̇a,b

A)γ̇a,b, γ̇a,b〉}N.

Thus we have ‖∇̃γ̇a,b
γ̇a,b‖2 = k2 + 〈Aγ̇a,b, γ̇a,b〉2. Since γa,b is also a circle as a curve

in M̃ , we find 〈Aγ̇a,b, γ̇a,b〉 is constant along this curve and obtain

〈Aγ̇a,b, γ̇a,b〉{〈Aγ̇a,b, γ̇a,b〉γ̇a,b −Aγ̇a,b}(3)

+ {3〈Aγ̇a,b,∇γ̇a,b
γ̇a,b〉+ 〈(∇γ̇a,b

A)γ̇a,b, γ̇a,b〉}N = 0

by comparing the equality (2) with

∇̃γ̇a,b
∇̃γ̇a,b

γ̇a,b + ‖∇̃γ̇a,b
γ̇a,b‖2γ̇a,b = 0.

Taking the normal component of the equality (3) for the hypersurface we get

3〈Aγ̇a,b,∇γ̇a,b
γ̇a,b〉+ 〈(∇γ̇a,b

A)γ̇a,b, γ̇a,b〉 = 0.

Evaluating this equation at s = 0, we have

±3k〈Avi, vj〉+ 〈(∇viA)vi, vi〉 = 0,
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where the double sign takes plus if (a, b) = (i, j) and takes minus if (a, b) = (i,−j).
From these equations for (i, j) and (i,−j) we obtain

(4) 〈Avi, vj〉 = 0 and 〈(∇viA)vi, vi〉 = 0 for every distinct i, j.

On the other hand, taking the tangential component of the equality (3), we have

〈Aγ̇a,b, γ̇a,b〉{〈Aγ̇a,b, γ̇a,b〉γ̇a,b −Aγ̇a,b} = 0.

When 〈Avi, vi〉 6= 0, the constant 〈Aγ̇i,b, γ̇i,b〉 is not 0 for every b. Therefore Aγ̇i,b =
〈Aγ̇i,b, γ̇i,b〉γ̇i,b holds for every b. Differentiating both sides of this equality along γi,b,
we get

(∇γ̇i,b
A)γ̇i,b + A∇γ̇i,b

γ̇i,b

= {〈(∇γ̇i,b
A)γ̇i,b, γ̇i,b〉+ 2〈Aγ̇i,b,∇γ̇i,b

γ̇i,b〉}γ̇i,b + 〈Aγ̇i,b, γ̇i,b〉∇γ̇i,b
γ̇i,b.

Evaluating this equation at s = 0, from the equality (4) we have

(∇viA)vi ± kAvj = ±k〈Avi, vi〉vj

for every j (6= i), where the double signs take plus if b = j and take minus if b = −j.

Thus we obtain (∇viA)vi = 0 and Avj = 〈Avi, vi〉vj for every j (6= i) in this case.

When 〈Avi, vi〉 = 0, we have 〈Aγ̇i,b, γ̇i,b〉 = 0 for every b. Differentiating this
equation we get

〈(∇γ̇i,b
A)γ̇i,b, γ̇i,b〉+ 2〈Aγ̇i,b,∇γ̇i,b

γ̇i,b〉 = 0.

Evaluating this equation at s = 0, we have 〈(∇viA)vi, vi〉 ± 2k〈Avi, vj〉 = 0 for
every j (6= i), where the rule of double sign is the same as above. Thus we obtain
〈Avi, vj〉 = 0 for every j. As {v1, . . . , vn} is a basis of TxM , we get Avi = 0.
We now show thatM is umbilic at x. Since we have already seen that 〈Avi, vj〉 = 0

for every distinct i, j, it is enough to verify 〈Avi, vi〉 = 〈Avj , vj〉. When Avj =
〈Avi, vi〉vj holds, this is trivial. When Avi = 0, we have 〈Avj , vj〉 = 0, because
either Avj = 0 or Avi = 〈Avj , vj〉vi holds. Thus in this case we have 〈Avi, vi〉 =
〈Avj , vj〉 = 0. As x ∈ M is an arbitrary point we get our conclusion. �
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3. Concluding remark

If we substitute k = 0 for k > 0 in Theorem 1, the same statement does not
hold. We call a hypersurface in a space form isoparametric if all of its principal
curvatures are constant. Such hypersurfaces in a space form were characterized by

Kimura and the second author in terms of the extrinsic shape of geodesics. Their
results correspond to the case k = 0. Since they are closely related to our result we
reproduce them here for the readers’ convenience.

Remark ([1]).
(1) A connected hypersurface Mn in a space form M̃n+1(c) is isoparametric with
nonzero principal curvatures if and only if at each point x ∈ M there exists an

orthonormal basis {v1, . . . , vn} of TxM such that all geodesics on M through x

in the direction vi (1 6 i 6 n) are circles of positive curvature in M̃n+1(c).
(2) A connected hypersurface Mn in a space form M̃n+1(c) is isoparametric if and
only if at each point x ∈ M there exists an orthonormal basis {v1, . . . , vn}
of TxM as principal curvature vectors such that all geodesics on M through x

in the direction vi (1 6 i 6 n) are circles in M̃n+1(c).

It should be noted that the classification of isoparametric hypersurfaces in a sphere
is not completed (cf. [2], [3]).
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