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Abstract. We consider the quotient categories of two categories of modules relative to
the Serre classes of modules which are bounded as abelian groups and we prove a Morita
type theorem for some equivalences between these quotient categories.
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1. Introduction

The notions “quasi-isomorphism”, “quasi-direct decomposition” and other similar

notions became important in the torsion free Abelian Groups Theory because they
allowed B. Jönson to enunciate a Krull-Schmidt type theorem for torsion free groups

of finite rank (see [5, Corollary 7.9]). In [13], E. Walker extended these notions
to the category of abelian groups, observing that they originate in the quotient

category Ab/B, where Ab is the category of abelian groups and B is the class of
all bounded abelian groups. In [3], the authors introduced the notion of almost-

flat modules in order to answer the question which of the properties of torsion free
abelian groups as modules over their endomorphism rings are preserved by quasi-

isomorphisms. The notion of almost (quasi-)projective module was used in [11] and
[12] in order to characterize the torsion free abelian groups projective as modules over

their endomorphism rings. In the same context Albrecht extended in [1] the classes of
A-static groups and A-adstatic modules to the classes of almost A-static groups and

almost A-adstatic modules requesting the arrows of adjunction, induced by the pair
of adjoints functors Hom(A,−) : Ab � Mod-E : −⊗E A, to be quasi-isomorphisms.

The class of almost A-static modules was used in [6] in order to characterize the
modules which are almost-flat over their endomorphism rings.
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In [7], using the Elbert Walker’s techniques which were developed in [13], the

authors give natural interpretations for the notions “almost projective” and “almost
flat”. We recall here some of the constructions and notions used in this paper: Let
Σ be a multiplicatively closed set of non-zero integers. We will say that an abelian
group A is Σ-bounded if there exists n ∈ Σ such that nA = 0. If R is a unital
ring and Mod-R is the category of right R-modules, then the class S of all right R-
modules which are Σ-bounded as abelian groups is a Serre class. Hence the quotient
category Mod-R/S exists and it is proved (analogously to [13, Theorem 3.1]) that
this category is equivalent to the category � [Σ−1]Mod-R which has as objects all the
right R-modules and if M,N ∈ Mod-R, then

Hom � [Σ−1]Mod-R(M,N) = � [Σ−1]⊗ � HomR(M,N).

We will denote by q : Mod-R → � [Σ−1]Mod-R the canonical functor. Note that
q(M) = M for any M ∈ Mod-R and q(f) = 1 ⊗ f for all R-homomorphisms f .

Observe that every homomorphism in � [Σ−1]Mod-R can be written as 1
nf

not= 1
n ⊗ f

where f is an R-homomorphism and, as the multiplication by n ∈ Σ represents an
automorphism in � [Σ−1]Mod-R for all n ∈ Σ, 1

nf is respectively a monomorphism, an
epimorphism, an isomorphism if and only if q(f) has the same property. We will say:
a R-homomorphism f is a q-monomorphism if q(f) is a monomorphism (this means
Ker(f) is a Σ-bounded group), it is an q-epimorphism if q(f) is an epimorphism
(equivalently, Coker(f) is a Σ-bounded group), and it is a q-isomorphism if q(f) is
an isomorphism. Note that f : M → N is a q-isomorphism if and only if there exists
an integer n ∈ Σ and an R-homomorphism g : N → M such that gf = n1M and
fg = n1N . We say that g is a q-inverse for f . A q-epimorphism (q-monomorphism)
f : M → N q-splits if q(f) splits in � [Σ−1]Mod-R. This means that there exists an
R-homomorphism g : N →M and an integer n ∈ Σ such that fg = n1N (gf = n1M ).

Observe that in the case Σ = � ? is the set of all non-zero integers we find again
Albrecht’s “quasi-notions” presented in [2].

The definition of the quotient category modulo a Serre subcategory as a category
of additive fractions is given in [9, Section 4.7] (see also [8, Corollaire 3.2]). Let us ob-

serve that if F : Mod-R→ Mod-S is an additive functor, then it induces a canonical
functor qF : � [Σ−1]Mod-R → � [Σ−1]Mod-S such that qF = qFq, where q denotes
both the canonical functors Mod-R → � [Σ−1]Mod-R and Mod-S → � [Σ−1]Mod-S.
In [7] it is proved that a right R-module P is projective in � [Σ−1]Mod-R (called
Σ-almost projective) if and only if the functor qHomR(P,−) : � [Σ−1]Mod-R →
� [Σ−1]Ab is exact. In the case Σ = � ? this notion coincides with the notion presented

and used in [12] and [11]. It is proved that an R-module P is Σ-almost projective if
and only if there exist a projective (free) module F and a q-epimorphism α : F → P
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such that α q-splits. Note that the almost flat left R-modules, introduced in [3],
are just the left R-modules A such that the functor q(−⊗R A) : � Mod-R→ � Ab is
exact.
The main result of this paper is Theorem 3.10, which proves a statement analogous

to the Morita Theorem, [4, Theorem 22.2] and [14, 46.4], for the special case of
equivalences between two quotient categories � [Σ−1]Mod-R and � [Σ−1]Mod-S. As
the Morita Theorem justifies the introduction of static and adstatic modules, our
theorem justifies, in the case Σ = � ?, the definitions of almost static and almost

adstatic modules.

2. q-generators

Recall that if G is a right R-module with the endomorphism ring E, then G be-
comes a left E-module and we have a pair of adjoint functors

HG = HomR(G,−) : Mod-R � Mod-E : −⊗E G = TG

with the canonical arrows ϕ : TGHG → 1, ϕM (α ⊗ g) = α(g) and ψ : 1 → HGTG,
ψX(x)(g) = x ⊗ g, for all M ∈ Mod-R and X ∈ Mod-E. They induce the pair of
adjoint functors

qHG : � [Σ−1]Mod-R � � [Σ−1]Mod-E : qTG.

We mention that qHG(M) = HG(M) for all M ∈ Mod-R and that for every R-ho-
momorphism γ : M → N we have qHG

(
1
nγ

)
= 1

nHG(γ).
We will say that G ∈ Mod-R is a q-generator if qHG : qMod-R → qMod-E is a

faithful functor.

Proposition 2.1. If G ∈ Mod-R, then the following assertions are equivalent:
a) G is a q-generator;
b) for each M ∈ Mod-R, there exists a set Λ and a q-epimorphism ϕ : G(Λ) →M ;

c) for every right R-module M the canonical homomorphism ϕM : TGHG(M) →
M is a q-epimorphism.

���������
. a) ⇒ b) If Λ = HomR(G,M), we will prove that the canonical

homomorphism ϕ : G(Λ) → M , induced by the direct sum and the family of ho-

momorphisms {α : G → M | α ∈ Λ}, is an epimorphism in � [Σ−1]Mod-R. Let
(1/n)γ : M → N be a homomorphism in � [Σ−1]Mod-R such that ((1/n)γ)ϕ = 0
(in � [Σ−1]Mod-R). Then γϕ = 0 in � [Σ−1]Mod-R, hence Im(γϕ) is Σ-bounded.
Therefore, there exists an integer n ∈ Σ such that nγϕiα = 0 for all α ∈ Λ
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(iα : G→ G(Λ) is the canonical injection). It follows that nγα = 0 for all α ∈ Λ and
we obtain qHG(γ) = 0. Because qHG is faithful we obtain γ = 0 in � [Σ−1]Mod-R,
hence (1/n)γ = 0. Then ϕ is an epimorphism in � [Σ−1]Mod-R.

b) ⇒ c) Let Λ be a set such that there exists an R-homomorphism ϕ : G(Λ) →M

which is a q-epimorphism. Then we can find an integer n ∈ Σ with nCoker(ϕ) = 0.
We obtain that for every x ∈ M there exist λ1, . . . , λk ∈ Λ and g1 ∈ Gλ1 =
G, . . . , gk ∈ Gλk

= G such that nx = ϕ(g1 ⊕ . . . ⊕ gk). It follows that ϕM (ϕiλ1 ⊗
g1 + . . .+ ϕiλk

⊗ gk) = nx and this shows that ϕM is a q-epimorphism.
c) ⇒ a) If α : M → N is an R-homomorphism such that qHG(α) = 0, we use the

commutative diagram

TGHG(M)

��

//ϕM

M

��
α

TGHG(N) //ϕN

N

to obtain αϕM = 0 in � [Σ−1]Mod-R. Then α = 0 in � [Σ−1]Mod-R because ϕM

represents an epimorphism in this category. �

Example 2.2. If p is a prime, the module � is a q-generator in the category
Mod- � × � (p) which is not a generator.

Lemma 2.3. If G is a q-generator in Mod-R and M ∈ Mod-R is q-isomorphic
with a finitely generated right R-module, then there exists an integer k > 0 and an
R-homomorphism Gk →M which is a q-epimorphism.

���������
. Observe that we can suppose without loss of generality that M is a

finitely generated right R-module. If 〈x1, . . . , xm〉 = M and ϕ : G(I) → M is an
R-homomorphism such that nCoker(ϕ) = 0 for an integer n ∈ Σ, we fix g1, . . . , gm ∈
G such that ϕ(gi) = nxi for all i = 1, . . . ,m. Then there exists a submodule G(J)

in G(I) which is a finite direct sum of copies of G such that gi ∈ G(J) for all i =
1, . . . , n. The restriction ϕ|G(J) : G(J) →M is a q-epimorphism. �

We will say that an R-module M is an Σ-almost finitely generated module if it is
q-isomorphic to a finitely generated R-module.

Proposition 2.4. If G is a q-generator in Mod-R where E is the endomorphism
ring of G and B the biendomorphism ring of G, then:

a) G is Σ-almost projective and Σ-almost finitely generated as a left E-module;
b) if ϑ : R → B, ϑ(r)(g) = gr is the canonical ring homomorphism, then Ker(ϑ)
and B/ Im(ϑ) are Σ-bounded as abelian groups.
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���������
. Using the previous lemma we find an exact sequence Gk ϕ→ R→ H → 0

in Mod-R such that H is Σ-bounded as an abelian group. Because R is Σ-almost
projective, there exist n ∈ Σ and ψ : R→ Gk such that ϕψ = n1R.

a) We apply the contravariant functor HomR(−, G) : Mod-R → E-Mod to the
previous exact sequence concluding that the sequence

0 → HomR(H,G) → HomR(R,G)
HomR(ϕ,G)−→ HomR(Gk , G)

is exact. Therefore HomR(ϕ,G) is a q-monomorphism which splits in the cat-
egory � [Σ−1](E-Mod) because we have HomR(ψ,G) HomR(ϕ,G) = n1HomR(R,G),
hence G ∼= HomR(R,G) is Σ-almost projective as an E-module.
b) If µ : B(Gk) → B is the canonical isomorphism which is presented in [4, 14.2]

and λ : R → B(Gk) is the canonical ring homomorphism, then ϑ = µλ. Consider

r ∈ R such that λ(r) = 0 and x ∈ Gk with ϕ(x) = n1. Then nr = ϕ(xr) =
ϕ(λ(r)(x)) = 0, hence the group Ker(ϑ) = Ker(ϕ) is bounded by n ∈ Σ.
To prove that Coker(ϑ) is Σ-bounded, we apply the density theorem, [14, 15.7],

to the following hypothesis: G is Σ-almost finitely generated as a left E-module,
hence there exist an integer n ∈ Σ and an E-homomorphism α : Ek → G with
nCoker(α) = 0. We consider x1, . . . , xk ∈ G such that they generate an E-

submodule H with nG/H = 0. It follows that for every β ∈ B, the homomorphism
nβ is determined by β(x1), . . . , β(xk). Then the density theorem shows that nβ is a
multiplication by an element r ∈ R. Therefore, n(B/ Im(ϑ)) = 0. �

3. The main theorem

Let R and S be unital rings. Consider a pair of functors F : Mod-R � Mod-S : G
such that

i) there exists a natural transformation ϕ : GF → 1Mod-R such that ϕA is a q-iso-
morphism for all A ∈ Mod-R,

ii) there exists a natural transformation ψ : 1Mod-S → FG such that ψX is a q-iso-
morphism for all X ∈ Mod-S.

We will say that F is a good q-equivalence and G is a good q-inverse for F . Ob-
serve that under these conditions the functors qF : � [Σ−1]Mod-R � � [Σ−1]Mod-S :
qG are equivalences.

Remark 3.1. In this case it follows that
i) for every A ∈ Mod-R there exist an integer nA ∈ Σ and ϕ′A : A→ GF (A) such
that ϕAϕ

′
A = nA1A and ϕ′AϕA = nA1GF (A),
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ii) for every X ∈ Mod-S there exist an integer mX ∈ Σ and ψ′
A : FG(X) → X

such that ψXψ
′
X = mX1FG(X) and ψ′

AψA = mX1X .
Moreover, if A ∼= A′ and X ∼= X ′, we can suppose that nA = nA′ and mX = mX′ .

If ϕ : R → S is a unital ring homomorphism, then we obtain a pair of adjoint
functors (ϕ?, ϕ

?), where

ϕ? : S-Mod→ R-Mod, ϕ?(A) = A, ϕ?(f) = f

is the restriction of scalars and

ϕ? : R-Mod→ S-Mod, ϕ?(C) = S ⊗R C, ϕ?(f) = 1S ⊗ f

is the extension of scalars [10, IV.9]. They induce the natural transformations

ξ : ϕ?ϕ? → 1S-Mod with ξA : ϕ?ϕ?(A) → A, s⊗ a 7→ sa

and

ζ : 1R-Mod → ϕ?ϕ
? with ζC : C → ϕ?ϕ

?(C), c 7→ 1⊗ c

for all A ∈ S-Mod and C ∈ R-Mod.
In [6, Lemma 3.1] the following result is proved which will be useful in the enun-

ciation of our main theorem.

Proposition 3.2 [6, Lemma 3.1]. If R and S are rings such that there exists
a unital ring homomorphism ϕ : R → S such that the groups Ker(ϕ) and S/ Im(ϕ)
are Σ-bounded, then ϕ? is a good q-equivalence and ϕ? is a good q-inverse for ϕ?.

We revert to the general case.

Proposition 3.3. Let F : Mod-R � Mod-S be a good q-equivalence and let
G be a good q-inverse for F . Then
a) the group homomorphism

F : HomR(A,B) → HomS(F (A), F (B))

is a q-isomorphism for all A,B ∈ Mod-R;
a′) the group homomorphism

G : HomS(X,Y ) → HomR(G(X), G(Y ))

is a q-isomorphism for all X,Y ∈ Mod-S;
b) If X ∈ Mod-S, then there exists A ∈ Mod-R such that F (A) and X are q-iso-
morphic.
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���������
. a), a′) Let f : A→ B be an R-homomorphism such that F (f) = 0. We

obtain that GF (f) = 0 and the commutative diagram

A //f
B

GF (A)

OO

ϕA

//GF (f)
GF (B),

OO

ϕ′B

shows that Im(ϕA) ⊆ Ker(f). It follows that Im(f) ∼= A/Ker(f) is a homomorphic
image of A/ Im(ϕA), hence nA Ker(F ) = 0.
Analogously, it follows that Ker(G) is bounded by mY .

If g ∈ HomS(F (A), F (B)) and h = ϕBG(g)ϕ′A, we obtain the commutative dia-
gram

A //h
B

GF (A)

OO

ϕA

//G(nAg)
GF (B)

OO

ϕB

and it follows that ϕBG(nAg) = ϕBGF (h), hence we have nBG(nAg) = nBG(F (h)).
Because the kernel of G is bounded by mF (B) we find

mF (B)nAnBg = F (mF (B)nBh)

and this shows that F is q-epic.
The proof of the fact that G is a q-epimorphism is analogous. We obtain that for

every f : G(X) → G(Y ) there exists h = ψ′
Y F (f)ϕX such that

nG(X)mXmY f = G(nG(X)mXh).

The definition of good q-equivalences ensures that b) is valid. �

Proposition 3.4. Let F : Mod-R � Mod-S : G be a pair of functors such that
F is a good q-equivalence and G is a good q-inverse for F .
a) For every family (Xi)i∈I of right S-modules, the canonical monomorphism

γ :
⊕

i∈I

G(Xi) → G
(⊕

i∈I

Xi

)

is a q-isomorphism.
b) If M is a right R-module and I is a set, then the canonical monomorphism

γ : F (M)(I) → F (M (I)) is a q-isomorphism.
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���������
. a) It is enough to prove that every R-homomorphism f : G

(⊕
i∈I

Xi

)
→

M such that fγ = 0 represents the zero homomorphism in � [Σ−1]Mod-R.
Let f : G

(⊕
i∈I

Xi

)
→ M be an R-homomorphism with fγ = 0. Then fG(αi) = 0

for all i ∈ I (if i ∈ I , αi : Xi →
⊕
i∈I

Xi denotes the canonical injection). It follows

that ϕ′MfG(αi) : G(Xi) → G(F (M)) is the zero homomorphism. From the proof of

Proposition 3.3 it follows that there exists f ∈ HomS

(⊕
i∈I

Xi, F (M)
)
such that

nG( �
i∈I

Xi)m �
i∈I

Xi
mF (M)ϕ

′
Mf = G

(
nG( �

i∈I

Xi)m �
i∈I

Xi
f
)

and this implies that

G
(
nG( �

i∈I

Xi)m �
i∈I

Xi
fαi

)
= 0

for all i ∈ I . Using again Proposition 3.3 we obtain

mF (M)nG( �
i∈I

Xi)m �
i∈I

Xi
fαi = 0

for all i ∈ I . As the family (αi)i∈I is an epimorphic family, we have

mF (M)nG( �
i∈I

Xi)m �
i∈I

Xi
f = 0

and this shows that ϕ′Mf represents the zero homomorphism in � [Σ−1]Mod-R. As
ϕ′M is a q-isomorphism, it follows that f is zero in � [Σ−1]Mod-R and the proof is
complete.
In the same way b) follows. Remark that here we use the fact that for ev-

ery right R-module N the kernel of the homomorphism F : HomR(M,N) →
HomS(F (M), F (N)) is bounded by nM and we have the direct sum of I copies

of M . �

Corollary 3.5. If F : Mod-R � Mod-S : G is a pair of functors such that F is
a good q-equivalence and G is a good q-inverse for F , then F and G preserve the
q-generators.
���������

. Let X be a q-generator in Mod-S. IfM is a right R-module, then there
exists a set I and a q-epimorphism α : X (I) → F (M). If γ : G(X)(I) → G(X(I)) is
the canonical homomorphism, then ϕMG(α)γ : G(X)(I) → M is a q-epimorphism,
hence G preserves the q-generators. Similarly, we obtain that F preserves the q-gen-
erators. �
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Proposition 3.6. Let F : Mod-R � Mod-S : G be a pair of functors such that
F is a good q-equivalence and G is a good q-inverse for F . Then
a) the natural transformation

ϕ : HomS(−, F (−)) → HomR(G(−),−), ϕX,A(α) = ϕAG(α),

has the property that ϕX,A is a q-isomorphism for all A ∈ Mod-R and X ∈
Mod-S;

b) the natural transformation

ψ : HomS(F (−),−) → HomR(−, G(−)), ψA,X(β) = F (β)ψX

has the property that ψA,X is a q-isomorphism for all A ∈ Mod-R and X ∈
Mod-S.

���������
. If A ∈ Mod-R and X ∈ Mod-S, then the composition

HomS(X,F (A)) G→ HomR(G(X), G(F (A))
HomR(G(X),ϕA)→ HomR(G(X), A)

gives the homomorphism

ϕX,A : HomS(X,F (A)) → HomR(G(X), A),

hence ϕX,A is a q-isomorphism. �

Lemma 3.7. Let F1, F2 : Mod-R → Mod-S be functors and µ : F1 → F2 a

natural transformation. If A and B are right R-modules and f : A → B : g are
R-homomorphisms such that µA is an isomorphism and fg = n1B or gf = n1A,

then µB is a q-isomorphism.
���������

. Using the fact that µ is a natural transformation, we obtain

F2(f)µA = µBF1(f) and µAF1(g) = F2(g)µB .

It follows that

F1(f)µ−1
A F2(g)µB = n1F1(B) and µBF1(f)µ−1

A F2(g) = n1F2(B).

In the other case, the proof is similar. �

The next lemma is analogous to [4, Proposition 20.11].
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Lemma 3.8. Let P be a left S-module, U an S-R-bimodule and N a right

R-module. If P is Σ-almost finitely generated and Σ-almost projective then the
canonical homomorphism

µ : HomR(U,N)⊗S P → HomR(HomS(P,U), N), µ(α⊗ p)(β) = αβ(p)

is a q-isomorphism.
���������

. Because P is Σ-almost finitely generated and Σ-almost projective, there
exist an integer n ∈ Σ and S-homomorphisms f : Sk � P : g such that fg = n1P .
We obtain the commutative diagram

HomR(U,N)⊗S S
k

��

//
µ

Sk

HomR(HomS(Sk, U), N)

��
HomS(U,N)⊗S P

OO

//µP HomR(HomS(P,U), N)

OO

and, using [4, Proposition 20.11] and the previous lemma, we conclude µP is a q-iso-
morphism. �

In the same way we find an analogue of Proposition 20.10 in [4]:

Lemma 3.9. Let P be a right R-module, U an R-S-bimodule and N a right
S-module. If P is Σ-almost projective and Σ-almost finitely generated, then the
canonical homomorphism

ν : N ⊗S HomR(P,U) → HomR(P,N ⊗S U), ν(n⊗ α)(p) = n⊗ α(p)

is a q-isomorphism.

Theorem 3.10. If R and S are rings, then the following are equivalent:
a) There exists a functor F : Mod-R→ Mod-S which is a good q-equivalence.
b) There exists a right R-module P which is Σ-almost finitely generated, Σ-almost
projective, q-generator and there exists a unital ring homomorphism ϕ : S →
EndR(P ) such that the groups Ker(ϕ) and S/ Im(ϕ) are Σ-bounded.

c) There exist a right R-module P and a unital ring homomorphism

ϕ : S → EndR(P )

with Ker(ϕ) and S/ Im(ϕ) Σ-bounded groups such that

ϕ? HomR(P,−) : Mod-R→ Mod-S
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is a good q-equivalence with

(−⊗EndR(P ) P )ϕ? : Mod-S → Mod-R

a good q-inverse.
Under these conditions there exists a natural transformation

µ : F → ϕ? HomR(P,−)

such that µM is a q-isomorphism for all M ∈ Mod-R.
���������

. a) ⇒ b) If G is a good q-inverse for F , we denote P = G(S).
By virtue of [4, Lemma 20.3], ϕ = G : HomS(S, S) → HomR(P, P ) is a unital
ring homomorphism. We apply Proposition 3.3 and it follows that Ker(ϕ) and
Coker(ϕ) are Σ-bounded as abelian groups. Because an equivalence preserves the
projective objects, P is Σ-almost projective. Corollary 3.5 shows that P is a
q-generator. Moreover, we observe that F (R) is a q-generator, and it follows that
there exists an S-homomorphism α : F (R)n → S such that Coker(α) is Σ-bounded.
If δ is a q-inverse for the canonical q-isomorphism γ : F (R)n → F (Rn), then
αδ : F (Rn) → S is a q-epimorphism. It follows that G(αδ) : GF (Rn) → G(S)
is a q-epimorphism (qG is a equivalence, hence it preserves the epimorphisms).
G(αδ)ϕ′Rn : Rn → G(S) is a q-epimorphism, hence P = G(S) is Σ-almost finitely
generated.

b) ⇒ c) Let X ∈ Mod-EndR(P ). Then Lemma 3.9 shows that there exist q-iso-
morphisms

X → X ⊗EndR(P ) HomR(P, P ) → HomR(P,X ⊗EndR(P ) P )

which are natural in X .

Recall that if B = HomEndR(P )(P, P ) is the biendomorphism ring of P and
ϑ : R→ B is the canonical ring homomorphism then Ker(ϑ) and Coker(ϑ) are Σ-
bounded groups (Proposition 2.4). Using Lemma 3.8, we obtain the q-isomorphisms

HomR(P,A) ⊗EndR(P ) P → HomR(HomEndR(P )(P, P ), A) → A

which are natural in A and it follows that

HomR(P,−) : Mod-R→ Mod-EndR(P )

is a good q-equivalence with −⊗EndR
P a good q-inverse. Under these conditions

ϕ? HomR(P,−) : Mod-R→ Mod-S

is a good q-equivalence and (−⊗EndR
P )ϕ? is a good q-inverse.
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c) ⇒ a) is obvious.
The last statement follows from the fact that the arrows

F (M) → HomS(S, F (M)) → HomR(G(S),M) = ϕ? HomR(G(S),M)

are q-isomorphisms natural in M . �

Remark 3.11. In the case Σ = {1}, the theorem is the classical Morita Theorem.
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