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Abstract. Regularity results for elliptic systems of second order quasilinear PDEs with
nonlinear growth of order ¢ > 2 are proved, extending results of [7] and [10]. In particular
Holder regularity of the solutions is obtained if the dimension n is less than or equal to
q+2.
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1. INTRODUCTION

Let Q2 be a boundend open set in R™, n > 2, N > 1 an integer, u = (u1,ua, ..., un)
a vector function of RY and Du = (Dju,Dou,...,D,u). We denote by p =
(ph,...,p"), with p* € RV | a typical vector of R™V. Let ¢ be a real number > 2. For
every p € R*, k > 1, we set

(1.1) V(p)= (1 +]p|*)* and W(p) = VT (p)p.

Let a’(z,p), i = 1,2,...,n, be vectors of R defined on 2 x R of class C! in p
and uniformly continuous in x in the following sense: for every z, y € Q and p € R*Y

(12) D A LA DR

where w(t), with ¢ > 0, is a bounded, nondecreasing function, converging to zero
ast — 0.
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The derivatives da’/9dp], are measurable in = and continuous in p.

Suppose that

(1.3) a'(x,0) =0, Vazel
Setting
Oat (z,p
(1.4) A?jk(xvp) = %7 Aij = {A?jk )
Dy,
1
(15) Ao = [ At
0

we suppose that, Vz € Q, Vp € R*Y and V& € RV,

(16) (S s} <ave2p)
(1.7) > (Aij (@, p)e 1) = vV 2 )€1,

ij

where M and v are positive constants.
By virtue of the hypothesis (1.3)

ai(xvp) = Zx‘i”(x,p)p],
J

and then, by the condition (1.6),

(1.8) ja’ (z, p)I| < MV (p) pl-

Moreover let FO(x,u,p) and Fi(x,u), i = 1,...,n, be vectors of RV, defined, respec-
tively, in Q x RN x R™ and in Q x RV, measurable in z, continuous in v and p, and
such that

(1.9) |17 (@, u, p)

I < [fo(@)] + ()] [ull + le(@)] 2]
(1.10) 1F* (, u)|

<|
<|fi@)] + la(@)[ full, i=1,2,...,n
with a(z),b(x), c(z) € L>(Q),

(1.11) filz) e LeTT1(Q), i=1,...,n,
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where 0 < pu(q—1)7t < A\

(1.12) folx) € LT (Q),

1

where, for n > ¢, r = n(n(q — 1) + ¢)~! and for n = ¢, ¢gr is a number € (1,¢).2 In

the present paper, let u € H9(Q, RY) be a solution of the Dirichlet problem

u—ge H&’q(ﬂ, RN),
(1.13)

ST Dia'(z, Du) = Y DiFi(x,u) — F°(x,u, Du) in Q.

We will study the regularity of the vectors u and Du in the spaces L?#(2) and, in
particular, under a suitable limitation on n (n < ¢ + 2), the Holder continuity in
of the solution u.

For this purpose we will suppose that 9 is of class C?.

We will prove the following regularity theorem.

Theorem 1.1. Ifu € H'9(Q) is a solution of the Dirichlet problem (1.13), 9% is
of class C?, g € Hl’q’(q%l)(Q), 0<u(g—1)"t <\ and F°, F' i =1,...,n, satisfy
the conditions (1.9)—(1.12), then

Du € L7-1(Q)

and

2
po S
IW DI 2 ey ) < K

)

where, if u < nqg — 2n + q,

(1.14) K= Il . i + |1 Dull Fafq) + ol ™, e

L7 () T ()

W (Dg)|/? 1 n ,
+[W( g)lle,q+1(Q Il fo H T (@)

whereas, if 1 > ng — 2n + q,

(1.15) K= ZHJ‘ZH 7T (@ +HDU||" lnq 24 +llgll ™) 1q<—1>(9)

W(Dg)||? T N )
+[[W( g)IILz,ﬁ(Q + [ foll L T ()

! X is the exponent which occurs in the fundamental estimate (3.2).
2 For the notations see Section 2.

819



. . u
In particular, if n — q < 1 < A, we have

— . -1 —u
we COOQRY) with a—1- MUk
( ) alqg—1)
and
[U]Z,ﬁ <cK

where K is given by (1.14) if u < ng — 2n + g, and by (1.15) if p > ng — 2n +q.

Theorem 1.1 was already proved in [7] in the case of nonlinearity ¢ = 2. The
present paper improves the result of [7] to the case ¢ > 2.

Moreover, regularity results for elliptic systems with arbitrary order equations
have been considered by Widman (see [10]), who established, under less restrictive
assumptions, the Holder continuity of solutions if n < g+ ¢ with exponent 1 — % + %,
less than the one of Theorem 1.1, because € is only greater than zero. The Widman
result allows to obtain Holder regularity only for n < ¢, whereas in our case we
obtain n < ¢ + 2 (in particular n < 4). In a different context, J. Serrin obtained
in [9] regularity results for the solutions of semilinear equations, in the case ¢ > 2.

Theorem 1.1 can be extended to the case of right-hand side with more general
growth conditions and to the case of principal part coefficients depending on u.

It is well known that general Holder continuity results can not hold, as the exam-
ples [6] and [8] show.

2. PRELIMINARY RESULTS AND NOTATIONS
We define
(2.1) B(z% 0) = {z: ||z — 2% < o};
moreover, if 29 =0,

(2.2) BT (2°,0) = {z € B(2°,0): z, > 0},

(2.3) (2", 0) = {x € B(z°,0): z, = 0}.

We will simply write BT (¢), I'(o) and T instead of BT(0,0), I'(0,0) and I'(0,1),
respectively.

Troughout the present paper, €2 will denote a bounded open set in R™ with diam-
eter do and with 99 of class C2.
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If u € L'(B) and B is a measurable set with meas B # 0, then

(2.4) up = ]/Bu(ac)dx = onsB
If uw € L*°(Q), we define
(2.5) ulloc.0 = ess sup f[u()l].
If u e C%*(Q), 0 < a< 1, we set
[u(z) = u)

(2.6) g = sup
2 ayea o —yle
and we will say that u € C*(Q) if u € C%*(K) for every compact subset K C .
Ifue L2 (), 0 < p < n,oru € LP(Q), 0 < pu < n+ g, we define, as usual

(see [1])

(2.7) ey =500 [ futa)r s,
Q(z0,0)
(2.8) (s =50 | o )~ a7

where Q(2°,0) = QN B(2°,0) and the supremum is taken over all the 2° €  and
the o € (0,diam Q).

We say that v € HY¢1(Q), 0 < pu < n, if u € HY4(Q) and Du € L9*(), and
we define

(2.9) [ull grao @) = lullpan@) + [[Dullpang)-
We recall that, if 0 < g < n, then
G e LT(Q) & W(G) € L**(Q)
and the following inequality holds
(210) G sy < WOy < Iy (L + Gl o).
Lemma 2.1. There exists a positive constant c(q) such that, for all p, p € R¥,

(2.11) W@+ IWEI < 2Wlpll + [IPI) < c(@{W @I + WD)}

(See [3, Lemma 2.1, p. 122]).
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Lemma 2.2. If 4 > —1 there exist positive constants c¢(u) and C(u) such that,
for every two vectors a, b in RY , we have

(2.12)  e(p)(X + flaf +[lol)" < /O (14 fla+tb])* dt < C(p) (1 + fla]| + [|b])"-

(See [3, Lemma 2.IT, p. 123]).

Lemma 2.3. Let A and C be bouded and open sets in R"™ and T be a mapping
of class C', together with its inverse, from A into C. Let A* be an open set CC A
and C* = 7(A*). Then, Vq > 1 and Vu € [0,n), the mapping ¢: v — uoT is a
linear and continuous one together with its inverse, from L9*(C*) into LT*(A*) and
from HY%()(C*) into HH% () (A*).

(See [3, Lemma 2.IV and 2.V, p. 123]).

Lemma 2.4. Let ¢(t) and o(t) be nonnegative functions defined in (0,d]. Sup-
pose that %in}) o(t) =0 and Vo € (0,d], Vt € (0,1),

p(to) < {At* +o(0) }p(o) + Ko

with 0 < y < A, A >0, and K > 0; then for all ¢ < X\ — u there is a 0. < d such
that, if 0 < o < 0. and t € (0,1),

o(to) < (14 A)t*p(o) + KM (to)*
where M = M (A, e, \, p).
(See [3, Lemma 2.VII, p. 125]).
3. INTERIOR LOCAL REGULARITY RESULTS
Theorem 3.1. Ifu € HY9(Q), q > 2, is a solution of the basic system

(3.1) > Dia'(Du)=0 in Q,

under the conditions (1.3), (1.6) and (1.7), then for every ball B(c) = B(z°,0) CC Q
and Vt € (0,1),

(3.2) / |W (Du)||? dz gctk/ |W (Du)||? dz
B(to) B(o)
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where A = min{2 + e,n}, ¢ = (v, M,n) is a suitable number 0 < ¢ < 1 (whose
existence is ensured by [2, Theorem 8.1, p. 90]) and the constant ¢ does not depend

ont, o, 2.

(See [3, Theorem 3.1, p. 128]).

Theorem 3.2. Ifu € H%9(Q), with ¢ > 2, is a solution of the basic system (3.1),
under the hypotheses (1.3), (1.6) and (1.7), and if

(3.3) 2<n<qg+2,

then, for every ball B(c) = B(z°,0) CC Q and Vt € (0,1),

(3.4) / ul| dz < ct"{/ Hqudx—I—oq/ W(Du)||2dx}
B(to) B(o) B(o)

where the constant ¢ does not depend on z°, t, and o.
(See [3, Theorem LII, p. 121]).

For the implications which the fundamental estimate (3.4) has in the case ¢ = 2
see [4] and [5]. In the case ¢ > 2, the inequality (3.4) has analogous implications,
but we will not deal with this question in this paper.

Let u € HY9(Q2) be a solution of the Dirichlet problem

u—g GH&’(I(Q),
S D;a(x,Du) = >. D;F' — F° in Q

where the vectors a'(x, p) satisfy the assumptions (1.2), (1.3), (1.6) and (1.7). Set
w=u-—g.
The vector w € Hy'?(Q) is a solution of the system
(3.5) > Did'(z,Dw+ Dg) = Y D;F'(z,w+ g)
— F°(z,w +g,Dw+ Dg) in Q
in the following sense
(3.6) /QZ(ai(a:,Dw + Dg)/D;p) dx = /QZ(Fi/Dm) dz + /Q FO/pdx
Ve Hy'(Q).

For the vector w we want to prove the following interior local regularity result.
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Theorem 3.3. If w € Hy%(Q) is a solution of the system (3.5), under the
assumptions (1.2), (1.3), (1.6) and (1.7), if the vectors FY, F', i = 1,...,n, satisfy
the conditions (1.9), (1.10), (1.11) and (1.12), and if

(3.7) ge HY @D @), o< Ll <

then, for every open set * CC (), we have
(3.8) Dw € LT77(Q%),

and the estimate
(3.9) WO, <c{ / W(Dw>||2dx+M}
* Q

holds, where, if i < nq — 2n + q, the constant ¢ depends also on d = dist(Q2*, 9Q)
and

a— 1
310 M= DA ey g+ 10Tl + 101 e

+ ||[W (D 22 3 + 1 % ’
W ( 9)||L 1 (@) HfOH ey =il na—DFa (Q)

whereas, if 1 > nq—2n+q, denoting by 2** an open set such that Q* CC Q** CC Q,
the constant ¢ depends also on d* = dist(Q*, 9Q**) and

3.11 M = 1. +[[Dw||* g _2niq +
(311) Sy gy DI e+ 190

W(D|?, . )
+ W g)IILz,ﬁ(Q)+||fo\\L7(q Sy T o)

Proof. From this moment and where it is necessary, for the sake of simplicity,
weset ¢’ =q(¢—1)7", ¢" =ng(n(qg—1) +¢)" and ¢* =ng(n —q)~".

We prove this theorem in the case n > g; the proof needs only small modifications
in the case n = q.

Fix a ball B(o) = B(2°,0) with 7o € Q* and o < d.

In B(o) we decompose w as v — z, where z is a solution of the Dirichlet problem

z e HyY(B(0)),

(3.12) Z D;a’(2°, Dz + Dw + Dg)

= ZD [a*(z, Dw + Dg) — F'] + F° in B(o)
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while v € H14(B(0)) is a solution of the system

(3.13) > Dia'(z°,Dv+Dg) =0 in B(o).

(3.12) means that V¢ € Hy'Y(B(0)),
(3.14) / Z(ai(aco, Dz + Dw + Dg) — a'(2°, Dw + Dg)/D;y) dz
B(o)
= / Z(ai(x, Dw + Dg) — a'(2°, Dw + Dg)/D;yp) da
B(o)

7/ Z(Fi/Digp)dxf/ F°/pda.
B(e) B(o)

Assuming ¢ = z, setting
1
0

and taking into account the ellipticity condition (1.7) and Lemma 2.2, we obtain
from the previous inequalities that

(3.15) C/B( )(1 +[|Dwl| + |Dg]| + [ Dz[))*~?|| D[|* dz
< [ Y laite. D+ Dg) - a'(a”. Du + Dg)|[D2] o
B(o)
+/ Z||Fi|| ||Diz|\d:c+/ IFO ||z dz = A+ B + C.
B(o) B(o)
On the other hand, by the hypothesis (1.2) we have: Ve > 0
(3.16) A= / Z |a‘(z, Dw + Dg) — a'(x°, Dw + Dg)|| || Dz|| dz
B(o)
<aulo) [ VI(Dw+ Dg)|Du + Dyl D2 do
B(o)
< 6/ V% 2(Dw + Dg)||Dz|*dx
B(o)
+cw2(o)/ |W (Dw + Dg)|* d.
B(o)
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Now, by means of the conditions (1.9), (1.10), (1.11), (1.12) and (3.7), we have

(3.17) / 1l 1Dzl do < e / |Dz]9da + / 119 de
B(o) Z B(o) B(o) Z

<€/ Dz|tde + o Y NI, w0

(3.18) / ||lw| || Dz]| dz < 5/ |Dz||9 dx + c/ Hw||ql dz
B(o) B(o) B(o)

vq—2n+gq

q nT q/ .
</ D2l o™

1) [ lglIDs) e
B(o)
<cf pefrdsse | gl da
B(o) B(o)

< 5/ |IDz||?dx 4+ com T (/ ||g|qd:1c> )
B(o) B(o)

<e / D24 de + co™ i @D ||g| ¢
B(o) L* 7T (B(0))

From (3.17), (3.18) and (3.19) we have,

G2y B= [ SIFIIDsldr<e [ Dt
B(o) B(o)

ng—2n+gq

+C(Jq_12|fi|iq%&<3<a>>+a T 1l s

—2
ot gL ).
L" 7T (B(0))

1
7

In the same way, if we denote by ¢* the Sobolev-Poincaré exponent, we have
L*
* a 7 q”
2 [ el ([ s an) ([ e a)
B(o) B(o) B(o)
1

1
<(/ ||Dz||qda:) (/ ||f°||q”dx)"
B(o) B(o)

gs/ |Dz||* dz + co 7T || f°)|7
B(o)

ngq m n ;
Ln(@a—1)+q’" n(qg—1)+q (B(g—))
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1

e ||w|||z||dx<(/ d) (/ o]l dx)
B(o) B(o) B(o)

<c(/ |Dz|qu>q</ G d:c)
B(o) B(o)

/
q
T

<cf ||Dz||de+c(/ |w||q”dw)"
B(o) B(a’)

<</ e R el AP

1
aF p a7
) [ ||g|||z||da:<(/ )(/ gl dx)
B(o) B(o) B(o)
1
<(/ ||Dz||qu) (/ |g||q”da:)q
B(o) B(o)
% q
<o wpsrare( ([l ar)”)
B(o) B(o)

1

<s/ ||Dz||de+c((/ llgll¥ dx) Unqin,+q)q
B(o) B(0))

1

<cf |Dz|qu+c[mn”g|q .
B(o K

o_nq—2n+q:| -
Lt *I(B( )

L"TT (B(o ))

1 1
24 [ |ul ||z||d:c<( / |Dw|q”da:)q ( / ||z|q*dx)q
B(o) B(o) B(o)
% q
ée/ ||Dz||qu+c{</ HDqu da:) ]
B(o) B(o)
ng—2n4q ’
<e [Dz||*dz + co =1 [ Dwl[ 74 (o)
B(o)

29 [ eipalias< ([ 1o an) ([ ol ao)
B(o) B(o) B(o)

<5/ Dz|qd:1c+c( | Dgl|” dx)
B(o)

<5/ |Dz|qu+c{ na- 2"+q |Dg|qc1xr
B(o) )

S €/B< 1Dz de + co CEARRE S
o

a7

<< Dz|de+c[a<q R ]
o L= 1(B( )
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From (3.21)—(3.25) we have

(3.26) C = / 1FO[|2] da
B(o)

< 6/ 1Dz dz + comT|| foll g
B(o) "

L7 0Fa H 7D (B(o))

S L na—2n+q
[CESYES -1 a
+eo ot H’LU||qu (B(o)) T €O i =l LYTT (B(o))
ng—2n+gq 4 +E q
+ o T Du ¢ + o7 Dy '
D] 50 Dl = (5o

From (3.16), (3.20) and (3.26) it follows that
(3.27) c/ (1+ [ Dl + | Dgll + | D=])*2] D=|2de < A+ B+ C
B(o)
<c Vq_2(Dw+Dg)||Dz||2dx+s/ D] da

B(o)

(o) [ WD D) Pas

B(o)

u , ng—2n+gq 4
AR DL IS S U )
1

—2

+ o@D T g7,
LY -1 (B(0))
+eom T foll ¢

ng " n
Ln(a—1)+q " n(g—1)+q

(B(2))

ng—2n+gq !
+eom T [ Dwl| e g
+
+ o - [ A qHDg”qlq,L J
LT (B(0))

and, consequently,
(3.28) / W (D2)] da
B()

< c{ﬁ(g)/( )||W(Dw+Dg)II2dfr
B(o

ng—2n-+q
+0“Z|\le\q ey (o

—Hatni=t ¢
o@Dz T ot i
Hgll (B( ) HfOH W *nla=D+4d (B(0))

ng—2n+gq

[CERERE et ¢
+o0 a1 ||D’LU||Lq (Boy ol g”quﬁ(B(a))}'
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As for the vector (v + g), it is a solution of the basic system (3.13), for and so the
fundamental estimate (3.2) of Theorem 3.1 holds: V¢t € (0,1),

[ wes Dg)Pas < et [ WD+ Dyl das
B(to) B(o)
hence (see Lemma 2.1)

(3.29) / W (D)2 de < ct’\/ HW(DU)||2d:E+c/ W (Dg)|2 da.
B(to) B(o) B(o)

As w = v — z in B(0), taking into account Lemma 2.1 it follows from (3.28) and
(3.29) that V¢ € (0,1),

(3.30) W (Dw)||* dz < ¢ (W (Do)[|* + [W(D2)[|*) dz
B(to)

B(to)
<ot / W (Dw)|? dz + ¢ / W (Dg)|? da
B(o) B(o)
vef WD) da
B(o)
< o + w?(0)) / W (Duw)|? da
B(o)
+c(aﬁ|w<Dg>||2 |

K
L>a-1(Q)

_n ’ ng—2n+q ’
+oa-1 ZHfinngqil @ +0 a1 HwH%QwQ(SZ)

oz tne ( q Dall? )
ot 191, e+ 1087, e

+ o 1||f0|‘q7 __n_
—D+q M nlg-D+q (Q)

ng—2n+q ’
+ o P Dullf )

< c(t/\—I—wz(o))/B( )|\W(Dw)||2d:c

A nmg—2nig
+coa-1 a—1

where

(331 M= IR, e+l

AaeDFa Mo DTa @)

q q 2
Ny HDwnLq(m FIW DI, e, o
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From Lemma 2.4 and (3.30) it follows that Ve < A\ — (q“ A %) Jo. < dsuch
that Vo < 0. and Vt € (0,1),

ng— +q

(3.32) / W (Dw)|2 dz < (14 )taTA "5 / W (Dw)|2 da
B(to) B(o)

A ng—2n+gq

+ eM(to)T TN

where the constant ¢ does not depend on M. This implies that, Vo < o,
(3.33) / W (Dw)||? da
B(o)
—2n4q (e nq 2

< co TN { (G A= / |W (Dw)||? dx+./\/l}
and, consequently,
(3.34) ||V[/(Dw)||22 & ng—2ntg < c{/ |W(Dw)||2dx+/\/l}.

L7a=to o=l (QF) Q

Thus if 4 < ng — 2n + g, the theorem is proved.
If u > ng—2n+ q we fix Q* CC Q** CcC Q. From (3.30), taking into account [2,
Lemma 3.ITI, p. 23], and Lemma 2.1, we have

nqg—2n+q
q—1

(3.35) W (Dw) € L* (Q™),
Dw € LY™ 7T (Q),

q +nq 2n o

(€).

we LY

From these data, repeating the same arguments as above, we see that Vt € (0,1)
and Vo € (0,d*) (where d* = dist(Q*, 92**))

/ IW(Dw)|P dx < e(t + (o)) / W (Dw)|? da
B(to) B(o)

T ||W(Dg)||? I A
+ (WD ) + 07 SISy e g,

a?(n+1)—2nqg ’ a®(n+2)—2nq—q ’
to @l b to @Ol e
quf(g**) Lq’qfl(ﬂ**)
( 1)2+ q— 1 a 1
T Iy TN

a?(n+1)—2nqg

’
to @7 Dwll? iz, )
L0 T ()

a?(n+1)—2ng

o+ 20) [ WD e+ oo T
B(o)
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where

’ ’
M= ZHfi”qquL +HDw||q ng—2n+gq
r L a-1(Q) LY a1 (%)

q q 2
+||fo||L ng : +||9||H1,q, i Q)+|\W(D9)IIL2,

7 .
nle—D+a *nla-D+a (Q) =T ( -1(Q)

Now, by virtue of (3.3), since ‘12(7&# >n>\> ﬁ, Theorem 3.3 is completely

proved. O

Theorem 3.4. Ifw € Hy%(2) is a solution of the Dirichlet problem

(3.36) Z D;a'(z, Dw + Dg) = Z D;Fi(z,w + g)
— F%(x,w + g,Dw + Dg) in Q,

under the assumptions (1.3), (1.6) and (1.7), if the vectors F°, F', i = 1,...,n
satisfy conditions (1.9)—(1.12), and if g € H>*(@"1)(Q), 0 < 745 < A, then we have
the following estimate

(3.37) /Q |W (Dw)||* dz < eM

where M is given by (3.10) if u < ng — 2n+ ¢, and by (3.11) if u > ng — 2n + q.

Proof. (3.36) means that Vo € Hy9(Q),
(3.38) / Z(ai(x, Duw + Dg) — a'(x, Dg)/D;p) dx
@y
— [ S - a0 Do) Dig) s~ [ B/
Q% Q
Take ¢ = w in (3.38). Setting
1
Bij = / A;;j(z, Dg + tDw) dt,
0

repeating the same arguments as in Theorem 3.3 in order to obtain (3.15), and taking
into account the ellipticity condition (1.7) and Lemma 2.2, we obtain

(3.39) c/ (1+ || Dg|l + ||DwH)q_2HDwH2dx </ g (Bi;jDjw/D;w) dz.
Q Q.
ij
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By the condition (1.8) we have
310) [ Sl Dol IDular <= [ Vi Dg)Dul? dz
Q% Q
+c/ |W(Dg)||? d.
Q

Now, by virtue of the conditions (1.9)—(1.12), from (3.17)—(3.25), where z and Dz are
replaced with w and Dw, and from (3.40), we obtain

/ |W (Dw)||* dz < eM
Q

where, if u < ng— 2n+ g, M is given by (3.10), whereas if u > ng — 2n + ¢, taking

into account (3.35), CalM is given by (3.11). O
4. REGULARITY AT THE BOUNDARY

Let a'(x,p) be vectors of N, defined in A* = B*(1) x R"™, of class C! in p

and F°(x,u,p), F'(x,u), i = 1,2,...,n, be vectors of RN defined, respectively, in
BT(1) x RV x R*™ and B*(1) x R, measurable in z, continuous in u and p.

Theorem 4.1. Ifu e HY9(B%(1)), ¢ > 2, is a solution of the problem

u=0 onT

S D;a'(Du) =0 in B*(1),
(4.1) { i

under the hypotheses (1.3), (1.6) and (1.7), where Q is replaced by B*(1), then,
Vo< 1andVte(0,1),

(4.2) / W (D)2 da <ct/\/ W (Du)||2 de
B+t (to) B+t (o)

where the constant ¢ does not depend on t, o and A = min{2+¢,n} (withe # n—2).
(See [3, Theorem 6.11, p. 141]).

The fundamental estimate (4.2) enables us to obtain the following boundary local
regularity theorem:
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Theorem 4.2. Ifw € H“(B*(1)) is a solution of the problem

w=0 onTl
(43) " D;a*(x, Dw+ Dg) = >. D;F* — F® in B*(1).

under the assumptions (1.2), (1.3), (1.6) and (1.7),% if the vectors F°, F* i =
1,2,...,n, satisfy the conditions (1.9), (1.10), (1.11) and (1.12), and if

(4.4) ge HH @ (BT(1)), 0< Ll <

then, for every R < 1, we have

(4.5) Dw € L7 7 (B (R))

and the estimate

4.6 W (Dw)||* gc{/ W (Dw 2dx+./\/l’}
(4.6) W (Dw)] 1 (54 (R) ) W (Dw)|

holds, where, if u < nq — 2n + q, the constant ¢ depends also on d =1 — R and

TT(B+(1))

(47) = WD, s+ A,

+ HfoH + [1Dwl| 70+ (1))

“hTe # =D 7(B+(1))

+1lgll? :
Hg”Hl’q'(q%l)(B+(1))

whereas, if 1 > nq — 2n + q, denoting by R* a number such that 0 < R < R* < 1,
the constant ¢ depends also on d* = R* — R and

4. /: D 2 I 7
(@8 M =W g)IILz,ﬁ(B+(1))+Z\\f\\

T (B+(1)
+11foll* e m o 22
Ln(a—1)+q 1)+q n(e=D+aq (B+(1)) LY q—1 (BT (R*))

+llgll® .
Hg||H1’q'(q+1>(B+(1))

Proof. In this proof, as we will see, we argue as in Theorem 3.3, but with
suitable modifications.

3In the assumptions (1.2), (1.3), (1.6), (1.7), (1.9), (1.10), (1.11) and (1.12), Q is replaced
by BT (1).
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Fix R, 0 < R < 1. In any hemisfere B (2°,0), with 0 < 1 — R and 2° € T'(R),
we write w = v — z, where z is a solution of the Dirichlet problem

z e Hy(BT (22, 0)),
(4.9) zl: D;a’(2°, Dz + Dw + Dg)

=Y Di[a(x, Dw + Dg) — F']+ F° in BT (a2, 0),

whereas v € H4(BT(2°,0)) is a solution of the problem

v=0 on ['(z*,0),
(4.10) {

> D;a'(x°, Dv+ Dg) =0 in Bt (2°,0).

Arguing as in the proof of Theorem 3.3 in order to obtain (3.28), we get the following
estimate for the vector z

(4.11) / |W(Dz)||? dz
B+ (x9,0)

<@ [ wwerpgPa
B+ (z9,0)

u nqg—2n+gq
+oq*1Z|\f1H L7 AT (B (a0, >>+0 Tl 0.0

ng— 2n+ q
+o ! HwHqu (B+(29,0)) + o T ||Dw||Lq(B+ £0,0))

=2
+ o (a- 1)2 q 7
||gH 1(B+(r°,cr))

ot ||Dg||L
1 (Bt (2% 0))

+o- lllfol\q

“hFat W(B+(w0,o—))}'

For the vector v, we have the following estimate (see [3, Appendix 2, p. 148]): Vt €
(0,1) and Ve > 0,

(4.12) / |W (Dv)]||? dz
Bt (z9,to)

gctkfe/ W(Dv)||2dz + c(e)o 7T |W(Dg)|?
BHI%)H (Do) (o= [W(Dg)II" . 21 (541’
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Asw =v—zin BT (2°,0), by virtue of Lemma 2.1, from (4.11) and (4.12) it follows
that: V¢ € (0,1) and Ve > 0,

(4.13) / |W (Dw)]||? d=
Bt (z29,to)

< c/ W (Dv) |2 d + c/ W (D)2 da
Bt (29,to) Bt (z9,to)

AP Pe) [ WD) de o A

B+(x0,0)

where w? (o) tends to zero with o and

= DAy e, IO

q q 2
1 vy I ey + IV DOy

q
Ln (q 1)+q n(g—1)+gq (B+(1))

After this inequality, with the same procedure as in Theorem 3.3, we see that Vo <
(A —e) — (%45 A M22+) 30, < 1 — R such that Vo < 0, and Vi € (0,1)

/ W (Dw)|? de < (1 4 >~ 9/ W (Dw)|2 dz
B+ (20 t0) BH+(1)
/\nq*2n+q

+ cM/(tJ)q%l et

and, consequently, Vo < o,

(4.14) / |W (Dw)]||? d=
Bt (29,0)

2] /\nq2n+q{ —(qﬁl/\"q 2n+q

<com1" T T o, )/ ||W(Dw)||2d:17+./\/l/}.
B¥(1)

Now we consider the case z° € BT(R) with 22 > 0.
Fixing o, 0 < 0 < %og, we distinguish two cases: if 22 < o, then

B(2°,0) N B*(R) c B (2°,20)

where 20 = (29,...,2%_,,0) and so, by virtue of (4.1), we have the estimate
1 »n—1

(4.15) / W(Dw)|? de < cod“t
B(z%,0)NBt+(R)

, 7(%1/\7111 En#»Q) 9
XS M' 40, " ? |W (Dw)||* dx ¢.
B*(1)

ARI=2n+q
a—1
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Otherwise, if 20 > o, then B(2°,0) is an interior ball of BT (1); thus, using the
interior regularity result, we have

[ W wP s < et
B(z%,0)
,(L/\"'Q*ZTL+Q) 5
XM +0, 7 / [W (Dw)||*dz ;.
B+(1)

In any case, if 0 < 0, and 2° € BT (R), we can assert that

A q 2n+q

Dw e L3t (B*(R)).

Now, if 4 < ng— 2n+ ¢ the theorem is proved, whereas, if u > ng — 2n + ¢, denoting
by R* a number such that 0 < R < R* < 1 and arguing as in Theorem 3.3, we have

W (Dw)2,,. <o{ [ wooPasmy
T (B (a0,0)) B+(1)
with
I D 2 2 q
M wv<gmﬁq%@ﬁu FX A, e,
+ Hfoll ng " 1D ysni
n(g—1)+q ¥ n(g—D+q (B+(1)) LY q¢1 (B+(R*))
q
+ HgHHl’q’(qi_l)(B+(1)).
Now Theorem 4.2 is completely proved. O

5. A GLOBAL REGULARITY RESULT

Let u € HY9(9, RY) be a solution of the Dirichlet problem

u—gé€ Hy!(QRY),
(5.1)

S>> Diat(x, Du) = . D;Fi(z,u) — F°(x,u, Du) in ©Q,

where 09 is of class C?, g € Hl’q"(q%l)(Q) and FO Fi i = 1,...,n satisfy the
assumptions (1.9), (1.10), (1.11) and (1.12). The vectors a‘(z,p) satisfy condi-
tions (1.2), (1.3), (1.6) and (1.7).

Assuming w = u — g, the problem (5.1) may be written in the equivalent form

{weanL

(52) > D;a'(x, Dw+ Dg) = > D;F* — F in Q.
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We remark that, since 95 is of class C2, if z° € 99, there is an open neighborhood B
of 2% and a mapping 7 of class C2, together with its inverse, such that B(0,1) = 7(B),
BT(1)=7(QNB) and ' = 7(0Q N B).

A solution w to the problem (5.2) satisfies, in particular, the system

(5.3) Z/ a'(x, Dw + Dg)D;yp) dx—Z/ (F'(z,w + g)/D;p) dz
QNB Qn
—|—/ FO2,w + g, Dw+ Dg)p dx V@EH&"J(QQB,RN).
onB

We set

)

(), -5

and, for all y € B(0,1) and p € R, we define

(5.4) ) = (FE) s Al = (52 5) )

qj(yap) = Zalj(y)pzv q= (q17q27"'7qn)7

Ar(y.p) = 3 a (77 (), a(y, p)Briy),

i=1

ZFZ (), w)Bni(y),

F(y.u.p) = P (o). q(y,p»m-

Clearly ¢' and A" are vectors of RV defined in B(0,1) x R*™V; F” are vectors of RY
defined in B(0,1) x RY and F° is a vector of RV defined in B(0,1) x RY x R*V;
moreover o;; and (; are functions of class C'(B(0,1)).

It is not difficult to deduce from (5.4) that also the vectors A"(y,p), F"(y,u),
FO(y,u, p) satisfy the same conditions as a’(x,p), Fi(x,u), F°(x,u,p) in which the
constants and the coefficients are multiplied by a suitable positive constant ¢(7) and
F?, F9 are replaced by F", F9. Then, setting

(5.5) a(y) = u(t7(y)) and so u(x) = a(r(x)),
w(y) =w(r™(y))  andso w(z)=1w(r(z)),
(y) =9(r"'(y)  andso g(z) = g(r(2)),
(y) =¢(r7'(y)  andso ¢(z) = @(r(2)),
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hence

(5.6) Z Dyt (7(x)) - Di (),
T) = Z Dpg(7(z)) - Ditn(x),
h=1

=Y Dug(r(x)) - Ditn (),
h=1

from (5.3), and taking into account (5.5) and (5.6) we get

> e, > an 0)(D,000) + D0 -
> a5, ()Ds00) + Dy(0) | 3 (i) D) ay
j=1 h=1

[ |Fetmam viw) ) 3 oumoie)]

B+(1) h=1

-/ [F%-l(y),w(y) #6003 a5 0)(D;000) + D).

Z @3, (D5) + Dy /o) 5= o

Hence w(y) is a solution of the problem
w(y) € HH(B*(1)),

(5.7) w=0 onT
> DAy, Do + D§) = > DpFh — FO in BH(1).
h h

It follows by Lemma 2.3 that, VR* < 1, § € H“*@1)(BT(R*)), W(Dj)
L*71(B*(R*)), and
19 .20 o ey S T )Ilgll 1) (rB)’
[W(Dg)ll

w < !
(e S IV )”Lz'ﬁ(mrﬂ

Then we may apply Theorem 4.2, obtaining VR, 0 < R < R* < 1, Dw
L9371 (BT (R)), and, since @ = i — §,

5.8 W(Dw)||? < / W(Da)||?d +M’}
(5.8) [ (U)IILQ,Q%(BHR)) c{ B+<1>H (Du)|* dx
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where, if u < ng—2n+gq,

= D iq/ n
=W (Dg)| LT (54 (R ;HfHLq'qfl(BﬂR*))
q/ R D~ q/
1ol n(q—(ll)#»Q’“n(Q*nl)#*q(B+(R*)) I ulqu(B+(R*))
+ 19 (i
H H (g 1>(B+(R*))

whereas, if 4 > ng — 2n + ¢, denoting by R** a number 0 < R < R** < R* < 1,

= WD), e, Zl\le\q

I (Bt (R*)) (Bt (R*))
+ Hf()”q ng m n + ||D’EL|| ng—2n+gq
Lnla=D+a ¥ nle=D+d (B+(R*)) LY a1 (B*(R**))
+[lgl®

K .
HY T (B (R))

Denote by B(R) the inverse image of B(0,R). It follows by Lemma 2.3 and
from (5.8) that

: Du)|? W (Du)||*d
69 IO <] [ WO H),
where, if u < ng—2n+q,

(5.10) M=y AL,

+ IIW(Dg)IIiQ,q Hfoll

+ ||DUHqu(Q) + Hgllzl,q,((ﬂ—l)(m

na- e =07 (@)

whereas, if 4 > ng — 2n + ¢, denoting by R** a number 0 < R < R** < R* < 1,

5.11) M = g +1Dul? s +lg)?
( S U g I, s N

WD, ey o F I g
Since 02 is compact, only a finite number of neighborhoods B, said By, Bo, . .., B,
is needed to cover 0f2. For each B;, we can suppose that R is close enough to 1 such
that Bi(R), ..., Bmn(R) still cover 0f2.
Then there exists an open set Q* CC Q such that Q*, Bi(R),...,Bn(R) cover Q.
Theorem 3.3 and the estimate (3.9), with w = u — g, may be applied to the open
set (0*. Then we obtain

(5.12) WD, w < 0{/QIIW(DU)II2dx+ﬁ},

T(Q%)
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where, if u < ng —2n + q, M is given by the right-hand side of (5.10), whereas, if
> ng — 2n + ¢, denoting by Q** an open set such that Q* Ccc Q** cc Q,

513) M= 7 Dul|” ¢
(5:13) M ;HLHLQ,%(QﬁH Ul o A

+ W (D),

+ [ foll* __ng n ~
) L

K
—-1(Q n(a—1+q *nla—D+q (Q)

Finally, by virtue of the estimate (3.37), with w = u — g, and bearing in mind that
the inequality (5.9) holds for each

QNB;(R), j=1,...,m,

we may conclude that
W(Du) € L*77(Q),

and the following inequality is true

(5.14) |W (Du) < ek,

2

”Lz’q%l(ﬂ)
where, if 4 < ng —2n + ¢, K is given by the right-hand side of (5.10), whereas,
if 4 > ng — 2n + ¢, denoting by 2** an open set such that Q* CC Q** CC Q,
by R** a number 0 < R < R*™ < R* < 1, and supposing, as it is possible, that 2**,

Bi(R™),..., By (R*) still cover (,

5.15 K= A ¢ W(Dg)|?
(5.15) ;HfHLq,qu(Q)ﬂLHgIIHl,q,qj(m+|| (DIl

TT(Q)

’
ol

’
q
e + HDU’H ng—2n+gq
n(g—1)+q ' n(qg—1)+q () LY q—1 O

Now, from (5.14), if n — ¢ < u(qg — 1)~ < X and Q is of class C?, we see that

ng-—1)—p

5.16 uwe COQ,RY) with a=1-— ,
(5.16) ( ) q(g—1)

and it follows the estimate

[uls o <c@IW DU, u <K

oz,ﬁ = ’q—_l(Q) =

where K is given by the right-hand side of (5.10) if 4 < ng—2n+¢ and holds by (5.15)
if u>ng—2n+gq.
Thus Theorem 1.1 is completely proved. O
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