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Abstract. Let (A,T ) be a locally A-pseudoconvex algebra over � or � . We define a
new topology m(T ) on A which is the weakest among all m-pseudoconvex topologies on A
stronger than T . We describe a family of non-homogeneous seminorms on A which defines
the topology m(T ).
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1. Introduction

Let A be a locally A-pseudoconvex algebra. This means that A is an associative al-
gebra over � (where � is either the field � of complex numbers or � of real numbers)
equipped with a topology T given by a base {Uλ : λ ∈ Λ} of neighbourhoods of zero
in which each Uλ is A-pseudoconvex. So for all λ ∈ Λ, Uλ is balanced, pseudoconvex

(i.e. for each λ ∈ Λ there is a number rλ ∈ (0, 1] such that Uλ + Uλ ⊂ 21/rλUλ) and
absorbs the set xUλ ∪ Uλx for all x ∈ A. For each λ ∈ Λ let pλ be a mapping (the

rλ-homogeneous gauge of Uλ ) defined by

pλ(x) = inf{|µ|rλ : x ∈ µ convrλ
Uλ}

for all x ∈ A (here convrλ
Uλ means the absolutely rλ-convex hull of Uλ). Now

pλ is an rλ-homogeneous A-pseudoconvex seminorm on A (here the numbers rλ may

vary). The A-pseudoconvexity of a seminorm pλ means that for each x ∈ A and
λ ∈ Λ there exist positive numbers L(x, λ) and R(x, λ) (depending on x and λ) such

that pλ(xy) 6 L(x, λ)pλ(y) and pλ(yx) 6 R(x, λ)pλ(y) for all y ∈ A. Denote this
family of seminorms on A by P and the corresponding topology on A by T (P).

675



Now we clearly have T (P) = T . If every pλ ∈ P is m-pseudoconvex (i.e. if each

pλ is submultiplicative) then (A, T (P)) is called a locally m-pseudoconvex algebra.
In this case (A, T ) has a base of neighbourhoods of zero, each element of which
is m-pseudoconvex (i.e. is idempotent, balanced and pseudoconvex). If rλ = 1 for
all λ ∈ Λ, then each pλ is A-convex and (A, T (P)) is called a locally A-convex
algebra, and if moreover each pλ is submultiplicative, then (A, T (P)) is called a
locally m-convex algebra.

For locally pseudoconvex algebras see [1], [2] or [13] and for locally A-convex

algebras see e.g. [3], [4], [5], [6], [7], [9], [10] or [11].

2. Main results

It was shown in [9] that for each locally A-convex topology T on A there exists
on A the weakest locally m-convex topology, say m(T ), which is stronger than T .

We shall give a detailed proof of this fact for the locally A-pseudoconvex case.

Theorem 1. Let (A, T ) be a locally A-pseudoconvex algebra, B the set of all

A-pseudoconvex neighbourhoods of zero on A and B′ = {εU ′ : ε ∈ (0, 1], U ∈ B}
where U ′ = {x ∈ U : xU ∪ Ux ⊂ U}. Then U ′ is rU -convex if U is and B′ forms a

subbase of the neighbourhoods of zero for a locally m-pseudoconvex topology m(T )
on A which is stronger than T . In particular, if (A, T ) is a locally m-pseudoconvex
algebra, then m(T ) = T .

������� �
. Let E be the family of all finite intersections of elements of B′. Clearly

E is a basis for a filter on A. It is easy to see that every E ∈ E is balanced

and absorbent and U ′ is rU -convex if U is. Let now E =
n⋂

k=1

εkU ′ku, where γk =

εk2−1/rUk , εk ∈ (0, 1] and Uk ∈ B for each k ∈ {1, 2, . . . , n}; then F ∈ E . If x1 and
x2 ∈ F , then for each k ∈ {1, 2, . . . , n} there exist elements y(1,k), y(2,k) ∈ U ′k for

which x1 = γky(1,k) and x2 = γky(2,k) and

(x1 + x2)Uk ∪ Uk(x1 + x2) ⊂ γk(Uk + Uk) ⊂ γk21/rUk Uk ⊂ εkUk.

Hence every E defines a F such that F + F ⊂ E. Therefore by Theorem 2.1 of [8],
p. 13, there exists a topology m(T ) on A for which (A, m(T )) is a topological vector
space and E is a base of neighbourhoods of zero for the topology m(T ). To show

that every E ∈ E is m-pseudoconvex let x1 and x2 ∈ E. Since E =
n⋂

k=1

εkU ′k for
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some εk ∈ (0, 1] and Uk ∈ B, we have

(x1x2)Uk ∪ Uk(x1x2) ⊂ εk(x1Uk ∪ Ukx2) ⊂ ε2
kUk ⊂ εkUk

and

(x1 + x2)Uk ∪ Uk(x1 + x2) ⊂ εk(Uk + Uk) ⊂ 21/rUk εkUk ⊂ 21/rεkUk

for all k ∈ {1, 2, . . . , n}, where r = min{rU1 , rU2 , . . . , rUn}. Thus each E ∈ E is

idempotent and pseudoconvex. This shows that m(T ) is a locally m-pseudoconvex
topology on A which is stronger than T , since U ′ ⊂ U for each U ∈ B. In particular,

if each U ∈ B is idempotent (which means that T is locally m-pseudoconvex), then
U ′ = U and thus T = m(T ). �

Theorem 2. Let (A1, T1) and (A2, T2) be two locally A-pseudoconvex algebras
and ϕ a continuous isomorphism from (A1, T1) onto (A2, T2). Then ϕ is a continuous

isomorphism from (A1, m(T1)) onto (A2, m(T2)).
������� �

. LetB1 andB2 be the sets of all A-pseudoconvex neighbourhoods of zero
of the algebras (A1, T1) and (A2, T2), respectively. Let B′

1 and B′
2 be the subbases

of neighbourhoods of zero for the algebras (A1, m(T1)) and (A2, m(T2)), respectively,
defined in the proof of Theorem 1. If E ∈ B′

2 is arbitrary, then there exist a set

V ∈ B2 and ε ∈ (0, 1] such that E = εV ′ where V ′ = {x ∈ V : xV ∪V x ⊂ V }. Since
ϕ is a continuous surjection, U = ϕ−1(V ) is a neighbourhood of zero in (A1, T1) and
ϕ(U) = V . Clearly U is an A-pseudoconvex subset of A1, since ϕ is an isomorphism,
which implies that U ∈ B1. Let now x ∈ U ′ be given. Then

ϕ(x)V ∪ V ϕ(x) = ϕ(x)ϕ(U) ∪ ϕ(U)ϕ(x) = ϕ(xU ∪ Ux) ⊂ ϕ(U) = V.

This shows that ϕ(U ′) ⊂ V ′ implies ϕ(εU ′) ⊂ εV ′ = E. As εU ′ ∈ B1, it follows that

ϕ is a continuous map from (A1, m(T1)) onto (A2, m(T2)).

Corollary 1. Let T be a locally A-pseudoconvex topology on A and let T1 be

an arbitrary locally m-pseudoconvex topology on A which is stronger than T . Then

m(T ) is weaker than T1.
������� �

. Let I be the identity map on A. Then I is a continuous isomorphism
from (A, T1) onto (A, T ). Therefore I is also continuous as a map from (A, m(T1))
onto (A, m(T )) by Theorem 2. Since T1 is locally m-pseudoconvex, we have m(T1) =
T1 by Theorem 1. Hence m(T ) is weaker than T1. �
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Corollary 2. Let T1 and T2 be two locally A-pseudoconvex topologies on A. If

T1 is weaker than T2, then m(T1) is weaker than m(T2).

������� �
. Let I be the identity map on A. If T1 is weaker than T2, then I is a

continuous isomorphism from (A, T2) onto (A, T1). Therefore, I is also continuous
as a map from (A, m(T2)) onto (A, m(T1)) by Theorem 2. Hence m(T1) is weaker
than m(T2). �

3. Seminorms defining m(T )

Let (A, T (P)) be a locally A-pseudoconvex algebra, where P is a family of all
continuous rλ-homogeneous A-pseudoconvex seminorms on (A, T ) with rλ ∈ (0, 1],
defining the topology T (P). We shall now give a description of seminorms which
define the topology m(T (P)). To this end it let

p̃λ(x) = sup
pλ(y)61

max{pλ(xy), pλ(yx)}

for each x ∈ A and λ ∈ Λ (see [12], p. 19). Then p̃λ is an rλ-homogeneous submul-

tiplicative seminorm on A for each λ ∈ Λ and the family P̃ = {p̃λ : λ ∈ Λ} defines
on A a topology T (P̃) which is not necessarily a Hausdorff topology even though
T (P) is. Let now

qλ(x) = max{pλ(x), p̃λ(x)}

for each x ∈ A and λ ∈ Λ. Then qλ is an rλ-homogeneous and submultiplicative

seminorm on A for each λ ∈ Λ. Let Q = {qλ : λ ∈ Λ}. Then T (Q) is a locally
m-pseudoconvex topology on A which is stronger than T (P).
In [9] the case has been considered when (A, T (P)) is a locally A-convex algebra

and it was stated without proof that m((T (P)) = T (Q) where the seminorms qλ are

defined by qλ(x) = max{pλ(x), p̃λ(x)} with p̃λ(x) = sup
pλ(y)61

pλ(xy) for each x ∈ A.

We will show that the results of Oubbi and Oudadess in [9] and [11] are in fact
valid not only for the locally A-convex case, but also for the locally A-pseudoconvex

case.

Theorem 3. Let (A, T ) be a locally A-pseudoconvex algebra and let P be the

family of all continuous rλ-homogeneous A-pseudoconvex seminorms on (A, T ) defin-
ing the topology T . Then m(T (P)) = T (Q). Furthermore, m(T (P)) is separated
if and only if T (P) is separated.
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������� �
. By Corollary 1, m(T (P)) is weaker than T (Q). To show that T (Q) co-

incides with m(T (P)) let O be an arbitrary element in the base of the neigh-
bourhoods of zero for the topology T (Q). Then there exist ε > 0, n ∈ ! and
λ1, λ2, . . . , λn ∈ Λ such that

O =
n⋂

k=1

{x ∈ A : qλk
(x) < ε}.

Furthermore, for each λ ∈ Λ let Uλ be the A-pseudoconvex neighbourhood of zero

which defines on A the rλ-homogeneous seminorm pλ. Let U ′
λ be the element of

the subbase of the neighbourhoods of zero for the topology m(T (P)) defined in
Theorem 1 and let p′λ be the rλ-homogeneous gauge of U ′

λ. Suppose that x ∈ A is
an element for which p′λ(x) 6 1. For n ∈ ! let xn = (1 − 1/n)x. Then p′λ(xn) =
|1−1/n|rλp′λ(x) < 1 for each n ∈ ! . Furthermore, let y ∈ A be an element for which
pλ(y) 6 1 and let yn = (1 − 1/n)y for each n ∈ ! . As above we have pλ(yn) < 1
for all n ∈ ! . Thus xn ∈ convrλ

U ′λ and yn ∈ convrλ
Uλ for each n ∈ ! . Since

U ′λUλ ⊂ Uλ for each λ ∈ Λ, it follows that convrλ
U ′λ convrλ

Uλ ⊂ convrλ
Uλ. This

implies that pλ(xnyn) 6 1 for each n ∈ ! . Since

lim
n→∞

pλ(xnyn − xy) = lim
n→∞

pλ

((
1− 1

n

)2

xy − xy
)

= pλ(xy) lim
n→∞

∣∣∣
(
1− 1

n

)2

− 1
∣∣∣
rλ

= 0,

we have pλ(xy) 6 1. So we have shown that pλ(xy) 6 1 if p′λ(x) 6 1 and pλ(y) 6 1. In
the same way we have also pλ(yx) 6 1 if p′λ(x) 6 1 and pλ(y) 6 1. This implies that
the condition p′λ(x) 6 1 yields that p̃λ(x) 6 1. Let now r = max{rλ1 , rλ2 , . . . , rλn},
δ ∈ (0, ε1/r) and

U = δ

n⋂

k=1

U ′λk
.

Then U is a neighbourhood of zero in A in the topology m(T (P)). Thus there exists
an element, say V , of the base of the neighbourhoods of zero of A in the topology

m(T (P)) such that V ⊂ U . To show that V ⊂ O let x ∈ V be given. Since
V ⊂ δU ′

λk
⊂ δ convλk

U ′λk
for each k, we have x = δuk for some uk ∈ convrλk

U ′λk
.

Therefore it follows from p′λk
(x) 6 δrλk that p̃λk

(x) 6 δrλk for all k. As U ′
λk

⊂ Uλk

we have convrλk
U ′λk

⊂ convrλk
Uλk

for each k. Hence pλk
(x) 6 δrλk for each k.

Consequently, it follows from x ∈ V that qλk
(x) 6 δrλk for all k = 1, 2, . . . , n. But

this means that V ⊂ O and we have shown that T (Q) = m(T (P)).
To show that T (Q) is separated if and only if T (P) is separated it suffices to show

that ker qλ = ker pλ for each λ ∈ Λ. Let λ ∈ Λ be given. Clearly ker qλ ⊂ kerpλ. On
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the other hand if x ∈ ker pλ, then pλ(xy) = pλ(yx) = 0 for all y ∈ A. This implies

that p̃λ(x) = 0 and thus also qλ(x) = 0. So ker qλ = ker pλ, which completes the
proof. �

Let now (A, T (P)) be a locally A-pseudoconvex algebra. We say that T (P) is
weakly regular if for each λ ∈ Λ there is a constantmλ > 0 such that pλ(x) 6 mλp̃λ(x)
for all x ∈ A. Note that if A has a unit element (denoted by e), then (A, T (P)) is
weakly regular (we can take mλ = pλ(e) for each λ ∈ Λ, see [4]).

Corollary 3. Let (A, T (P)) be as in Theorem 3. If T (P) is weakly regular (in
particular if A has a unit), then m(T (P)) is equivalent to T (P̃).
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biana Mat. 16 (1982), 141–150.

[12] T.W. Palmer: Banach Algebras and the General Theory of ∗-Algebras. Cambridge Univ.
Press, New York, 1994.

[13] L. Waelbroeck: Topological Vector Spaces and Algebras. Lecture Notes in Math. 230.
Springer-Verlag, Berlin-New York, 1971.

Author’s address: " # $ %'&
( , Institute of Pure Mathematics, Univ. of Tartu, Estonia,
e-mail: mati.abel@math.ut.ee; )*# $ + , - ./.10 - 2 & 2 , Department of Math. Sciences, Univ.
of Oulu, Finland, e-mail: jarhippa@sun3.oulu.fi.

680


		webmaster@dml.cz
	2020-07-03T14:53:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




