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Abstract. In this paper we introduce and investigate a Henstock-Kurzweil-type integral
for Riesz-space-valued functions defined on (not necessarily bounded) subintervals of the
extended real line. We prove some basic properties, among them the fact that our integral
contains under suitable hypothesis the generalized Riemann integral and that every simple
function which vanishes outside of a set of finite Lebesgue measure is integrable according
to our definition, and in this case our integral coincides with the usual one.
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1. Introduction

The Henstock-Kurzweil integral for Riesz-space-valued functions defined on

bounded subintervals of the real line and with respect to operator-valued mea-
sures was investigated in [6], [7], [9], [10], [11] with respect to (D)-convergence
(that is, a kind of convergence in which the ε-technique is replaced by a technique
involving double sequences, see also [3], [8]) and in [1] with respect to the order
convergence. In [12] this integral was studied for functions defined on a Hausdorff,

compact topological space.

In this paper we introduce a Henstock-Kurzweil-type integral for Riesz-space-
valued maps, defined in (not necessarily bounded) subintervals of the extended real

line, and we prove some fundamental properties. Moreover, we demonstrate that
our integral contains under suitable hypothesis the improper Riemann integral and

that every simple function, vanishing outside of a set of finite Lebesgue measure, is
Henstock-Kurzweil integrable, and its integral coincides with the usual one.
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2. Preliminaries

Let � be the set of all strictly positive integers, � the set of the real numbers,
� + be the set of all strictly positive real numbers, �̃ the set of all extended real
numbers. We begin with some preliminary definitions and results.

Definition 2.1. A Riesz space R is said to be Dedekind complete if every

nonempty subset of R, bounded from above, has supremum in R.

Definition 2.2. Given a sequence (rn) in R, we say that (rn) (D)-converges to
an element r ∈ R if there exists a bounded double sequence (ai,j)i,j in R, such that,
for each i ∈ � , ai,j ↓ 0, that is ai,j > ai,j+1 ∀ j ∈ � and ∧

j∈ � ai,j = 0 (such a sequence

will be called a regulator or (D)-sequence from now on), and satisfying the following
condition:

∀ mapping ϕ : � → � , there exists an integer n0 such that

|rn − r| 6
∞∨

i=1

ai,ϕ(i)

for all n > n0. In this case, we write (D) lim
n

rn = r.

Analogously, given l ∈ R, a function f : A → R, where ∅ 6= A ⊂ �̃ , and a limit
point x0 for A, we will say that (D) lim

x→x0
f(x) = l if there exists a (D)-sequence

(ai,j)i,j in R such that, ∀ϕ ∈ � � , there exists a neighborhood U of x0 such that for

all x ∈ U ∩A \ {x0}

|f(x)− l| 6
∞∨

i=1

ai,ϕ(i).

Definition 2.3. We say that R is weakly σ-distributive if for every (D)-sequence
(ai,j) one has:

(1)
∧

ϕ∈ � �

( ∞∨

i=1

ai,ϕ(i)

)
= 0.

It is easy to check that the usual order convergence implies (D)-convergence, while
the converse is true in weakly σ-distributive spaces (see also [2]).

Throughout the paper, we shall always assume that R is a Dedekind complete

weakly σ-distributive Riesz space.
The following lemma will be useful in the sequel (see [4], [8]).
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Lemma 2.4. Let {(an
i,j)i,j : n ∈ � } be any countable family of regulators. Then

for each fixed element u ∈ R, u > 0, there exists a regulator (ai,j)i,j such that for

every ϕ ∈ � � one has

u ∧
∞∑

n=1

( ∞∨

i=1

an
i,ϕ(i+n)

)
6

∞∨

i=1

ai,ϕ,(i).

3. The Henstock-Kurzweil integral

The aim of this section is to construct a type of integral for Riesz-space-valued

maps (with respect to the Lebesgue measure defined on intervals, not necessarily
bounded), containing the improper Riemann integral. From now on, we denote by

[A, B] a closed interval or halfline contained in �̃ , or the whole of �̃ , and by ∆
the set of all positive real-valued functions, defined on [A, B]. Moreover, given a
measurable set E ⊂ �̃ , we denote by |E| its Lebesgue measure (this quantity can
be finite or +∞). Throughout this paper, our integral deals with Riesz-space-valued
functions defined on [A, B], but it can be investigated analogously if we take functions
defined on � or on halflines of the type [a, +∞) or (−∞, a], with a ∈ � .
Definitions 3.1. A subpartition Π of [A, B] is a set of pairs (Ik , ξk), k = 1, . . . , p,

such that ξk ∈ Ik ∀ k, and the Ik’s are non-overlapping closed intervals, contained in

[A, B]. A partition Π = {(Ik, ξk), k = 1, . . . , p} of [A, B] is a subpartition of [A, B]

with
p⋃

k=1

Ik = [A, B].

A gauge is a map γ defined in [A, B] and taking values in the set of all open
intervals in �̃ , such that ξ ∈ γ(ξ) for every ξ ∈ [A, B] and γ(ξ) is a bounded open
interval for every ξ ∈ � ∩ [A, B]. Given a gauge γ, we will say that a partition

Π = {(Ik, ξk), k = 1, . . . , p} of [A, B] is γ-fine if Ik ⊂ γ(ξk) ∀ k = 1, . . . , p. Given a
bounded interval [a, b] ⊂ � and a map δ : [a, b] → � + , a partition Π = {(Ik, ξk), k =
1, . . . , p} of [a, b] is said to be δ-fine if Ik ⊂ (ξk − δ(ξk), ξk + δ(ξk)) ∀ k = 1, . . . , p.
We note that, if Ik is an unbounded interval, then the element ξk associated with Ik

is necessarily +∞ or −∞: otherwise γ(ξk) should be a bounded interval and contain
an unbounded interval: a contradiction.

Given any partition Π = {(Ik, ξk), k = 1, . . . , p} of [A, B] and a function f :
[A, B] → R, we define the Riemann sum of f (written

∑
Π

f) to be the quantity

(2)
p∑

k=1

f(ξk)|Ik |,
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where in the sum in (2) only the terms for which Ik is a bounded interval are

included. This can be secured by simply postulating it or by defining the measure
of an unbounded interval as +∞, by requiring f(+∞) = f(−∞) = 0 and by means
of the convention 0 · (+∞) = 0 (see also [5], p. 65).
We now formulate our definition of Henstock-Kurzweil integral for functions de-

fined on [A, B] and taking values in a Dedekind complete weakly σ-distributive Riesz
space.

Definition 3.2. We say that a function f : [A, B] → R is Henstock-Kurzweil

integrable (in short HK-integrable) on [A, B] if there exist an element I ∈ R and
a (D)-sequence (ai,j)i,j in R such that ∀ϕ ∈ � � there exist a function δ ∈ ∆ and
a positive real number P such that

(3)

∣∣∣∣
∑

Π

f − I

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i)

whenever Π = {(Ik, ξk), k = 1, . . . , p} is a δ-fine partition of any bounded interval
[a, b] with [a, b] ⊃ [A, B] ∩ [−P, P ] and [a, b] ⊂ [A, B]. In this case we say that I is

the HK-integral of f , and we denote the element I by the symbol
∫ B

A f . Later we
will prove that our integral is well-defined, that is such an I is uniquely determined.

We now prove the following characterization of HK-integrability.

Theorem 3.3. A function f : [A, B] → R is HK-integrable if and only if there
exist J ∈ R and a (D)-sequence (ai,j)i,j such that ∀ϕ ∈ � � there exists a gauge γ

such that

(4)

∣∣∣∣
∑

Π

f − J

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i)

whenever Π = {(Ik, ξk), k = 1, . . . , p} is a γ-fine partition of [A, B], and in this case
we have

∫ B

A
f = J .

���������
. We begin with the “only if” part. By hypothesis, we know that there

exists a regulator (ai,j)i,j such that ∀ϕ ∈ � � there exist a function δ ∈ ∆ and a
positive real number P such that (3) holds. We now define on [A, B] a gauge γ in

the following way:

γ(ξ) =





(ξ − δ(ξ), ξ + δ(ξ)) if ξ ∈ [A, B] ∩ � ,
[−∞,−P ) if ξ = −∞ and A = −∞,

(P, +∞] if ξ = +∞ and B = +∞.
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We observe that every γ-fine partition Π = {(Ik, ξk), k = 1, . . . , p} of [A, B] is
such that Ik ⊂ γ(ξk) ∀ k = 1, . . . , p. In the case of A = −∞, B = +∞, the
partition Π contains two unbounded intervals, which we call J and K: of course, if
inf J = −∞ and sup K = +∞, then the ξk’s associated with J and K are −∞ and
+∞ respectively. Then, since Π is γ-fine, we have J ⊂ γ(−∞) and K ⊂ γ(+∞).
Then J ⊂ [−∞,−P ) and K ⊂ (P, +∞]. So, if a = sup J and b = inf K, then [a, b]
is a bounded interval, containing [−P, P ]. If Π′ is the restriction of Π to [a, b], then
Π′ is δ-fine, and by construction we get

(5)
∑

Π′
f =

∑

Π

f.

In this case, the assertion follows from (3) and (5).

In the case of A ∈ � , B = +∞, the partition Π contains only an unbounded
interval K, with sup K = +∞. Let P be associated with K as above, and b = inf K:
we have P 6 b. We note that, without loss of generality, P can be taken greater

than |A|. Thus, [A, b] is a bounded interval, containing [−P, P ], and the assertion
follows by proceeding as in the previous case. The case of A = −∞, B ∈ R is
analogous to the previous one. Finally, if [A, B] is bounded, then the assertion
is straightforward, because in this case the number P can be taken greater than
max(|A|, |B|) and, of course, (3) holds even in the case [a, b] = [A, B]. This concludes
the proof of the “only if” part.

We now turn to the “if” part. By hypothesis, we know that there exists a (D)-
sequence (ai,j)i,j such that, ∀ϕ ∈ � � , there exists a gauge γ satisfying (4). By the
definition of gauge, there exist δ1, δ2 ∈ ∆ such that

γ(ξ) = (ξ − δ1(ξ), ξ + δ2(ξ)) ∀ ξ ∈ [A, B] ∩ � .

For such ξ’s, let δ(ξ) = min{δ1(ξ), δ2(ξ)}. Moreover, if +∞ and −∞ belong to
[A, B], and γ(−∞) = [−∞, P ∗

1 ), γ(+∞) = (P ∗
2 , +∞], put P1 = min{P ∗

1 ,−1}, P2 =
max{P ∗

2 , 1}, P = max{−P1, P2}: we note that, in case A ∈ � (resp. B ∈ � ),
P can be chosen greater than |A| (resp. |B|); moreover, set δ(−∞) = δ(+∞) = P .

Let now [a, b] ⊂ [A, B] be any bounded interval, containing [A, B] ∩ [−P, P ], and
Π = {(Ik, ξk) : k = 1, . . . , p} be a δ-fine partition of [a, b]. Let Π′ be that partition of

[A, B], whose elements are the ones of Π with the addition of ([A, a], A), if A = −∞,
and ([b, B], B), if B = +∞: we note that Π′ is γ-fine. This follows from the fact

that, if (Ik , ξk) is any element of Π, then

Ik ⊂ (ξk − δ(ξk), ξk + δ(ξk)) ⊂ (ξk − δ1(ξk), ξk + δ2(ξk)) = γ(ξk),
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and from the following inclusions:

(b, +∞] ⊂ (P, +∞] ⊂ (P2, +∞] ⊂ (P ∗
2 , +∞] = γ(+∞),

[−∞, a) ⊂ [−∞, P ) ⊂ [−∞, P1) ⊂ [−∞, P ∗
1 ) = γ(−∞).

Then, taking into account that the Riemann sum corresponding to the partition Π′

is done without considering the unbounded intervals, we get
∑
Π′

f =
∑
Π

f . From this

and (4) the assertion follows, by proceeding analogously as at the end of the proof
of the converse implication. This concludes the proof of the theorem. �

Remark 3.4. We note that the Henstock-Kurzweil integral is well-defined, that
is there exists at most one element I satisfying condition (4): indeed, if ∃ two such
elements I , J , then ∃ two (D)-sequences (ai,j)i,j and (bi,j)i,j such that, ∀ϕ ∈ � �
∃ two gauges γ1, γ2 such that, for each γ1-fine partition Π and for every γ2-fine

partition Π′ of [A, B] we have

∣∣∣∣
∑

Π

f − I

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i)

and
∣∣∣∣
∑

Π′

f − J

∣∣∣∣ 6
∞∨

i=1

bi,ϕ(i)

respectively. Let now γ(ξ) = γ1(ξ) ∩ γ2(ξ), ∀ ξ ∈ [A, B] and take any γ-fine parti-
tion Π′′: then Π′′ is both γ1- and γ2-fine, and thus we have

0 6 |I − J | 6
∞∨

i=1

ci,ϕ(i),

where ci,j = 2(ai,j + bi,j) ∀ i, j ∈ � . By the arbitrariness of ϕ ∈ � � , we get

0 6 |I − J | 6
∧

ϕ∈ � �

( ∞∨

i=1

ci,ϕ(i)

)
= 0,

since (ci,j)i,j is a (D)-sequence and thanks to the weak σ-distributivity of R. Thus

I = J , and so our HK-integral is well-defined. �

We now state the main properties of the HK-integral.
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Proposition 3.5. If f1, f2 are HK-integrable on [A, B] and c1, c2 ∈ � , then
c1f1 + c2f2 is HK-integrable on [A, B] and

∫ B

A

(c1f1 + c2f2) = c1

∫ B

A

f1 + c2

∫ B

A

f2.

���������
. The proof is similar to the one of [5], Theorems 2.5.1 and 2.5.3. �

Proposition 3.6. If f and g are HK-integrable on [A, B] and f 6 g, then

∫ B

A

f 6
∫ B

A

g.

���������
. By hypothesis, there exist two (D)-sequences (ai,j)i,j and (bi,j)i,j such

that, ∀ϕ ∈ � � , there exist two gauges γ1, γ2 such that, whenever Π is a γ1-fine
partition of [A, B] and Π′ is a γ2-fine partition of [A, B], we have

∫ B

A

f −
∞∨

i=1

ai,ϕ(i) 6
∑

Π

f 6
∫ B

A

f +
∞∨

i=1

ai,ϕ(i)

and
∫ B

A

g −
∞∨

i=1

bi,ϕ(i) 6
∑

Π′
g 6

∫ B

A

g +
∞∨

i=1

bi,ϕ(i)

respectively. For every ξ ∈ [A, B], let γ(ξ) = γ1(ξ) ∩ γ2(ξ), and take any γ-fine
partition Π′′ of [A, B]: then Π′′ is both γ1- and γ2-fine. Thus we get

∫ B

A

f −
∞∨

i=1

ai,ϕ(i) 6
∑

Π′′

f 6
∑

Π′′

g 6
∫ B

A

g +
∞∨

i=1

bi,ϕ(i)

and hence, ∀ϕ ∈ � � ,
∫ B

A

f −
∫ B

A

g 6
∞∨

i=1

ai,ϕ(i) +
∞∨

i=1

bi,ϕ(i) 6
∞∨

i=1

ci,ϕ(i),

where ci,j = 2(ai,j + bi,j) ∀ i, j ∈ � . By the arbitrariness of ϕ ∈ � � , since (ci,j)i,j is

a (D)-sequence and taking into account the weak σ-distributivity of R, we get

∫ B

A

f −
∫ B

A

g 6
∧

ϕ∈ � �

( ∞∨

i=1

ci,ϕ(i)

)
= 0,

that is
∫ B

A
f 6

∫ B

A
g. This concludes the proof. �
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Corollary 3.7. If both f and |f | are HK-integrable in [A, B], then

∣∣∣∣
∫ B

A

f

∣∣∣∣ 6
∫ B

A

|f |.

Proposition 3.8. Let A, B ∈ �̃ , and c be such that A < c < B. If f : [A, B] → R

is HK-integrable both on [A, c] and on [c, B], then f is HK-integrable on [A, B] and

∫ B

A

f =
∫ c

A

f +
∫ B

c

f.

���������
. In view of the HK-integrability of f on [A, c] and [c, B] there exist

two (D)-sequences (ai,j)i,j and (bi,j)i,j such that for every ϕ ∈ � � there exist two
mappings δ : [A, c] → � + , δ : [c, B] → � + , and two positive real numbers P and P

(without loss of generality, P > |c|, P > |c|) such that, if Π is any δ-fine partition of
any bounded interval [a1, b1] ⊂ [A, c], [a1, b1] ⊃ [A, c] ∩ [−P , P ] and Π is any δ-fine

partition of any bounded interval [a2, b2] ⊂ [c, B], [a2, b2] ⊃ [c, B] ∩ [−P , P ], then

∣∣∣∣
∑

Π

f −
∫ b1

a1

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i)

and
∣∣∣∣
∑

Π

f −
∫ b2

a2

f

∣∣∣∣ 6
∞∨

i=1

bi,ϕ(i).

If A = −∞, let δ(−∞) = δ(−∞); if B = +∞, let δ(+∞) = δ(+∞). Moreover, set

δ(x) =





min{δ(x), 1
2 (c− x)}, if x ∈ [A, c) ∩ � ,

min{δ(x), 1
2 (x− c)} if x ∈ (c, B] ∩ � ,

min{δ(c), δ(c)} if x = c,

and P = max{P , P}. Take now an arbitrary bounded interval [a, b] ⊂ [A, B], [a, b] ⊃
[A, B] ∩ [−P, P ], and any δ-fine partition Π = {([uk, vk], ξk), k = 1, . . . , p} of [a, b].
Then necessarily c ∈ (a, b). We now claim that there exists k ∈ {1, . . . , p} such that
c = ξk, or c = uk, or c = vk. Otherwise there would be an interval [uj , vj ] such that
uj < c < vj and either c < ξj < vj or uj < ξj < c. Since Π is δ-fine, we would get
[uj , vj ] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) and thus vj − uj < 2δ(ξj). So vj − uj < ξj − c if
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ξj > c or vj − uj < c − ξj if ξj < c. This would imply that ξj is outside (uj , vj), a
contradiction. Thus we have:

∑

Π

f =
j−1∑

l=1

f(ξl)(vl − ul) + f(ξj)(vj − uj) +
p∑

l=j+1

f(ξl)(vl − ul)(6)

=
j−1∑

l=1

f(ξl)(vl − ul) + f(ξj)(ξj − uj) + f(ξj)(vj − ξj)

+
p∑

l=j+1

f(ξl)(vl − ul).

The quantity Sc
a =

j−1∑
l=1

f(ξl)(vl − ul) + f(ξj)(ξj − uj) is a Riemann sum for a suitable

δ-fine partition of [a, c], which is a bounded interval contained in [A, c] and containing
[A, c] ∩ [−P , P ], by construction.

Analogously, the quantity Sb
c = f(ξj)(vj − ξj) +

p∑
l=j+1

f(ξl)(vl − ul) is a Riemann

sum for a suitable δ-fine partition of [c, b], which is a bounded interval contained in
[c, B] and containing [c, B] ∩ [−P , P ]. Thus we have:

∣∣∣∣Sc
a −

∫ c

A

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i),

∣∣∣∣Sb
c −

∫ B

c

f

∣∣∣∣ 6
∞∨

i=1

bi,ϕ(i),

and hence
∣∣∣∣
∑

Π

f −
∫ c

A

f −
∫ B

c

f

∣∣∣∣ 6
∞∨

i=1

ci,ϕ(i),

where ci,j = 2(ai,j + bi,j), ∀ i, j ∈ � . Since the double sequence (ci,j)i,j is a (D)-
sequence, the assertion follows. �

We now state two versions of the Cauchy criterion.

Theorem 3.9. A map f : [A, B] → R is HK-integrable if and only if there exists

a (D)-sequence (ai,j)i,j in R such that, ∀ϕ ∈ � � , ∃ a gauge γ such that for every

γ-fine partition Π1, Π2 of [A, B] we have

∣∣∣∣
∑

Π1

f −
∑

Π2

f

∣∣∣∣ 6
∞∨

n=1

ai,ϕ(i).
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Theorem 3.10. A map f : [A, B] → R is HK-integrable if and only if there exists

a (D)-sequence (ai,j)i,j in R such that, ∀ϕ ∈ � � , ∃ a map δ ∈ ∆ and a positive real
number P such that ∣∣∣∣

∑

Π1

f −
∑

Π2

f

∣∣∣∣ 6
∞∨

n=1

ai,ϕ(i)

whenever Π1, Π2 are δ-fine partitions of any bounded interval [a, b], with [a, b] ⊂
[A, B] and [a, b] ⊃ [A, B] ∩ [−P, P ].
���������

. The proof is similar to the one of Theorem 5.2.9, p. 77, of [8]. �

We now prove a result about HK-integrability on subintervals.

Theorem 3.11. Let f : [A, B] → R be HK-integrable, and A < c < B. Then

f|[A,c] and f|[c,B] are HK-integrable too, and

(7)
∫ B

A

f =
∫ c

A

f +
∫ B

c

f.

���������
. By virtue of Theorem 3.9, there exists a (D)-sequence (ai,j)i,j such

that ∀ϕ ∈ � � ∃ a gauge γ on [A, B] such that for all γ-fine partitions Π1 and Π2 of

[A, B] we have

(8)

∣∣∣∣
∑

Π1

f −
∑

Π2

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).

Set γ0 = γ|[A,c] and let Π, Π
′
be any two γ0-fine partitions of [A, c]. By virtue of

the Cousin Lemma there exists a γ-fine partition Π0 of [c, B]. Put Π1 = Π ∪ Π0,

Π2 = Π′ ∪ Π0. Then Π1 and Π2 are γ-fine partitions of [A, B]. Moreover, we get

(9)
∑

Π1

f =
∑

Π

f +
∑

Π0

f,
∑

Π2

f =
∑

Π′
f +

∑

Π0

f.

From (8) and (9) we have

(10)

∣∣∣∣
∑

Π

f −
∑

Π′

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).

From (10) and Theorem 3.9 it follows that f|[A,c] is HK-integrable. The proof
of HK-integrability of f|[c,B] is analogous. The equality (7) follows from this and

Proposition 3.8. �

We now prove the following:
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Theorem 3.12. Let f : [A, B] → R be an HK-integrable function. Let

A < c < B. Then the function g = fχ[A,c] is HK-integrable on [A, B], and∫ c

A
f =

∫ B

A
g.

���������
. First of all, we note that c ∈ � , and g is HK-integrable on [A, c], because

g coincides with f in [A, c] and, by virtue of Theorem 3.11, f is HK-integrable on
[A, c]. Moreover, it is easy to see that g is HK-integrable on [c, B] and

∫ B

c
g = 0. So,

by virtue of Proposition 3.8, we get that g is HK-integrable on [A, B] and

(11)
∫ B

A

g =
∫ c

A

g +
∫ B

c

g =
∫ c

A

f.

This concludes the proof. �

Remark 3.13. In an analogous way it is possible to prove that h = fχ[c,B] is

HK-integrable on [A, B] and
∫ B

c
f =

∫ B

A
h.

Corollary 3.14. Let f : [A, B] → R be HK-integrable on [A, B], and let A < c <

c′ < B. Then the map l = fχ[c,c′] is HK-integrable on [A, B], and
∫ c′

c f =
∫ B

A l.
���������

. First of all, we note that c, c′ ∈ � . Let k = f|[A,c′]: by virtue of

Theorem 3.11, k is HK-integrable on [A, c′], and by Theorem 3.12, where the rôle
of A, B, c, is played by A, c′, c, respectively, the function

l′ = kχ[c,c′] = f|[A,c′]χ[c,c′]

is HK-integrable on [A, c′], and
∫ c′

c
f =

∫ c′

c
k =

∫ c′

A
l′. Moreover, since l coincides

with l′ on [A, c′] and vanishes on (c′, B], then, thanks to Proposition 3.8, we get that
l is HK-integrable on [A, B] and

∫ B

A
l =

∫ c′

A
l′. From this the assertion follows. �

Now, given an interval [a, b] ⊂ � , a partition Π = {([xk−1, xk ], ξk), k = 1, 2, . . . p}
and a point c ∈ (a, b), if c coincides with some xk, let Π1(Π2) be the partition of all
elements of Π which are contained in [a, c] ([c, b]) respectively, and put

∑

Π

c
a f =

∑

Π1

f,
∑

Π

b
c f =

∑

Π2

f.

If c ∈ (xk−1, xk) for some k = 1, . . . , p, then put

∑

Π

c
a f =

k−1∑

l=1

f(ξl)(xl − xl−1) + f(c)(c− xk−1);

∑

Π

b
c f = f(c)(xk − c) +

p∑

l=k+1

f(ξl)(xl − xl−1).

601



In the sequel, when we will deal with the interval [a, b] or [A, B], sometimes we
will write

∑
Π

b
a f , or

∑
Π

B
A f , respectively, instead of

∑
Π

f , in order to avoid confusion.

We now prove the following theorem (for the proof in the case R = � , see [5],
Lemma 2.8.1, pp. 56–57):

Theorem 3.15. Let [a, b] ⊂ � be a bounded interval, f : [a, b] → R be a HK-

integrable function, and suppose that there exists a (D)-sequence (ai,j)i,j such that

∀ϕ ∈ � � there exists δ : [a, b] → � + such that, for every δ-fine partition Π′ of [a, b],

(12)

∣∣∣∣
∑

Π′

b
a f −

∫ b

a

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).

Then δ is such that, ∀ c ∈ (a, b) and for every δ-fine partition Π of [a, b],

(13)

∣∣∣∣
∑

Π

c
a f −

∫ c

a

f

∣∣∣∣ 6 2
∞∨

i=1

ai,ϕ(i),

∣∣∣∣
∑

Π

b
c f −

∫ b

c

f

∣∣∣∣ 6 2
∞∨

i=1

ai,ϕ(i).

���������
. Let Π be a δ-fine partition of [a, b]. By virtue of Theorem 3.11, f is HK-

integrable in [a, c] with respect to the same regulator (ai,j)i,j as in the hypotheses of
the theorem. Fix arbitrarily ϕ ∈ � � . Then there exists a function δc : [a, c] → � +

such that for every δc-fine partition Π′
c of [a, c] we have:

(14)

∣∣∣∣
∑

Π′
c

c
a f −

∫ c

a

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).

Let now Πc be a δ- and δc-fine partition of [a, c]. Moreover, let Π0 be the partition of
[c, b] consisting of those elements ([xl−1, xl], ξl) of Π such that the intervals [xl−1, xl]
are contained in [c, b] and, as the case may be, of (J, c), where J is the intersection
of [c, b] with that interval [xk−1, xk ] for which xk−1 < c < xk (if there is one). Let
Π′ be the partition consisting of the “union” of Πc and Π0: Π′ is δ-fine, and we have:

∑

Π

b
c f −

∫ b

c

f =
∑

Π0

b
c f −

∫ b

c

f =
∑

Π′

b
c f −

∫ b

c

f

=
∑

Π′

b
a f −

∫ b

a

f −
(∑

Π′

c
a f −

∫ c

a

f

)

=
∑

Π′

b
a f −

∫ b

a

f −
(∑

Πc

c
a f −

∫ c

a

f

)
.
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By virtue of (12) and (14) we get:

∣∣∣∣
∑

Π

b
c f −

∫ b

c

f

∣∣∣∣ 6
∣∣∣∣
∑

Π′

b
a f −

∫ b

a

f

∣∣∣∣ +
∣∣∣∣
∑

Πc

c
a f −

∫ c

a

f

∣∣∣∣ 6 2
∞∨

i=1

ai,ϕ(i).

This proves the second inequality of (13). The proof of the first inequality of (13) is

analogous. �

We now prove that the HK-integral contains under suitable hypothesis the im-

proper Riemann integral (for the real case, see [5, Theorem 2.9.3, pp. 61–63]).

Theorem 3.16. Let a ∈ � , f : [a, +∞] → R be HK-integrable on [a, +∞]. Then
f is HK-integrable on every interval [a, b] with a < b < +∞, and

(D) lim
b→+∞

∫ b

a

f =
∫ +∞

a

f.

Conversely, let f : [a, +∞] → R be HK-integrable on every interval [a, b] with a <

b < +∞ and let there exist in R the limit l = (D) lim
b→+∞

∫ b

a
f . Moreover, suppose

that

3.16.1) there exist u ∈ R, u > 0, and a map δ0 : [a, +∞] → � + , such that for every

b with a < b < +∞ and for every δ0-fine partition Π of [a, b], we have:

∣∣∣∣
∑

Π

b
af −

∫ b

a

f

∣∣∣∣ 6 u.

Then f is HK-integrable on [a, +∞] and
∫ +∞

a
f = l.

���������
. We begin with the first part of the theorem. Since f : [a, +∞] → R

is HK-integrable, there exists a (D)-sequence (ai,j)i,j such that, ∀ϕ ∈ � � , ∃ δ :
[a, +∞] → � + and ∃P > |a|, such that for each bounded interval [d1, d2] with
[d1, d2] ⊂ [a, +∞], [d1, d2] ⊃ [a, +∞] ∩ [−P, P ], and for every δ-fine partition Π of
[d1, d2] we have:

(15)

∣∣∣∣
∑

Π

f −
∫ +∞

a

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).

Now, we get that f is HK-integrable on [a, b] for every b ∈ (a, +∞] with respect to the
same regulator (ai,j)i,j , and hence we get that ∀ϕ ∈ � � , ∀ b ∈ (a, +∞], ∃ δ1 : [a, b] →
� + such that for each δ1-fine partition Π′ of [a, b] we have:

(16)

∣∣∣∣
∑

Π′

f −
∫ b

a

f

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).
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Let us define δ2 : [a, b] → � + by setting δ2(x) = min{δ(x), δ1(x)}, and let Π be a
δ2-fine partition of [a, b], b > P . Then, thanks to (15) and (16), ∀ϕ ∈ � � ∃P >

0: ∀ b > P ,

∣∣∣∣
∫ b

a

f −
∫ +∞

a

f

∣∣∣∣ 6
∣∣∣∣
∑

Π

f −
∫ b

a

f

∣∣∣∣ +
∣∣∣∣
∑

Π

f −
∫ +∞

a

f

∣∣∣∣ 6 2
∞∨

i=1

ai,ϕ(i).

Thus the first part is completely proved.

We now turn to the second part. By hypothesis, there exists a (D)-sequence
(ai,j)i,j such that, ∀ϕ ∈ � � , ∃P > 0: ∀ b > P we get

(17)

∣∣∣∣
∫ b

a

f − l

∣∣∣∣ 6
∞∨

i=1

ai,ϕ(i).

Let now (bn)n be a strictly increasing sequence of real numbers, such that limn bn =
+∞ and b1 = a. We observe that f is HK-integrable in [bn, bn+1] for each n (with

respect to the same regulator (a(n)
i,j )i,j , which is the one “associated” to the interval

[a, bn+1]). So, ∀ϕ ∈ � � and ∀n ∈ � , ∃ a function δn : [bn, bn+1] → � + such that

(18)

∣∣∣∣
∑

Πn

f −
∫ bn+1

bn

f

∣∣∣∣ 6
∞∨

i=1

a
(n)
i,ϕ(i+n)

whenever Πn is any δ-fine partition of [bn, bn+1]. Let now (bi,j)i,j be a (D)-sequence
such that

(19) u
∧( ∞∑

n=1

( ∞∨

i=1

a
(n)
i,ϕ(i+n)

))
6

∞∨

i=1

bi,ϕ(i), ∀ϕ ∈ � � ,

where u is as in 3.16.1): such a sequence does exist, by virtue of Lemma 2.4.
Let now δ : [a, +∞] → � + be such that δ 6 δ0, where δ0 is as in 3.16.1), and

moreover such that, ∀n ∈ � ,

(20)





δ(ξ) 6 δn(ξ) if ξ ∈ [bn, bn+1],

[ξ − δ(ξ), ξ + δ(ξ)] ⊂ (bn, bn+1) if ξ ∈ (bn, bn+1),

(bn − δ(bn), bn + δ(bn)) ⊂ (bn−1, bn+1).

Choose now arbitrarily b > P . If bN < b 6 bN+1 and Π = {([xk−1, xk ], ξk), k =
1, 2, . . . p} is a partition of [a, b], then each bn, with n 6 N , must belong to some

interval [xk−1, xk]. So, either bn coincides with some xk’s, or bn ∈ (xk−1, xk). In
this last case, from (20) and the fact that Π is δ-fine it follows that ξk 6∈ (bn, bn+1),
otherwise

[xk−1, xk] ⊂ (ξk − δ(ξk), ξk + δ(ξk)) ⊂ (bn, bn+1),
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which is a contradiction. Analogously, ξk 6∈ (bn−1, bn), and in general, if j ∈ �
is such that bj ∈ (xk−1, xk), we have necessarily ξk 6∈ (bj−1, bj), ξk 6∈ (bj , bj+1):
otherwise [xk−1, xk] ⊂ (bj−1, bj) or [xk−1, xk] ⊂ (bj , bj+1), which is absurd. Thus
ξk does coincide with some bj0 . From the third condition in (20) and the fact that

Π is δ-fine it follows that

[xk−1, xk] ⊂ (ξk − δ(ξk), ξk + δ(ξk))(21)

= (bj0 − δ(bj0), bj0 + δ(bj0)) ⊂ (bj0−1, bj0+1).

But we know that, by hypothesis, bn ∈ (xk−1, xk), and from (21) it follows that
j0 = n and that no bj but bn belongs to (xk−1, xk). So, all the bn’s do coincide either
with some xk or with some ξk. Let Π be the partition of [a, b] determined by the xk’s

and the bn’s. We have:

(22)
∑

Π

b
a f =

N−1∑

n=1

(∑

Π

bn+1
bn

f

)
+

∑

Π

b
bN

f.

Since the restriction of Π to [bN , b] is δN -fine, then Π can be “extended” to a δN -fine

partition Π′ of [bN , bN+1]. By (18) and Theorem 3.15, where the roles of [a, b] and c

are played by [bN , bN+1] and b respectively, we get

(23)

∣∣∣∣
∑

Π

b
bN

f −
∫ b

bN

f

∣∣∣∣ 6 2
∞∨

i=1

a
(N)
i,ϕ(i+N).

Since the restriction of Π to [bn, bn+1] is δn-fine, from (18) and (23) it follows that

(24)
N−1∑

n=1

∣∣∣∣
∑

Π

bn+1
bn

f −
∫ bn+1

bn

f

∣∣∣∣ +
∣∣∣∣
∑

Π

b
bN

f −
∫ b

bN

f

∣∣∣∣ 6 2
( ∞∑

n=1

( ∞∨

i=1

a
(n)
i,ϕ(i+n)

))
.

From 3.16.1), (17), (19), (22)− (24) we get:
∣∣∣∣
∑

Π

b
af − l

∣∣∣∣ 6
∣∣∣∣
∑

Π

b
af −

∫ b

a

f

∣∣∣∣ +
∣∣∣∣
∫ b

a

f − l

∣∣∣∣ 6 2
∞∨

i=1

bi,ϕ(i) +
∞∨

i=1

ai,ϕ(i).

Thus the assertion follows. �

Remark 3.17. We observe that theorems similar to Theorem 3.16 hold even if
we consider open, semi-open and/or left halflines, � or �̃ , instead of [a, +∞].

We now prove that every simple measurable function defined on � , and assuming
values different from zero only on a set of finite Lebesgue measure, is HK-integrable
according to our definition, and in this case our integral coincides with the usual one.

To do this, thanks to Proposition 3.5, it is sufficient to prove the following:
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Theorem 3.18. Let E ⊂ � be a Lebesgue measurable set with |E| < +∞, r ∈ R,

and χE be the characteristic function associated with E. Then the function χE r is

HK-integrable, and
∫∞
−∞ χE r = |E|r.

���������
. Without loss of generality, we can suppose that r > 0: indeed every

element r of a Riesz space R is the difference between r+ and r−, which are two
positive elements of R. In order to demonstrate the theorem, we prove that ∀ ε > 0
there exists a gauge γ, defined on � , such that for all γ-fine partitions Π of � we get

(24)

∣∣∣∣
∑

Π

χE r − |E|r
∣∣∣∣ 6 εr;

from (24) it will follow that there exists a (D)-sequence (di,j)i,j such that ∀ϕ ∈ � �
there exists a gauge γ, defined on � , such that for each γ-fine partition Π of � we
have

(25)

∣∣∣∣
∑

Π

χE r − |E|r
∣∣∣∣ 6

∞∨

i=1

di,ϕ(i).

Indeed, for every i, j ∈ � , put di,j = r/j. It is easy to check that the double sequence
(di,j)i,j is a (D)-sequence. Fix arbitrarily a map ϕ ∈ � � , and set i0 = min{ϕ(i) : i ∈
� }, ε = 1/i0. Then we get:

(26)
∞∨

i=1

di,ϕ(i) =
∞∨

i=1

1
ϕ(i)

r =
( ∞∨

i=1

1
ϕ(i)

)
r =

1
i0

r = εr.

So the assertion of the theorem, that is (25), will follow from (24) and (26). Thus,
for our purposes, it will be enough to prove (24). By virtue of [5], p. 136, we know

that the theorem is true in the particular case R = � and r = 1. Thus for every
ε > 0 there exists a gauge γ, defined on � , such that for each γ-fine partition Π of �
we get

(27)

∣∣∣∣
∑

Π

χE − |E|
∣∣∣∣ 6 ε.

Moreover, it is easy to see that for each partition Π of � we have

(28)
∑

Π

χE r =
(∑

Π

χE

)
r.

Thus (24) follows from (27) and (28). This concludes the proof. �
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