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Abstract. Let α be an infinite cardinal. In this paper we define an interpolation rule
IR(α) for lattice ordered groups. We denote by C(α) the class of all lattice ordered groups
satisfying IR(α), and prove that C(α) is a radical class.
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1. Introduction

Darnel and Martinez [4] studied the relations between radical classes of lattice

ordered groups and classes of compact Hausdorff spaces. In Section 8 of [4] the
following condition (called the σ-interpolation property) for a lattice ordered groupG

was considered: for each pair of sequences (an)n∈ 
 and (bn)n∈ 
 in G with

a1 < a2 < . . . < b2 < b1

there exists c ∈ G such that am < c < bn for each m and n. The authors remark
that this condition had been dealt with for Boolean algebras by Walker [10].

In the present paper we consider analogous interpolation rules for G with the
distinction that transfinite sequences can be also taken into account. For each infi-

nite cardinal α we define an interpolation rule IR(α) concerning the lattice ordered
group G.

We prove that for each infinite cardinal α the class C(α) of all lattice ordered
groups satisfying IR(α) is a radical class. The correspondence α → C(α) is an
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injective mapping of the class of all infinite cardinals into the collection of all radical

classes of lattice ordered groups.

For a lattice ordered group H let k(H) be the class of all infinite cardinals α such

that H satisfies the condition IR(α). We distinguish the following cases:
a) k(H) = ∅; in this case we put f(H) = 0.
b) k(H) is the class of all infinite cardinals; then we set f(H) = ∞.
c) In the other cases we put f(H) = sup k(H).
Let G be the class of all lattice ordered groups and G ∈ G . We prove that

{G1 ∈ G : f(G1) > f(G)}

is a radical class.

We remark that a different type of interpolation rule (denoted as the Riesz in-
terpolation property) for partially ordered groups was studied by Goodearl in the

monograph [5]. Further, the term “σ-interpolation” for lattice ordered groups was
used in a different meaning by Darnel [3] and the author [8].

The notion of a radical class of lattice ordered groups was introduced by the
author [7]. In what follows, we always write “radical class” meaning a radical class

of lattice ordered groups.

From the result of Holland [6] it follows that each variety of lattice ordered groups

is a radical class. Conrad [2] dealt with K-radical classes; these are defined to be
radical classes which can be characterized by using merely the lattice properties of

the corresponding lattice ordered groups. A problem on radical classes proposed
in [7] was solved by Medvedev [9].

2. Preliminaries

For lattice ordered groups we apply the terminology and notation as in Conrad [1].

Let G be a lattice ordered group. The system of all convex `-subgroups of G will
be denoted by c(G). Under the partial order defined by the set-theoretical inclusion,
c(G) is a complete lattice.
A nonempty subclass A of G is a radical class if it satisfies the following conditions:

a) A is closed with respect to isomorphisms;

b) if G ∈ A, then c(G) ⊆ A;

c) if G ∈ G and {Gj}j∈J ⊆ c(G) ∩ A, then
∨

j∈J

Gj ∈ A.

Let β be a limit ordinal. We denote by I(β) the set of all ordinals less than β.

Let G ∈ G and gi ∈ G for each i ∈ I(β). Then (gi)i∈I(β) is a transfinite sequence
(of type β). This transfinite sequence is strictly increasing (strictly decreasing) if
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gi(1) < gi(2) (or gi(1) > gi(2), respectively) whenever i(1), i(2) ∈ I(β) and i(1) <

i(2). Further, (gi)i∈I(β) is increasing (decreasing) if gi(1) 6 gi(2) (gi(1) > gi(2)) for
i(1), i(2) ∈ I(β) with i(1) < i(2).
Instead of (gi)i∈I(β) we apply also the notation (gi)i<β .

Let α be an infinite cardinal and let G be a lattice ordered group. We define the
condition IR(α) for G as follows.

(IR(α)) Assume that
(i) β1 and β2 are limit ordinals with card I(β1) 6 α, card I(β2) 6 α;

(ii) (ai)i<β1 is a strictly increasing transfinite sequence of elements of G;

(iii) (bi)i<β2 is a strictly decreasing transfinite sequence of elements of G;

(iv) ai(1) < bi(2) for each i(1) ∈ I(β1) and i(2) ∈ I(β2).
Then there is an element of c of G such that ai(1) < c < ai(2) for each i(1) ∈ I(β1)

and i(2) ∈ I(β2).
Further, we denote by IR0(α) the condition which we obtain from IR(α) if we

perform the following modifications: in (ii), we suppose that (ai)i<β(1) is increasing;
in (iii), we suppose that (bi)i<β(2) is decreasing; in (iv) we have ai(1) 6 bi(2); and,

finally, for the element c we get ai(1) 6 c 6 bi(2).

Lemma 2.1. Let G ∈ G . Then the conditions IR(α) and IR0(α) for G are

equivalent.

�
�������
. a) Assume that the condition IR0(α) is valid for G. Further, suppose

that the assumptions of IR(α) (i.e., (i)–(iv)) are fulfilled. Then in view of IR0(α),
there exists c ∈ G such that ai(1) 6 c 6 ai(2) for each i(1) 6 β1, i(2) 6 β2.

We have to verify that ai(1) < c < ai(2) for each i(1) 6 β1 and each i(2) 6 β2.
By way of contradiction, suppose that there exists i(1) 6 β1 with ai(1) = c. There

exists i(3) 6 β1 such that i(1) < i(3). Then ai(3) > ai(1), whence ai(3) > c, which is
a contradiction. Thus ai(1) < c for each i(1) < β1. Analogously, c < ai(2) for each
i(2) < β2. Therefore IR(α) is valid for G.

b) Conversely, assume that the condition IR(α) holds for G. We distinguish the
following cases.

b1) Suppose that there exists i(1) < β1 such that ai(1) = max{ai : i < β1}. We
put c = ai(1) and we have ai(1) 6 c 6 ai(2) for each i(1) < β1, i(2) < β2. Hence

IR0(α) holds for G.

b2) Assume that there exists i(2) < β2 with bi(2) = min{bi : i < β2}. Then,
similarly as in b1), IR0(α) is valid for G.

b3) Suppose that neither the assumption b1) nor the assumption b2) is satisfied.

Then there exists a strictly increasing transfinite sequence (a′i)i<β′
1
of elements of G

such that
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(i) for each i < β′
1 there exists i(1) < β1 with a′i = ai(1);

(ii) for each i(1) < β1 there exists i < β′
1 such that ai(1) < a′i;

(iii) β′
1 6 β1.

Similarly, there exists a strictly decreasing transfinite sequence (b′i)i<β′
2
such that

(i1) for each i < β′
2 there exists i(2) < β2 with b′i = bi(2);

(ii1) for each i(2) < β2 there exists i < β′
2 such that bi(2) > b′i;

(iii1) β′
2 6 β2.

Then we have a′i(3) < b′i(4) for each i(3) < β′
1 and each i(4) < β′

2. Thus in view
of IR(α) there exists c ∈ G such that a′i(3) < c < b′i(4) for each i(3) < β′

1 and each
i(4) < β′

2. According to (ii) and (ii1) we obtain ai(1) < c < bi(2) for each i(1) < β1

and each i(2) < β2. Hence the condition IR0(α) is satisfied for G. �

3. The class C(α)

Let α be an infinite cardinal and a, b ∈ G ∈ G , a 6 b. We say that the interval [a, b]
of G satisfies the condition IR0(α) if IR0(α) holds whenever the elements ai, bi under
consideration belong to the interval [a, b].

Lemma 3.1. Let a, b ∈ G+. Assume that both the intervals [0, a] and [0, b] satisfy
the condition IR0(α). Then the interval [0, a + b] also satisfies this condition.
�
�������

. Since the interval [a, a + b] is isomorphic to [0, b] we conclude that
[a, a + b] satisfies the condition IR0(α).
Let β1 and β2 be as above. Assume that (ai)i<β1 , (bi)i<β2 satisfy the conditions

from IR0(α) and that these elements belong to the interval [0, a + b].
For each x ∈ [0, a + b] we put x1 = x ∧ a, x2 = x ∨ b. Consider the transfinite

sequences

(a1
i )i<β1 , (b1

i )i<β1 .

From the assumptions concerning ai and bi, and from the fact that [0, a] satisfies
IR0(α) we infer that there exists y ∈ [0, a] such that

(1) a1
i(1) 6 y 6 b1

i(2)

for each i(1) < β1 and each i(2) < β2.
Analogously, there exists z ∈ [a, a + b] such that

(2) a2
i(1) 6 z 6 b2

i(2)

for each i(1) < β1 and each i(2) < β2.

502



For each x ∈ [0, a + b] we have

x = x1 + (−x1 + x) = x1 + (−a + x2).

(cf. Fig. 1). Put c = y + (−a + z). Then 0 6 c 6 a + b. In view of (1) and (2) we
obtain

ai(1) = a1
i(1) + (−a1

i(1) + ai(1)) = a1
i(1) + (−a + a2

i(1)) 6 y + (−a + z) = c

for each i(1) < β1.

0

a + b

a x

x1

x2

Fig. 1

Analogously, we get bi(2) > c for each i(2) < β2. Hence IR0(α) is valid for the
interval [0, a + b]. �

The following assertion is an immediate consequence of the definition of C(α).

Lemma 3.2. Let α be an infinite cardinal. The class C(α) is closed with respect
to isomorphisms. If G ∈ C(α), then c(G) ⊆ C(α). If G, G′ ∈ G , G ∈ C(α) and if the
underlying lattices of G and G′ are isomorphic, then G′ ∈ C(α).

The following result is well-known.

Lemma 3.3. Let G ∈ G , ∅ 6= {Gj}j∈J ⊆ c(G),
∨

j∈J

Gj = G0, 0 6 x ∈ G0. Then

there exist j(1), j(2), . . . , j(n) ∈ J and elements a1 ∈ Gj(1), . . . , an ∈ Gj(n) such that

x = a1 + a2 + . . . + an.

Lemma 3.4. Let G ∈ G , ∅ 6= {Gj}j∈J ⊆ c(G) ∩ C(α). Then
∨

j∈J

Gj ∈ C(α).

�
�������
. Let G0 be as in 3.3. It is obvious that G0 satisfies the condition IR0(α)

if and only if, for each a, b ∈ G0 with a 6 b, the interval [a, b] satisfies this condition.
Since the interval [a, b] is isomorphic to the interval [0, b−a], we can restrict ourselves
to the intervals of the form [0, x] for 0 6 x. Let a1, a2, . . . , an be as in 3.3. By
using 3.1 and the obvious induction on n we obtain that [0, x] satisfies IR0(α); hence
G0 satisfies this condition. Then according to 2.1, G0 belongs to C(α). �
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Theorem 3.5. Let α be an infinite cardinal. Then C(α) is a K-radical class.
�
�������

. This is a consequence of 3.2 and 3.4. �

Example 3.6. Let α be an infinite cardinal and let G be a complete lattice
ordered group. Further, let (ai)i<β1 and (bi)i<β2 be as in the definition of IR(α).
Then

∨
i<β1

ai exists in G; we denote this element by c. Then, with this element c

under consideration, IR(α) is satisfied for G. Hence G ∈ C(α). Therefore for each
infinite cardinal α, C(α) is a proper class.

It is obvious that if α1 and α2 are infinite cardinals with α1 < α2, then C(α2) ⊆
C(α1). Let Q be the additive group of all rationals with the natural linear order. It
is easy to verify that Z does not belong to C(ℵ0). Hence, for each infinite cardinal α,
Z /∈ C(α); thus C(α) 6= G .

Example 3.7. Let α be an infinite cardinal. Let T be a linearly ordered set which
is isomorphic to the first ordinal whose cardinality is equal to α. Hence for each t ∈ T

we have card{t1 ∈ T : t1 6 t} < α. Let G(α) be the set of all real functions x defined

on T having the property that there exists tx ∈ T with x(t) = x(tx) for each t > tx.

Let α1 be an infinite cardinal; assume that α1 < α. Further, let β1 and β2 be
limit ordinals with cardβi 6 α1 (i = 1, 2). Suppose that (ai)i<β1 and (bi)i<β2 are

transfinite sequences of elements of G(α) such that the conditions (ii), (iii) and (iv)
from the definition of IR(α) are satisfied.
There exists t0 ∈ T such that t0 > tai for each i < β1 and t0 > tbi for each i > β2.

Hence ai (i < β1) and bi (bi < β2) are constants for t > t0.

Let t ∈ T . The set {ai(t) : i < β1} is upper bounded, hence there exists a real

ct = sup{ai(t) : i < β1}.

Consider a real function y on T such that y(t) = ct for each t ∈ T . Then y is a
constant for t > t0, whence y ∈ G(α). Further, we have

y =
∨

i<β1

ai.

Hence ai(1) < y for each i(1) < β1 and y < bi(2) for each i(2) < β2.

We have verified that G(α) satisfies the condition IR(α1). Now we want to show
that G(α) does not satisfy the condition IR(α).
Put β1 = β2 = T . We define elements ai and bi (i < β1) as follows.
Let t ∈ T . Then t can be uniquely expressed in the form t = t1 + t2, where

(i) t1 = 0 or t0 is a limit ordinal,
(ii) t2 is a non-negative integer.
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We have to define ai(t) and bi(t). Recall that both i and t are elements of T ; let

i = t1 + t2 (under the notation as above).

a) If t > i, then we put

ai(t) = 0, bi(t) = 3.

b) Let t 6 i. We set

ai(t) = bi(t) =

{
1 if t is even,

2 if t is odd.

Then the conditions (ii), (iii) and (iv) from the definition of IR(α) are satisfied. But
there is no c ∈ C(α) such that ai < c < bi for each i < β1. Hence G(α) does not
satisfy IR(α).
As a corollary we obtain:

Proposition 3.8. Let α1 and α2 be infinite cardinals, α1 < α2. Then C(α2) ⊂
C(α1).

Corollary 3.9. The correspondence α → C(α) is an injective mapping of the
class of all infinite cardinals into the collection of all radical classes.

Proposition 3.10. Let α be an infinite cardinal. Then the class C(α) is closed
with respect to direct products.

�
�������
. Let {Gj}j∈J ⊆ G , G =

∏
j∈J

Gj . Assume that all Gj belong to C(α).

Then in view of 2.1, all Gj satisfy the condition IR0(α). This yields that G satisfies
this condition as well. By using 2.1 again we conclude that G satisfies the condi-

tion IR(α). Therefore G belongs to C(α). �

We conclude this section by remarking that if we replace, in the above construc-
tion of C(α), the infinite cardinal α by a limit ordinal β, then by applying the same
method we obtain again a radical class; let us denote it by C1(β). But there ex-
ist distinct limit ordinals β1 and β2 such that C1(β1) = C1(β2); hence the result
analogous to 3.8 does not hold in this case.
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4. The mapping f

Let f be as in Section 1. We start by giving some examples.

Example 4.1. Let G be a complete lattice ordered group. Then in view of 3.6,

G ∈ C(α) for each infinite cardinal α. Hence f(G) = ∞.

Example 4.2. Let Q be the additive group of all rationals with the natural linear
order. Then Q does not satisfy the condition IR(ℵ0), whence Q /∈ C(ℵ0). Thus
according to 3.8 we have Q /∈ C(α) for each infinite cardinal α. Hence f(Q) = 0.

Example 4.3. Let α be an infinite cardinal, α > ℵ0. Consider the lattice ordered
group G(α) from 3.7. Then we have α /∈ k(G(α)) and α1 ∈ k(G(α)) for each infinite
cardinal α1 with α1 < α. We distinguish two cases.

a) α is a limit cardinal. Then f(G(α)) = α.

b) α is a non-limit cardinal. Hence the set of all cardinals less than α has a greatest
element α0. Then f(G(α)) = α0.

For each H ∈ G we put

C(H) = {G ∈ G : f(G) > f(H)}.

It is obvious that C(H) is closed with respect to isomorphisms.

Lemma 4.4. Let H ∈ G , G ∈ C(H) and G1 ∈ c(G). Then G1 ∈ C(H).
�
�������

. If α is an infinite cardinal and G ∈ C(α), then G1 belongs to C(α) as
well. Hence k(G1) ⊇ k(G) and thus f(G1) > f(G). Therefore G1 belongs to C(H).

�

Lemma 4.5. Let H, G ∈ G , {Gj}j∈J ⊆ c(G) ∩ C(H). Put G0 =
∨

j∈J

Gj . Then

G0 ∈ C(H).
�
�������

. Let α ∈ k(H) and j ∈ J . In view of the assumption we have f(Gj) >
f(H). Our aim is to show that the relation

(1) f(G0) > f(H)

holds. We distinguish the following cases.

a) f(H) = 0. We clearly have f(G0) > 0, whence (1) is valid.
b) f(H) = ∞. Then f(G0) = ∞ for each j ∈ J . Thus for each infinite cardinal α

and each j ∈ J we get Gj ∈ C(α), yielding G0 ∈ C(α). Thus f(G0) = ∞.
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c) There are infinite cardinals α1 and α0 such that f(H) = α0 and α1 is the

greatest cardinal which is less than α0. In this case we necessarily have H ∈ C(α0).
Let j ∈ J . If Gj /∈ C(α0), then f(Gj) 6 α1, which is a contradiction. Thus all Gj

belong to C(α0) and hence G0 belongs to C(α0) as well. Then f(G0) > α0.

d) f(H) = α0 is a limit cardinal, α0 6= ℵ0. If α < α0, j ∈ J , then since f(Gj) >
f(H), we obtain Gj ∈ C(α). This implies that G0 ∈ C(α) and thus f(G0) > α0.

e) In the remaining case we have f(H) = ℵ0. If H does not belong to C(ℵ0), then
H does not satisfy IR(ℵ0), thus k(H) = ∅. Then f(H) = 0, which is a contradiction.
Let j ∈ J . If Gj /∈ C(ℵ0), then we have f(Gj) = 0, which is impossible in view
of f(Gj) > f(H). Thus Gj ∈ C(ℵ0) and then G0 belongs to C(ℵ0) as well. Hence
f(G0) > ℵ0. �

Summarizing, we obtain

Theorem 4.6. Let H ∈ G . Then C(H) is a radical class.
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