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Abstract. In the paper it is proved that a nontrivial direct product of lattice ordered
groups is never affine complete.
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1. Introduction

Polynomial completeness and affine completeness of various algebraic structures
have been investigated in a rather large series of papers and systematically studied

in the monograph [3].

The problem of the existence of a nontrivial affine complete lattice ordered group
remains open (cf. [3], p. 331, Problem 5.6.19).

The following negative results have been proved.

(A1) Let G be a complete lattice ordered group. Then G is affine complete if
and only if G = {0}. (Cf. [1].)

More generally, we have

(A2) Let G be an abelian projectable lattice ordered group. Then G is affine
complete if and only if G = {0}. (Cf. [2].)

(A3) Let G be an abelian lattice ordered group, G = A × B, A 6= {0} 6= B.

Then G is not affine complete. (Cf. [1].)

(A4) A direct product of a nonzero subdirectly irreducible lattice ordered group

and any lattice ordered group is never affine complete (cf. [3], Section 3.6.4).
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In the present paper we prove that (A2) and (A3) remain valid without assuming

that G is abelian.

2. Preliminaries

We apply the terminology as in [3]. An algebra is affine complete if every congru-

ence compatible function is induced by a polynomial.

Let G 6= {0} be a lattice ordered group. We denote by P (G) the set of all
polynomials over G and by Con G the set of all congruence relations on G.

Let p(x) ∈ P (G). From the basic properties of lattice ordered groups we easily
obtain that p(x) can be represented in the form

(1) p(x) =
∧

i∈I

∨

j∈J(i)

(
a1

ij + a2
ij + . . . + a

n(i,j)
ij

)
,

where I , J(i) are nonempty finite sets and for each i ∈ I , j ∈ J(i), k ∈ {1, 2, . . . ,

n(i, j)} we have either
a) ak

ij ∈ G,

or

b) ak
ij ∈ {x,−x}.

We denote by [a] the set of all triples (i, j, k) (under the notation as above) such
that the condition a) is valid.

In this section we assume that [a] 6= ∅. Let m0 be the number of elements of the
set [a].
There exists s ∈ G+ such that

s >
∨

(i,j,k)∈[a]

|ak
ij |.

This condition is satisfied if and only if

(α) s > ak
ij and s > −ak

ij for each (i, j, k) ∈ [a].

Put

x1 = 3m0s.

In the present section we deal with the properties of the element p(x1).
Let i, j be fixed and let 1 6 k < n(i, j). Suppose that

ak
ij = x, ak+1

ij ∈ G.

424



Then in the corresponding expression for p(x1) (cf. (1)) we have

x1 + ak
ij = (x1 + ak

ij − x1) + x1.

Since
−s 6 ak

ij 6 s,

we obtain
−s 6 x1 + ak

ij − x1 6 s.

In a similar way we can proceed if ak
ij = −x.

We put

pij(x) = a1
ij + a2

ij + . . . + a
n(i,j)
ij .

Applying the above mentioned steps and using the obvious induction we conclude

that pij(x1) can be written in the form

(2) pij(x1) = a1
ij + a2

ij + . . . + a
`(i,j)
ij + kijx1,

where 0 6 `(i, j) 6 n(i, j), kij is an integer and for each k ∈ {1, 2, . . . , `(i, j)} we
have

ak
ij ∈ [−s, s].

Denote
aij = a1

ij + . . . + a
`(i,j)
ij .

Keeping the element i fixed we put

j̄ = {j(1) ∈ J(i) : ki,j(1) = kij}
pij̄(x) =

∨

i(1)∈j̄

(
a1

ij(1) + a2
ij(1) + . . . + a

n(i,j(1))
ij(1)

)
.

Then we get

pij̄(x1) =
∨

j(1)∈j̄

(aij(1) + kijx1) =
( ∨

j(1)∈j̄

aij(1)

)
+ kijx1.

We set ∨

j(1)∈j̄

aij(1) = a∗ij .

For each j ∈ J(i) we have
aij ∈ [−m0s, m0s],

whence

(3) a∗ij ∈ [−m0s, m0s].

Now let j and j′ be elements of J(i) such that j̄ 6= j′. Hence we have kij 6= kij′ .
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2.1. Lemma. Assume that kij < kij′ . Then pij̄(x1) < p
ij′(x1).


���
�
��
. We have

pij̄(x1) = a∗ij + kijx1, p
ij′ (x1) = a∗ij′ + kij′x1.

We want to show that

(α1) a∗ij + kijx1 < a∗ij′ + kij′x1.

The relation (α1) is equivalent to

(α2) −a∗ij′ + a∗ij < (kij′ − kij)x1.

In view of (3) we get

−a∗ij′ ∈ [−m0s, m0s],

whence

−a∗ij′ + a∗ij ∈ [−2m0s, 2m0s],

thus according to the definition of x1 we obtain

−a∗ij′ + a∗ij < x1 6 (kij′ − kij)x1,

which completes the proof. �

For i ∈ I we put

pi(x) =
∨

j∈J(i)

(
a1

ij + a2
ij + . . . + a

n(i,j)
ij

)
=

∨

j∈J(i)

pij(x).

Hence we obtain

pi(x1) =
∨

j∈J(i)

pij(x1) =
∨

j∈J(i)

pij̄(x1).

There exists a pair (i, j(0)) such that

ki,j(0) = max{kij}j∈J(i).

Then in view of 2.1 we conclude
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2.2. Lemma. pi(x1) = a∗ij(0) + kij(0)x1.

Let us now write j(i) instead of j(0). Since

p(x) =
∧

i∈I

pi(x)

we get
p(x1) =

∧

i∈I

pi(x1) =
∧

i∈I

(a∗i,j(i) + kij(i)x1).

For the indices belonging to I we proceed analogously as we did above for the
indices belonging to J(i).
Let i ∈ I . We put

ī = {i(1) ∈ I : ki(1),j(i(1)) = ki,j(i)},

pī(x) =
∧

i(1)∈ī

pi(1)(x),

a∗∗ī =
∧

i(1)∈ī

a∗i(1),j(i(1)).

Then we have

pī(x1) =
∧

i(1)∈ī

pi(1)(x1) =
∧

i(1)∈ī

(a∗i(1),j(i(1)) + ki,j(i)x1)

=
( ∧

i(1)∈ī

a∗i(1),j(i(1))

)
+ ki,j(1)x1 = a∗∗i + ki,j(i)x1.

From (3) we conclude that

(4) a∗∗ī ∈ [−m0s, m0s]

for each i ∈ I .
Now let i and i′ be elements of I such that ī 6= i′, i.e., ki,j(i) 6= ki′j(i′). By an

argument similar to that in the proof of 2.1 we obtain

2.3. Lemma. Assume that ki,j(i) < ki′j(i′). Then pī(x1) < p
i′(x1).

There exists i(0) ∈ I such that

ki(0),j(i(0)) = min
i∈I

{ki,j(i)}.

Then in view of 2.3 we have
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2.4. Lemma. p(x1) = a∗∗
i(0)

+ ki(0),j(i(0))x1.

3. Direct products

If a lattice ordered group G is a direct product,

(1) G = A×B

and if g ∈ G, then the component of g in A or in B will be denoted by g(A) or
by g(B), respectively.

3.1. Theorem. Let (1) be valid. Assume that A 6= {0} 6= B. Then G is not

affine complete.


���
�
��
. Consider the mapping f : G → G such that f(g) = g(A) for each g ∈ G.

Then in view of 1.4 in [1], f is compatible with all elements of Con G.

By way of contradiction, suppose that G is affine complete. Thus there exists
p(x) ∈ P (G) such that p(x) = f(x).
For p(x) we apply the notation as in Section 2. First let us assume that the set [a]

is empty. Hence (cf. (1) in Section 2) we have

ak
ij ∈ {x,−x}

for each i ∈ I , j ∈ J(i) and k ∈ {1, 2, . . . , n(i, j)}.
There exist 0 < a ∈ A, 0 < b ∈ B. Put g = a + b. In view of (1) in Section 1 we

easily verify that there exists an integer k0 with

p(g) = k0g.

Thus g(A) = a 6= k0g, whence

f(g) = a 6= k0g = p(g),

which is a contradiction.

Therefore we must have [a] 6= ∅. Thus we can apply Lemma 2.4. We will use the
simpler notation ki(0) instead of ki(0),j(i(0)). Then we have

(∗) p(x1) = a∗∗
i(0)

+ ki(0)x1.
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Since the element s from Section 2 is subjected only to the condition (α), we can

suppose without loss of generality that

s(A) > 0, s(B) > 0.

Thus we get
x1(A) > 0, x1(B) > 0.

We put x1(A) = a, x1(B) = b.

Further, according to (4) in Section 2, we obtain

a∗∗ī (A) ∈ [−m0s(A), m0s(A)],(4.1)

a∗∗ī (B) ∈ [−m0s(B), m0s(B)](4.2)

for each i ∈ I .
From (∗) and from the assumption we get

a = a∗∗
i(0)

(A) + ki(0)a.

If ki(0) 6= 1, then (4.1) and the relation a = x1(A) = 3m0s(A) imply a contradiction.
Hence ki(0) = 1. Then

p(x1) = a∗∗
i(0)

+ x1.

By considering the components in B, we obtain

0 = a∗∗
i(0)

(B) + b.

Since b = x1(B) = 3m0s(B) we have arrived at a contradiction with 4.2. �

3.2. Theorem. Let G 6= {0} be a projectable lattice ordered group. Then G is

not affine complete.

���
�
��

. If G is linearly ordered, then it is subdirectly irreducible and hence in
view of (A4), G is not affine complete. Suppose that G is not linearly ordered. Then,

being projectable, it can be expressed in the form G = A× B, A 6= {0} 6= B. Thus
according to 3.1, G is not affine complete. �
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