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Abstract. In this paper we consider the optimal control of both operators and parameters
for uncertain systems. For the optimal control and identification problem, we show existence
of an optimal solution and present necessary conditions of optimality.
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1. Introduction

Many physical systems arising from thermodynamics, electrodynamics, and pop-
ulation biology are modelled by differential equations, integrodifferential equations,

and nonlinear evolution equations with uncertain parameters or undetermined oper-
ators.

In this paper we consider differential equations on Banach spaces as follows:

{
ẋ+A(t, x) = g(t, x),

x(0) = x0,

where A is a nonlinear monotone operator from a Banach space V into its dual V ∗

and g(t, x) is a nonlinear but not necessarily monotone operator. An associated
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control system may be described as

(CP)

{
ẋ+A(t, x, λ) +Bx = g(t, x, λ),

x(0;λ) = x0(λ), λ ∈ Qm, B ∈ Pa,b,

where Qm is a compact metric space and Pa,b is a suitable subset of L (V, V ∗).
Define the cost functional J(·, ·) by the form

J(λ,B) =
∫

I

f(t, x(λ,B)(t), λ) dt,

where I = [0, T ], T <∞ and x(λ,B) is a solution function of (CP). The problem is
to find (λ0, B0) ∈ Qm ×Pa,b (admissible set) so that

(P) J(λ0, B0) 6 J(λ,B) for all (λ,B) ∈ Qm ×Pa,b.

In recent years optimal control and identification problems have been extensively
studied by many authors (see [5], [6], [10], [12], [11] and the references therein) and

more generally, functional differential inclusions have been studied by Ahmed and
Papageorgious (see [1], [2], [7], [8] and the references therein). These studies were

mainly concerned with the question of existence of optimal controls in the uncertain
systems.
In this paper, we study the existence of the optimal solution for problem (CP) as

well as the optimal pair for the identification problem (P). We also derive necessary
conditions of optimality for the identification problem (P).

2. Existence and uniqueness of solutions

Let H be a separable Hilbert space and let V be a subspace of H having the
structure of a reflexive Banach space, with the embedding V ↪→ H being compact.

Identifying H with its dual, we have V ↪→ H ↪→ V ∗, where V ∗ is the topological
dual of V . The system model considered here is based on this evolution triple.

Let 〈x, y〉 denote the pairing of an element x ∈ V and an element y ∈ V ∗. If
x, y ∈ H , then 〈x, y〉 = (x, y). The norm in any Banach space X will be denoted by
‖ · ‖X .
Let {e1, e2, . . .} be a basis of V and set

Hn = span{e1, e2, . . . , en}.

In the n-dimensional space Hn we introduce the scalar product of Hilbert space H .
Note that Hn ⊆ V ⊆ H .
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Let 0 < t 6 T <∞, It ≡ [0, t], I ≡ [0, T ], and let p, q > 1 be such that

1/p+ 1/q = 1 and 2 6 p <∞.

For simple notation, we write Lt
r(X) ≡ Lr(It, X), Lr(X) ≡ Lr(I,X) for r > 1 and

a set X . For p, q satisfying the preceding conditions, it follows from the reflexivity
of V that both Lt

p(V ) and Lt
q(V

∗) are reflexive Banach spaces (see Theorem 1.1.17
of [3]). The pairing of Lt

p(V ) and Lt
q(V ∗) is denoted by 〈〈·, ·〉〉t. In particular, we

use 〈〈·, ·〉〉 ≡ 〈〈·, ·〉〉T . Clearly, for u, v ∈ L2(H), 〈〈u, v〉〉 = ((u, v)), where ((·, ·)) is the
scalar product in Hilbert space L2(H). Let ẋ = ∂

∂tx. Define

Wp,q = {x : x ∈ Lp(V ), ẋ ∈ Lq(V ∗)}, ‖x‖2
Wp,q

= ‖x‖2
Lp(V ) + ‖ẋ‖2

Lq(V ∗).

Then {Wp,q , ‖ · ‖Wp,q} is a Banach space and the embedding Wp,q ↪→ C(I,H) is
continuous. If V ↪→ H is compact, then Wp,q ↪→ Lp(H) is compact (see Proposi-
tion 23.23 of [13]). Let L (X,Z) denote the space of all bounded linear operators
from X to Z and A∗ the dual of the operator A. Let

Pa,b = {B ∈ L (V, V ∗) : ‖B‖L (V,V ∗) 6 b and 〈Bξ, ξ〉+ a‖ξ‖H > 0, for all ξ ∈ V }.

Consider the space of operators L (V, V ∗) and suppose that is equipped the strong
(weak) operator topology which we denote by τso (τwo). Given this topology,

Ls(V, V ∗) ≡ (L (V, V ∗), τso) is a locally convex linear topological vector space which
is sequentially complete. Similarly, Lw(V, V ∗) ≡ (L (V, V ∗), τwo) with the weak
operator topology τwo is also a sequentially complete and locally convex topological
space. We shall suppose that Qm is algebraically contained in a linear topological

vector space and that Qm is a convex and we will denote Qm a compact metric space
with a metric τm. We introduce the following assumptions:

H(A) A : I × V ×Qm 7→ V ∗ is an operator.
(1) t 7→ A(t, x, λ) is measurable.
(2) x 7→ A(t, x, λ) is uniformly monotone and hemicontinuous; i.e., there exists
a constant c > 0 such that

〈A(t, x1, λ) −A(t, x2, λ), x1 − x2〉 > c‖x1 − x2‖p
V ,

∀x1, x2 ∈ V, t ∈ I, λ ∈ Qm;

A(t, x + sy, λ) w→ A(t, x, λ) ∈ V ∗,
∀x, y ∈ V, λ ∈ Qm as s→ 0.

(3) There exist positive constants c1 and c2 such that

〈A(t, x, λ), x〉 > c1‖x‖p
V − c2, ∀x ∈ V, t ∈ I, λ ∈ Qm.
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(4) There exist a positive constant c3 and a function c4(t) ∈ Lq(I, � + ) such
that

‖A(t, x, λ)‖V ∗ 6 c4(t) + c3‖x‖p−1
V , ∀x ∈ V, t ∈ I, λ ∈ Qm.

(5) ‖A(t + τ, x, λ) − A(t, x, λ)‖V ∗ 6 O(τ)(1 + ‖x‖p−1
V ), ∀x ∈ V , λ ∈ Qm and

O(τ) is independent of λ and x.
(6) λ 7→ A(t, x, λ) is continuous.

H(g) g : I ×H ×Qm 7→ V ∗ is a map.

(1) t 7→ g(t, ·, ·) is measurable.
(2) x 7→ g(·, x, ·) is continuous.
(3) There exist α > 0 and h ∈ Lq(I, � + ) such that

‖g(t, x, λ)‖V ∗ 6 h(t) + α‖x‖2/q
H , ∀x ∈ V, t ∈ I, λ ∈ Qm.

(4) 〈g(t, x, λ), x〉 6 0 a.e. x ∈ H .
(5) g is locally Lipschitz continuous with respect to x and for any b > 0
there exists L(b) such that x1, x2 ∈ H , ‖x1‖H , ‖x2‖H 6 b, ‖g(t, x1, λ) −
g(t, x2, λ)‖V ∗ 6 L(b)‖x1 − x2‖H , ∀ t ∈ I, λ ∈ Qm.

(6) λ 7→ g(·, ·, λ) is continuous.
H(λ) λ 7→ x0(λ) is continuous from Qm into H .

H(f) f : I ×H ×Qm 7→ � + is an integrable function.

(1) (t, x, λ) 7→ f(t, x, λ) is measurable.
(2) x 7→ f(·, x, ·) is continuous; i.e., if λn → λ inQm, then f(t, ·, λn) → f(t, ·, λ)
a.e.

Under the above assumptions we consider the following initial value problem:

(2.1)

{
ẋ(t) +A(t, x, λ) +Bx(t) = g(t, x(t), λ),

x(0) = x0(λ), λ ∈ Qm, B ∈ Pa,b.

For given x0(λ) ∈ H , we seek a function x ∈ Wp,q such that (2.1) is satisfied in a

weak sense. For x ∈ Lp(V ), λ ∈ Qm, we set

A(x, λ)(t) = A(t, x(t), λ), G(x, λ)(t) = g(t, x(t), λ), t ∈ I.

Note that A : Lp(V )×Qm 7→ Lq(V ∗) is bounded, uniformly monotone, hemicontin-
uous and coercive and also the operator G : Lp(V )×Qm 7→ Lq(V ∗) is bounded.
The purpose of this section is to prove the existence and uniqueness of solution

for equation (2.1) based on Galerkin approximation.

Let λ ∈ Qm be an arbitrary fixed parameter. We get the following lemma.
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Lemma 2.1. If xn → x0 weakly in Wp,q , then G(xn, λ) → G(x0, λ) in Lq(V ∗).
���������

. Since the embedding V ↪→ H is compact, the embeddingWp,q ↪→ Lp(H)
is compact as well. Since xn w→ x0 ∈ Wp,q , there exists a constant b > 0 such that
‖x0‖C(I,H) 6 b, ‖xn‖C(I,H) 6 b. By virtue of assumption H(g) and the embedding

Lp(H) ↪→ Lq(H) ↪→ Lq(V ∗), we have

‖G(xn, λ)−G(x0, λ)‖Lq(V ∗) =
(∫

I

‖g(t, xn(t), λ)− g(t, x0(t), λ)‖q
V ∗ dt

)1/q

6 L(b)
(∫

I

‖xn(t)− x0(t)‖q
H dt

)1/q

6 L∗
(∫

I

‖xn(t)− x0(t)‖p
H dt

)1/p

,

where L∗ is a constant depending on p, q, b and the Lebesgue measure of I . Hence
the conclusion follows. �

Remark. It is convenient to write system (2.1) as an operator equation in

(2.2) W 0
p,q(λ) ≡ {x ∈ Wp,q ; x(0) = x0(λ)} :

{
ẋ+A(x, λ) +Bx = G(x, λ),

x ∈W 0
p,q(λ), B ∈ Pa,b, λ ∈ Qm.

Lemma 2.2. There exists b > 0 such that

‖x‖C(I,H) 6 b, ‖x‖Lp(V ) 6 b, ‖ẋ‖Lq(V ∗) 6 b

for any solution x (if one exists) of equation (2.1).
���������

. If x is any solution of (2.1), then for each t ∈ I ,

〈〈ẋ, x〉〉t + 〈〈A(x, λ), x〉〉t + 〈〈Bx, x〉〉t = 〈〈G(x, λ), x〉〉t .

Using the assumptions and the Cauchy inequality, for any ε > 0 we have

1
2

(
‖x(t)‖2

H − ‖x(0)‖2
H) +

∫ t

0

(c1‖x(σ)‖p
V − c2

)
dσ(2.3)

6 a

∫ t

0

‖x(σ)‖2
H dσ +

∫ t

0

‖g(σ, x(σ), λ)‖V ∗‖x(σ)‖V dσ.

From (2.3), we have

‖x(t)‖2
H + 2c1

∫ t

0

‖x(σ)‖p
V dσ 6 2c2T + ‖x(0)‖2

H + 2a
∫ t

0

‖x(σ)‖2
H dσ

+ 2
∫ t

0

(h(σ) + α‖x(σ)‖2/q
H )‖x(σ)‖V dσ.
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Thus we obtain

‖x(t)‖2
H + 2c1

∫ t

0

‖x(σ)‖p
V dσ 6 2c2T + ‖x(0)‖2

H + 2a
∫ t

0

‖x(σ)‖2
H dσ

+ (2/qεq)
∫ t

0

(h(σ) + α‖x(σ)‖2/q
H )q dσ

+ (2εp/p)
∫ t

0

‖x(σ)‖p
V dσ.

Choosing ε > 0 sufficiently small and h ∈ Lq(I, � + ), one can easily verify that there
exist positive constants c5, c6, c7 such that

(2.4) ‖x(t)‖2
H + c5‖x‖p

Lt
p(V ) 6 c6 + c7

∫ t

0

‖x(σ)‖2
H dσ.

It follows from Gronwall’s lemma that the above inequality implies

‖x(t)‖H 6 c8 ∀ t ∈ I,

for some constant c8 depending on c6 and c7. Again, by virtue of assumptions (3)–(4)
of H(A), (3) of H(g), definition of Pa,b and inequality (2.4), it is easy to verify that

there exist positive constants c9, c10 such that

‖x‖Lp(V ) 6 c9, ‖ẋ‖Lq(V ∗) 6 c10.

Choosing b = max{c8, c9, c10}, the assertion follows. �

Lemma 2.3. The solution of (2.1), if one exists, is unique.

���������
. Let x1, x2 ∈ W 0

p,q(λ) be two solutions of (2.1). Using integration by
parts and the monotonicity of the operator A and the definition of Pa,b, we obtain

1
2
‖x1(t)− x2(t)‖2

H + c‖x1 − x2‖p
Lt

p(V ) 6 a

∫ t

0

‖x1(σ) − x2(σ)‖2
H dσ

+
∫ t

0

〈g(σ, x1(σ), λ) − g(σ, x2(σ), λ), x1(σ)− x2(σ)〉V ∗,V dσ.
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By virtue of assumption H(g), Lemma 2.2, and the Cauchy inequality, for any ε > 0
we have

1
2
‖x1(t)− x2(t)‖2

H + c‖x1 − x2‖p
Lt

p(V ) 6 |a|
∫ t

0

‖x1(σ)− x2(σ)‖2
H dσ

+
∫ t

0

‖g(σ, x1(σ), λ) − g(σ, x2(σ), λ)‖V ∗‖x1(σ) − x2(σ)‖V dσ

6 |a|
∫ t

0

‖x1(σ)− x2(σ)‖2
H dσ

+ L(b)
∫ t

0

‖x1(σ) − x2(σ)‖H‖x1(σ)− x2(σ)‖V dσ

6 |a|
∫ t

0

‖x1(σ)− x2(σ)‖2
H dσ + (L(b)/2ε)

∫ t

0

‖x1(σ)− x2(σ)‖2
H dσ

+ (L(b)ε/2)
∫ t

0

‖x1(σ) − x2(σ)‖2
V dσ.

Using the compact embedding Lt
p(V ) ↪→ Lt

2(V ), we obtain

‖x1(t)− x2(t)‖2
H + 2c‖x1 − x2‖p

Lt
p(V ) 6 (2|a|+ L(b)/ε)

∫ t

0

‖x1(σ)− x2(σ)‖2
H dσ

+ L1ε

∫ t

0

‖x1(σ)− x2(σ)‖p
V dσ,

where L1 is a constant depending on b and the embedding constant. Consequently,
for sufficiently small ε > 0, there exists a constant c′ > 0 such that

‖x1(t)− x2(t)‖2
H + c′‖x1 − x2‖p

Lt
p(V ) 6 (2|a|+ L(b)/ε)

∫ t

0

‖x1(σ) − x2(σ)‖2
H dσ.

Using Gronwall’s lemma, uniqueness follows from the above inequality. �

Theorem 2.1. Under assumptions H(A) and H(g), problem (2.1) has a unique
solution.
���������

. Let a sequence {xn
0} be an approximation of the given initial state

x0(λ) ∈ H , i.e., xn
0 (λ) ∈ Hn, xn

0 (λ) → x0(λ) in H as n → ∞. We consider the
sequence xn(t) =

n∑
k=1

Ck,n(t)ek and seek a function xn such that

(2.5)





〈ẋn(t), ej〉+ 〈A(t, xn(t), λ), ej〉+ 〈Bxn(t), ej〉
= 〈g(t, xn(t), λ), ej〉, j = 1, 2, . . . , n;

xn(0) = xn
0 (λ);

xn ∈ Lp(I,Hn), ẋn ∈ Lq(I,Hn).
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It follows from the existence theorem of Carathéodory for the ordinary differential

equation in � n (see [13]) and Lemma 2.2 that, for each n ∈ � , the finite dimensional
system (2.5) has a unique solution xn. It can be seen from Lemma 2.3 that {xn} is
contained in a bounded subset of W 0

p,q(λ). Hence, by assumption H(A), {A(xn, λ)}
is bounded in Lq(V ∗). Since B ∈ Pa,b, {Bxn} is bounded in Lq(V ∗) and also
since Lp(V ) and Lq(V ∗) are reflexive Banach spaces, there exists a subsequence,
again denoted by {xn}, an element x ∈ Lp(V ) with its distributional derivative
ẋ ∈ Lq(V ∗) and W ∈ Lq(V ∗) such that

xn w→ x0 ∈ Lp(V ),

ẋn w→ ẋ0 ∈ Lq(V ∗),

A(xn, λ) w→W ∈ Lq(V ∗),

Bxn w→ Bx0 ∈ Lq(V ∗) as n→∞.

Combining the assumptions with Lemma 2.1, we have

G(xn, λ) → G(x0, λ) ∈ Lq(V ∗),

xn(0) → x0(λ) ∈ H,
xn(T ) w→ z ∈ H as n→∞.

Let ψ ∈ C∞(I, � ) and v ∈ Hn. Using equation (2.5) and integration by parts, one
can obtain

(xn(T ), ψ(T )v)− (xn(0), ψ(0)v) =
∫ T

0

〈xn(t), ψ̇(t)v〉 dt

+
∫ T

0

〈g(t, xn(t), λ) −A(t, xn(t), λ)−Bxn(t), ψ(t)v〉 dt.

Letting n→∞, we have

(z, ψ(T )v)− (x0(λ), ψ(0)v) = 〈〈G(x0, λ)−W −Bx0, ψv〉〉+ 〈〈ψ̇v, x0〉〉.

Using this, one can easily verify that the limit elements x0, W , z, Bx0 satisfy

{
ẋ0 +W +Bx0 = G(x0, λ),

x(0) = x0(λ), x0(T ) = z, x0 ∈Wp,q .

Again using equation (2.5) and integration by parts, we have

1
2
(‖xn(T )‖2

H − ‖xn(0)‖2
H) = 〈〈G(xn, λ)−A(xn, λ)−Bxn, xn〉〉.
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By virtue of the fact that lim inf
n→∞

‖xn(T )‖H > ‖x0(T )‖H , we obtain

〈〈W,x0〉〉 6 lim inf
n→∞

〈〈A(xn, λ), xn〉〉
6 lim sup

n→∞
〈〈A(xn, λ), xn〉〉

6 〈〈G(x0, λ), x0〉〉 − 〈〈Bx0, x0〉〉+ 1
2 (‖x0(0)‖2

H − ‖x0(T )‖2
H)

= 〈〈W,x0〉〉.

Since A is monotone and hemicontinuous, W = A(x0, λ) (see [13]). Thus the limit
element x0 satisfies equation (2.2) and hence is a solution of (2.1). The uniqueness

follows from Lemma 2.3. This completes the proof. �

3. Existence of optimality for both operators and parameters

In this section, we consider the identification problem (P) of nonlinear system (2.1).
Find a pair (λ0, B0) ∈ Qm × Pa,b, such that J(λ0, B0) 6 J(λ,B) for all (λ,B) ∈
Qm ×Pa,b, where

(3.1) J(λ,B) =
∫ T

0

f(t, x(λ,B)(t), λ) dt.

In the following, we assume that the initial datum x0(λ) ≡ x0 is fixed.

Lemma 3.1. Consider the identification problem (P). Suppose that assumptions
H(A), H(g), H(λ), and H(f) hold. Then the mapping (λ,B) → x(λ,B) is conti-
nous from Qm ×Ls(V, V ∗) to C(I,H) and the functional (λ,B) → J(λ,B) is lower
semicontinuous on Qm ×Ls(V, V ∗).

���������
. Suppose λn → λ0 ∈ Qm and Bn → B0 ∈ Ls(V, V ∗). Let {xn}

and {x0} denote the solutions of the system (2.1) corresponding to (λn, Bn) and
(λ0, B0), respectively. Defining yn = xn −x0, one observes that yn is the solution of
the problem

(3.2)





ẏn(t) + (A(t, xn(t), λn)−A(t, x0(t), λn)) +Bnyn(t)

= −(A(t, x0(t), λn)−A(t, x0(t), λ0)) + (B0 −Bn)x0(t)

+g(t, xn(t), λn)− g(t, x0(t), λ0),

xn(0)− x0(0) = 0.
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Scalar multiplying the first equation of (3.2) on either side by yn and using Young’s

inequality, we have

1
2
‖yn(t)‖2

H + c‖yn‖p
Lt

p(V ) 6 |a|
∫ t

0

‖yn(σ)‖2
H dσ + L(b)

∫ t

0

‖yn(σ)‖H‖yn(σ)‖V dσ

+
∫ t

0

‖(B0 −Bn)x0(σ)‖V ∗‖yn(σ)‖V dσ

+
∫ t

0

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖V ∗‖yn(σ)‖V dσ

6 |a|
∫ t

0

‖yn(σ)‖2
H dσ +

L(b)
2ε

∫ t

0

‖yn(σ)‖2
H dσ +

L(b)ε
2

∫ t

0

‖yn(σ)‖2
V dσ

+
1
2ε

∫ t

0

‖(B0 −Bn)x0(σ)‖2
V ∗ dσ + ε

∫ t

0

‖yn(σ)‖2
V dσ

+
1
2ε

∫ t

0

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖2
V ∗ dσ

6
(
|a|+ L(b)

2ε

)∫ t

0

‖yn(σ)‖2
H dσ +

ε(L(b) + 2)
2

∫ t

0

‖yn(σ)‖2
V dσ

+
1
2ε

∫ t

0

‖(B0 −Bn)x0(σ)‖2
V ∗ dσ

+
1
2ε

∫ t

0

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖2
V ∗ dσ.

Choosing ε > 0 sufficiently small and the compact embedding Lt
p(V ) ↪→ Lt

2(V ) with
an embedding constant b′, we obtain

‖yn(t)‖2
H + 2c‖yn‖p

Lt
P (V )

6
(
2|a|+ L(b)

ε

) ∫ t

0

‖yn(σ)‖2
H dσ

+ L2ε

∫ t

0

‖yn(σ)‖p
V dσ +

1
ε

∫ t

0

‖(B0 −Bn)x0(σ)‖2
V ∗ dσ

+
1
ε

∫ t

0

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖2
V ∗ dσ,

where L2 = (L(b) + 2)b′. Taking ε = c
L2
, we have

‖yn(t)‖2
H + c‖yn‖p

Lt
p(V ) 6

(
2|a|+ L2L(b)

c

) ∫ t

0

‖yn(σ)‖2
H dσ

+
L2

c

(∫ t

0

‖(B0 −Bn)x0(σ)‖2
V ∗ dσ

+
∫ t

0

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖2
V ∗ dσ

)
.
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Defining

ψn(t) = ‖yn(t)‖2
H + c

∫ t

0

‖yn(σ)‖p
V dσ,

it follows from the above inequality that

ψn(t) 6
(
2|a|+ L2L(b)

c

)∫ t

0

ψn(σ) dσ +Kn(t)

where

Kn(t) =
L2

c

(∫ t

0

‖(B0 −Bn)x0(σ)‖2
V ∗ dσ

+
∫ t

0

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖2
V ∗ dσ

)
.

Using Gronwall’s lemma, one concludes that

(3.3) ψn(t) 6 exp
((

2|a|+ L2L(b)
c

)
T

)
Kn(t)

for all t ∈ I . Since λn → λ0 ∈ Qm, B
n → B0 ∈ Ls(V, V ∗), and x0 ∈ Lp(I, V ), it is

clear that ‖(B0 − Bn)x0‖V ∗ → 0 almost everywhere on I and there exists a finite
number γ such that

‖(B0 −Bn)x0(t)‖V ∗ 6 γ‖x0(t)‖V for all t ∈ I.

On the other hand, since λ→ g(·, ·, λ) is continuous, we get

‖g(σ, x0(σ), λn)− g(σ, x0(σ), λ0)‖V ∗ → 0

almost everywhere on I . Thus by the Lebesgue dominated convergence theorem, it
follows that ψn(t) → 0 as n→∞ uniformly on I . Hence one may conclude from (3.3)
that xn → x0 in C(I,H) as well as in Lp(I, V ), and in particular xn(t) → x0(t) in H
for all t ∈ I . This proves the continuity of the map (λ,B) → x(λ,B) as desired.
Define

J(λn, Bn) =
∫

I

f(t, xn(t), λn) dt and J(λ0, B0) =
∫

I

f(t, x0(t), λ0) dt,

where xn and x0 are the solutions of the system (2.1) corresponding to (λn, Bn) and
(λ0, B0), respectively. Since, by assumption H(f), for almost all t ∈ I , x→ f(t, x, ·)
is continuous on H , we have

f(t, x0(t), λ0) 6 lim inf
n

f(t, xn(t), λn) almost everywhere on I,
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and consequently, by Fatou’s lemma,

∫

I

f(t, x0(t), λ0) dt 6 lim inf
n

∫

I

f(t, xn(t), λn) dt.

Clearly, this is equivalent to

J(λ0, B0) 6 lim inf
n

J(λn, Bn).

This completes the proof of the lemma. �

Lemma 3.2. The set Pa,b considered as a subset of L (V, V ∗) is sequentially
compact in the strong operator topology τso.

���������
. For proof, see Lemma 1.2 of [3]. �

Theorem 3.1. Suppose that assumptions H(A), H(g), H(λ) and H(f) hold. Then
there exists (λ0, B0) ∈ Qm ×Pa,b such that

J(λ0, B0) 6 J(λ,B) for all (λ,B) ∈ Qm ×Pa,b.

���������
. Define l = inf{J(λ,B), (λ,B) ∈ Qm × Pa,b}. Since f(t, x, λ) > −∞

for (t, x) ∈ I × H , the infimum is well defined and l > −∞. Let {(λk, Bk)} be a
minimizing sequence from Qm ×Pa,b, i.e., lim

k
J(λk , Bk) = l. Then by Lemma 3.2,

there exists {(λki , Bki)} ⊂ {(λk, Bk)} relabeled as {(λk, Bk)} and a (λ0, B0) ∈
Qm ×Pa,b such that λk → λ0 ∈ Qm, Bk → B0 ∈ Pa,b(τso). Since (λ,B) → J(λ,B)
is lower semicontinuous on Qm ×Pa,b (see Lemma 3.1), we have

l 6 J(λ0, B0) 6 lim
k

inf J(λk , Bk) 6 lim
k
J(λk, Bk) = l.

Hence J(λ0, B0) = l implies that J(·, ·) attains its infimum on Qm × Pa,b. This

completes the proof. �
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4. Necessary conditions of optimality

We consider necessary conditions of optimality for the identification problem (P).

We note that usually the mapping (λ,B) → x(λ,B) from Qm×L (V, V ∗) to Lp(I, V )
is unique. In this section we assume that p = q = 2 and Lp

+ = {x(·) ∈ Lp : x(·) > 0},
p = 1, 2,∞. In order to derive the necessary optimality conditions, we need some
additional assumptions

H(A)1 A : I × V ×Qm → V ∗ is an operator.
(1) A satisfies condition H(A).

(2) x → A(t, x, λ) is continuously Frechét differentiable and strong uniformly
monotone in t ∈ I .

(3) ‖A′x(t, x, λ)‖V ∗ 6 a1(t) + b1(t)‖x‖V a.e. a1(·) ∈ L2
+, b1(·) ∈ L∞+ and

〈A′x(t, x, λ)h, h〉 > β‖h‖2
V a.e. β > 0, h ∈ V .

(4) λ→ A(t, x, λ) is continuously Frechét differentiable and ‖A′λ(t, x, λ)‖V ∗ 6
δ1 a.e. δ > 0.

(5) A′x(t, x, λ) is continuous on Qm.

H(g)1 g : I ×H ×Qm → V ∗ is a map.
(1) g satisfies condition H(g).

(2) x → g(t, x, λ) is Frechét differentiable, 〈g′x(t, x, λ)h, h〉 6 0 a.e. and
‖g′x(t, x, λ)‖V ∗ 6 a2(t) + b2‖x‖H a.e. a2(·) ∈ L2

+, b2 > 0.
(3) λ→ g(t, x, λ) is Frechét differentiable, ‖g′λ(t, x, λ)‖ 6 δ2 a.e., δ2 > 0.
(4) (x, λ) → g′x(t, x, λ) is continuous and (x, λ) → g′λ(t, x, λ) is continuous.

H(f)1 f : I ×H ×Qm → � + is an integrable function.

(1) f satisfies condition H(f).
(2) x → f(t, x, λ) is Frechét differentiable and (x, λ) → f ′x(t, x, λ) is continu-
ous.

(3) λ → f(t, x, λ) is Frechét differentiable and (x, λ) → f ′λ(t, x, λ) is continu-
ous.

(4) ‖f ′x(t, x, λ)‖H 6 a3(t) + b3(t)‖x‖2
H a.e. with a3(·) ∈ L1

+, b3(·) ∈ L∞+ and
‖f ′λ(t, x, λ)‖H 6 δ3 a.e. δ3 > 0.

For the proof of necessary conditions of optimality, we shall make use of the
Gâteaux differential of x(λ,B) with respect to the parameter and operator (λ,B).
Indeed, we show that the Gâteaux differential of x at (λ0, B0) in the direction (λ−λ0,

B −B0) defined by

x̂(λ0, B0;λ− λ0, B −B0)

= w − lim
ε→0

x(λ0 + ε(λ− λ0), B0 + ε(B −B0))− x(λ0, B0)
ε

exists and that it is the solution of a related differential equation.
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In the next lemma we present the Gâteaux differentiability of the mapping

(λ,B) → x(λ,B) in the weak sense.

Lemma 4.1. Consider system (2.1) and suppose that assumptions H(A)1, H(g)1
and H(f)1 hold. Let x(λ,B) denote the (weak) solution of the problem (2.1) corre-
sponding to (λ,B) ∈ Qm×Pa,b. Then at each point (λ,B) ∈ Qm×Pa,b the function

(λ,B) → x(λ,B) has a weak Gâteaux differential in the direction (λ− λ0, B −B0),
denoted x̂(λ0, B0;λ− λ0, B −B0), and it is the solution of the Cauchy problem

(4.1)





ė+A′x(t, x0, λ0)e+B0e− g′x(t, x0, λ0)e

= −A′λ(t, x0, λ0;λ− λ0) + (B0 −B)x0 + g′λ(t, x0, λ0;λ− λ0),

e(0) = 0

satisfying x̂ ∈ L2(I, V ) ∩ L∞(I,H), where x0 = x(λ0, B0) is the solution of (2.1)
corresponding to λ = λ0, B = B0. Here,

A′x(t, x0, λ0) = w − lim
ε→0

A(t, xε, λ0)−A(t, x0, λ0)
xε − x0

,

A′λ(t, x0, λ0;λ− λ0) = w − lim
ε→0

A(t, x0, λε)−A(t, x0, λ0)
ε

,

g′x(t, x0, λ0) = w − lim
ε→0

g(t, xε, λ0)− g(t, x0, λ0)
xε − x0

and

g′λ(t, x0, λ0;λ− λ0) = w − lim
ε→0

g(t, x0, λε)− g(t, x0, λ0)
ε

.

���������
. Let (λ0, B0), (λ,B) ∈ Qm ×Pa,b. Since Qm ×Pa,b is a closed convex

subset of Qm ×L (V, V ∗), we have (λε, bε) ∈ Qm×Pa,b, where λε = λ0 + ε(λ−λ0),
Bε = B0 + ε(B−B0), xε = x(λε, Bε) and x0 = x(λ0, B0) for 0 6 ε 6 1. Using (2.1)
and defining ϕε ≡ (xε − x0)/ε, we obtain

ϕ̇ε +
A(t, xε, λε)−A(t, x0, λε)

ε
+Bεϕε − g(t, xε, λε)− g(t, x0, λε)

ε

= −A(t, x0, λε)−A(t, x0, λ0)
ε

+ (B0 −B)x0 +
g(t, x0, λε)− g(t, x0, λ0)

ε

(4.2)

ϕε(0) = 0.
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Scalar multiplying both sides of the first equation of (4.2) by ϕε and using the

assumptions, we have

1
2
‖ϕε(t)‖2

H +
∫ t

0

〈A′x(σ, x0(σ) + εµ1(xε(σ) − x0(σ)), λε)ϕε(σ), ϕε(σ)〉 dσ(4.3)

+
∫ t

0

〈Bεϕε(σ), ϕε(σ)〉 dσ

=
∫ t

0

〈(B0 −B)x0(σ), ϕε(σ)〉 dσ

+
∫ t

0

〈−A′λ(σ, x0(σ), λ0 + εµ2(λ− λ0);λ− λ0), ϕε(σ)〉 dσ

+
∫ t

0

〈g′x(σ, x0(σ) + εν1(xε(σ)− x0(σ)), λε)ϕε(σ), ϕε(σ)〉 dσ

+
∫ t

0

〈g′λ(σ, x0(σ), λ0 + εν2(λ− λ0);λ− λ0), ϕε(σ)〉 dσ,

where µ1, µ2, ν1, ν2 ∈ [0, 1].
Using assumptions H(A)1, H(g)1 and Pa,b in (4.3), we obtain

1
2
‖ϕε(t)‖2

H + β

∫ t

0

‖ϕε(σ)‖2
V dσ(4.4)

6 a

∫ t

0

‖ϕε(σ)‖2
H dσ +

∫ t

0

‖(B0 −B)x0(σ)‖V ∗‖ϕε(σ)‖V dσ

+
∫ t

0

‖A′λ(σ, x0(σ), λ0 + εµ2(λ − λ0);λ− λ0)‖V ∗‖ϕε(σ)‖V dσ

+
∫ t

0

‖g′λ(σ, x0(σ), λ0 + εν2(λ− λ0);λ− λ0)‖V ∗‖ϕε(σ)‖V dσ.

Using the inequality ab =
√

β
3a

√
3
β b 6 1

2 (β
3 a

2 + 3
β b

2) in (4.4), we have

‖ϕε(t)‖2
H + β

∫ t

0

‖ϕε(σ)‖2
V dσ(4.5)

6 2a
∫ t

0

‖ϕε(σ)‖2
H dσ +

3
β

∫ t

0

‖(B0 −B)x0(σ)‖2
V ∗ dσ

+
3
β

∫ t

0

‖A′λ(σ, x0(σ), λ0 + εµ2(λ− λ0);λ− λ0)‖2
V ∗ dσ

+
3
β

∫ t

0

‖g′λ(σ, x0(σ), λ0 + εν2(λ− λ0);λ− λ0)‖2
V ∗ dσ.
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Using Gronwall’s lemma in (4.5), we conclude that

‖ϕε(t)‖2
H + β

∫ t

0

‖ϕε(σ)‖2
V dσ(4.6)

6 3
β

exp(2|a|T )
(∫ t

0

‖(B0 −B)x0(σ)‖2
V ∗ dσ

+
∫ t

0

‖A′λ(σ, x0(σ), λ0 + εµ2(λ− λ0);λ− λ0)‖2
V ∗ dσ

+
∫ t

0

‖g′λ(σ, x0(σ), λ0 + εν2(λ− λ0);λ− λ0)‖2
V ∗ dσ

)

for all ε ∈ [0, 1]. Since εµ2, εν2 ∈ [0, 1], it follows from assumptions H(A)1 and H(g)1
and the definition of Pa,b that the right terms in (4.6) are well defined. This shows
that {ϕε, 0 6 ε 6 1} is contained in a bounded subset of L∞(I,H) ∩ L2(I, V ).
Since L2(I, V ) is a reflexive Banach space, we can extract a subsequence {ϕn} ≡
{ϕεn} ⊂ {ϕε} with εn ∈ [0, 1] and εn → 0, and a ϕ0 ∈ L2(I, V ) such that ϕn w→ ϕ0

in L2(I, V ). This proves that the Gâteaux differential of x exists and is given by
x̂(λ0, B0;λ − λ0, B − B0) ≡ ϕ0. It remains to show that ϕ0 is a solution of (4.1).

Indeed, since

A(t, xn, λn)−A(t, x0, λ0)
ε

w→ A′x(t, x0, λ0)ϕ0 in L2(I, V ∗),

Bnϕn = B0ϕn + εn(B −B0)ϕn w→ B0ϕ0 in L2(I, V ∗),
A(t, x0, λn)−A(t, x0, λ0)

ε

w→ A′λ(t, x0, λ0;λ− λ0) in L2(I, V ∗),

g(t, xn, λn)− g(t, x0, λ0)
ε

w→ g′x(t, x0, λ0)ϕ0 in L2(I, V ∗),

g(t, x0, λn)− g(t, x0, λ0)
ε

w→ g′λ(t, x0, λ0;λ− λ0) in L2(I, V ∗),

it follows from (4.2) that ϕ̇n ∈ L2(I, V ∗) and ϕ̇n w→ η in L2(I, V ∗) for suitable
η ∈ L2(I, V ∗), and that is the distributional derivative of ϕ0. Hence ϕ0 satisfies the
equality

ϕ̇0 +A′x(t, x0, λ0)ϕ0 +B0ϕ0 − g′x(t, x0, λ0)ϕ0

= −A′λ(t, x0, λ0;λ− λ0) + (B0 − B)x0 + g′λ(t, x0, λ0;λ− λ0)

in the sense of vector-valued distributions in V ∗. Since ϕ0 ∈ L2(I, V ) and ϕ̇0 ∈
L2(I, V ∗), it is clear that ϕ0 ∈ C(I,H) and ϕ0(0) is well defined and equals ϕn(0) = 0
for all n. Hence ϕ0 satisfies the differential equation (4.1) and one may identify ϕ0

as e. This completes the proof. �
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With the help of Lemma 4.1, we derive the following necessary conditions for

optimality.

Theorem 4.1. Suppose that assumptionsH(A)1, H(g)1 and H(f)1 hold. Consider
system (2.1) and the identification problem (P) with

J(λ,B) =
∫

I

f(t, x(λ,B)(t), λ) dt.

Then in order that (λ0, B0) ∈ Qm × Pa,b be the optimal pair for the unknown

parameter and the unknown operator, it is necessary that there exist a pair {x0, z0} ∈
C(I,H)× C(I,H) satisfying the system of equations

(4.7)

{
ẋ+A(t, x, λ0) +B0x = g(t, x, λ0),

x(0) = x0, λ
0 ∈ Qm, B

0 ∈ Pa,b,

the adjoint equation

(4.8)

{
−ż + (A′x(t, x0, λ0))∗z + (B0)∗z − (gx(t, x0, λ0))∗z = f ′x(t, x0, λ0),

z(T ) = 0, ∀t ∈ [0, T )

and the inequality

∫

I

〈−A′λ(t, x0(t), λ0;λ− λ0), z0(t)〉V,V ∗ dt+
∫

I

〈(B0 −B)x0(t), z0(t)〉V,V ∗ dt(4.9)

+
∫

I

〈g′λ(t, x0(t), λ0;λ− λ0), z0(t)〉V,V ∗ dt+
∫

I

f ′λ(t, x0(t), λ0;λ− λ0) dt > 0

for all λ ∈ Qm, B ∈ Pa,b.
���������

. Since (λ,B) → x(λ,B) has a (weak) Gâteaux differential on Qm×Pa,b,
it follows that J(·, ·) as defined above also has a Gâteaux differential. Denote x0 ≡
x(λ0, B0). Then in order that J(·, ·) attain its minimum at (λ0, B0) ∈ Qm × Pa,b,
it is necessary that

J ′(λ0, B0;λ− λ0, B −B0) ≡ lim
ε→0

J(λε, Bε)− J(λ0, B0)
ε

> 0

for all (λ,B) ∈ Qm×Pa,b. Using the result of Lemma 4.1, it follows from the above
that

J ′(λ0, B0;λ− λ0, B −B0)(4.11)

=
∫

I

〈f ′x(t, x0(t), λ0), ϕ0(t)〉 dt+
∫

I

f ′λ(t, x0(t), λ0;λ− λ0) dt > 0
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for all (λ,B) ∈ Qm × Pa,b, where ϕ0(t) is the Gâteaux differential as given by
Lemma 4.1. Using (4.1) and (4.11), we obtain the adjoint equation (4.8). Reversing
the flow of time t → T − t, it follows from Theorem 2.1 that the system (4.8) also
has a unique weak solution z0 ∈ L2(I, V ) ∩ C(I,H). Utilizing (4.8), (4.11) and
integrating by parts, we obtain

∫

I

〈ϕ̇0(t)+A′x(t, x0(t), λ0)ϕ0(t)+B0ϕ0(t)−g′x(t, x0(t), λ0)ϕ0(t), z0(t)〉V ∗,V dt(4.12)

+
∫

I

f ′λ(t, x0(t), λ0;λ−λ0) dt > 0, ∀ (λ,B) ∈ Qm ×Pa,b.

From (4.8) and (4.12), we obtain

∫

I

〈f ′x(t, x0(t), λ0), ϕ0(t)〉V ∗,V dt+
∫

I

f ′λ(t, x0(t), λ0;λ− λ0) dt

=
∫

I

〈ϕ̇0(t) +A′x(t, x0(t), λ0)ϕ0(t) +B0ϕ0(t)− g′x(t, x0(t), λ0)ϕ0(t), z0(t)〉V ∗,V dt

+
∫

I

f ′λ(t, x0(t), λ0;λ− λ0) dt

= −
∫

I

〈A′λ(t, x0(t), λ0;λ− λ0), z0(t)〉V ∗,V dt+
∫

I

〈(B −B0)x0(t), z0(t)〉V ∗,V dt

+
∫

I

〈g′λ(t, x0(t), λ0;λ− λ0), z0(t)〉V ∗,V dt+
∫

I

f ′λ(t, x0(t), λ0;λ− λ0) dt > 0

for all λ ∈ Qm, B ∈ Pa,b. Hence we obtain (4.9), which completes the proof. �
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