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Abstract. The paper is concerned with a recent very interesting theorem obtained by
Holický and Zelený. We provide an alternative proof avoiding games used by Holický and
Zelený and give some generalizations to the case of set-valued mappings.
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1. Introduction

We shall consider only separable metrizable spaces. Our terminology follows Ku-

ratowski [8] and Kechris [6]. We denote by 2
�
the Cantor set and � � is the space

of irrationals.

Holický and Zelený [5] proved recently a very interesting theorem that if f : X → Y

is a Borel map between complete spaces with uncountably many non-σ-compact

fibres, then f takes a closed set in X to a non-Borel set in Y .

More specifically, Holický and Zelený established that for any such map f : X →
Y , there is a Cantor set K in Y and a homeomorphism k : K × � � → P , P ⊂ X ,

such that f ◦ k(y, t) = y for (y, t) ∈ K × � � , and f(x) /∈ K for x ∈ P \ P .
A key element in the proof in [5] is a parametric version of the Kechris-Louveau-

Woodin theorem, cf. Section 2. The proof given by Holický and Zelený involves a
closed game introduced by Louveau and Saint Raymond.

In this note we use an approach from [10] to present a proof of a certain para-
metric version of the Kechris-Louveau-Woodin theorem, based directly on a classical

theorem of Hurewicz. We shall also give an extension of the Holický-Zelený theorem
to the case of set-valued functions.
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We would like to thank the referee for remarks which improved the exposition.

2. Some background

Let X be a complete space and let A be an analytic not Fσ set in X . A classical

theorem of Hurewicz asserts that there is a copy T of 2
�
inX with T\A countable and

dense in T , cf. [6, 21.18]. Kechris, Louveau and Woodin [7], [6, 21.22] strengthened

this result as follows: if B ⊂ X \A and each Fσ set in X containing A hits B, then
there is a copy T of 2

�
in A ∪ B with T ∩B countable and dense in T .

We shall use the following closely related fact.

2.1. Lemma. Let G be a Gδ set in a complete space X , let H ⊂ X \ G, and
let R ⊂ X ×X be a closed symmetric relation on X . Assume that each Fσ set in X

containing G intersects H , and G × H ∩ R = ∅. Then there is a copy T of 2
�
in

G ∪H with T ∩H countable and dense in T and (s, t) /∈ R for any distinct s, t ∈ T .

A justification requires only some adaptations of standard proofs of the Hurewicz
theorem, cf. [4, p. 333]. To be more specific, first one removes from X all open

sets U such that U ∩ G is contained in some Fσ set disjoint from H , and next, one
replaces H by its countable dense subset. This allows one to concentrate on the case

where both G and H are dense in X and H is countable. In this case the classical
Hurewicz’s arguments need only a slight modification. One can also get Lemma 2.1

from [1, Proposition 2.1].

Incidentally, the Kechris-Louveau-Woodin theorem can be derived from Lem-

ma 2.1, cf. [9].

We shall need also Jankov-von Neumann selection theorem [6, 29.9]. Let BA (X)
be the σ-algebra generated by analytic sets in complete space X . A mapping

f : X → Y is BA -measurable if f−1[U ] ∈ BA (X) for any open U in Y . The
Jankov-von Neumann theorem asserts that for any analytic set E ⊂ X × Y in the

product of complete spaces, with all vertical sections Ex nonempty, there is a BA -
measurable mapping f : X → Y such that f(x) ∈ Ex, for x ∈ X .

3. A parametric version of the Kechris-Louveau-Woodin theorem

Given anM ⊂ S×T we denote respectively the vertical and the horizontal sections
of M by

(1) Ms = {t : (s, t) ∈M}, M t = {s : (s, t) ∈M}.
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Let Z be a complete space. We denote by H (2
�
, Z) the space of embeddings of

the Cantor set into Z with the topology of uniform convergence and by K (Z) the
space of compact subsets of Z with the Vietoris topology, cf. [6]. Both spaces are
completely metrizable.

Let us recall that f : X → Z is BA -measurable if f−1[U ] is in the σ-algebra
generated by analytic sets in X , for any open U in Z, cf. Section 2.

3.1. Theorem. Let A,B ⊂ X × Y be disjoint analytic sets in the product of

complete spaces X , Y such that every Fσ set in Y containing Ax hits Bx, x ∈ X .

Let C,D be disjoint countable dense sets in 2
�
. Then there are BA -measurable

mappings h : X → H (2
�
, Y ) and Hn : X → K (2

�
) such that, with G(x) = 2

�
\

∞⋃
n=1

Hn(x),

C ⊂ G(x), h(x)[G(x)] ⊂ Ax, for x ∈ X,(2)

and

h(x)[D] ⊂ Bx, for x ∈ X.(3)

���������
. Let π : X × Y × 2

�
→ X × Y , p : Y × 2

�
→ Y be the projections. Let

G ⊂ X × Y × 2
�
be a Gδ set such that

(4) A = π[G] and H = π−1[B].

Let
(5)

E = {(x, f) ∈ X ×H (2
�
, Y × 2

�
) : f [C] ⊂ Gx, f [D] ⊂ Hx, p ◦ f ∈ H (2

�
, Y )}.

We shall check that

(6) E is analytic and Ex 6= ∅ for x ∈ X.

For any t ∈ 2
�
let us consider the continuous mapping et : X ×H (2

�
, Y × 2

�
) →

X × Y × 2
�
defined by et(x, f) = (x, f(t)). Then the set

E′ =
⋂

c∈C

e−1
c [G] ∩

⋂

d∈D

e−1
d [H ]

is analytic, C,D being countable. The set W = {f ∈ H (2
�
, Y × 2

�
) : p ◦ f ∈

H (2
�
, Y )} is of type Gδ . We conclude that E = E ′ ∩ (X ×W ) is analytic.
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To check the second part of (6), let us fix x ∈ X . Since p[Gx] = Ax, Hx = p−1(Bx)
and the projection parallel to the compact axis takes closed sets to closed sets,
every Fσ set in Y × 2

�
containing Gx hits Hx. Let R = {(u, v) ∈ (Y × 2

�
)2 : p(u) =

p(v)}. Then Lemma 2.1 can be applied to the triple Gx, Hx, R, providing a copy

T ⊂ Gx ∪ Hx of 2
�
with T ∩ Hx countable and dense in T and p injective on T .

Let f : 2
�
→ T be a homeomorphism with f [D] = T ∩ Hx, cf. [3, 4.3.H(e)]. Then

f [C] ⊂ Gx and p ◦ f ∈ H (2
�
, Y ). It follows that f ∈ Ex.

Having checked (6), one can apply the Jankov-von Neumann theorem, cf. Section 2,

to get a BA -measurable mapping

(7) k : X → H (2
�
, Y × 2

�
), k(x) ∈ Ex.

Let X × Y × 2
�
\G =

∞⋃
n=1

Fn, where Fn are closed. We set

(8) h(x) = p ◦ k(x), Hn(x) = k(x)−1[(Fn)x].

Then h : X → H (2
�
, Y ) and Hn : X → K (2

�
) are BA -measurable mappings.

This is transparent for h. To check BA -measurability of Hn let us notice that

Hn = ϕ ◦ ψ, where ϕ(f,K) = f−1[K] (f ∈ H (2
�
, Y × 2

�
), K ∈ K (Y × 2

�
)) and

ψ(x) = (k(x), (Fn)x). Since ϕ is Borel and ψ is BA -measurable, x 7→ (Fn)x being

Borel, cf. [6, 11.4 ii)], the composition ϕ ◦ ψ is BA -measurable. Therefore, h and
Hn satisfy the assertion of the theorem, cf. (4), (5) and (7), (8). �

Let us comment on Theorem 3.1. Since the mappings h and Hn are BA -

measurable, there is a dense Gδ set P in X such that the restrictions of h and
Hn to P are continuous, cf. [6, 29.5]. Let K be any compact set in P . The continu-

ity of Hn on K implies that G = 2
�
\
∞⋃

n=1

⋃{Hn(x) : x ∈ K} is a Gδ set. By (2) and

(3), C ⊂ G, h(x)[G] ⊂ Ax, and h(x)[D] ⊂ Bx, for any x ∈ K. Since G and D are
dense in 2

�
, Lemma 2.1 (with R being the diagonal) provides a Cantor set T ⊂ G∪D

with T ∩D = T . The map Φ: K × T → K × Y defined by Φ(x, t) = (x, h(x)(t)) is
an embedding which sends K × (T \D) to A and K × (T ∩D) to B.
This is a parametric version of the Kechris-Louveau-Woodin theorem, established

by Holický and Zelený [5, Lemma 1].

We shall close this section with a lemma containing some observations which will
be useful in the next section. The expression “for almost every compact set in X”

refers to the Baire category in K (X). Let us recall that in a complete space X
without isolated points almost every nonempty compact set is a Cantor set.
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3.2. Lemma. Let A,B,C,D and h be as in Theorem 3.1. Assume in addition
that X has no isolated points and

(9) Ay is meager in X for any y ∈ Y.

Then for almost every Cantor set K in X , there is a Cantor set T in 2
�
such that

T ∩D = T,(10)

and

h(x1)[T \D] ∩ h(x2)[T ] = ∅, for x1 6= x2, x1, x2 ∈ K.(11)

���������
. Let P be a dense Gδ set in X such that the BA -measurable mapping h

restricted to P is continuous. Let us fix c ∈ C, u ∈ C ∪D, c 6= u, and let Gc,u be the

collection of compact sets K in P such that

(12) h(x1)(c) 6= h(x2)(c) 6= h(x1)(u), for x1 6= x2, x1, x2 ∈ K.

Then Gc,u is a Gδ set in K (X). Let us check that Gc,u is dense, and hence comeager,

in K (X). To this end let us consider nonempty open sets V1, . . . , Vn in X . We have

to find K ⊂
n⋃

i=1

Vi intersecting all Vi and satisfying (12). Let us set

(13) k(x) = h(x)(c), l(x) = h(x)(u), x ∈ P.

The functions k : P → Y , l : P → Y are continuous and k−1(y) ⊂ Ay, cf. (2). By (9),
the fibers of k are meager in P . If l−1(y) is nonmeager, then being closed in P , it
contains the intersection of a nonempty open set with P . It follows that the set J of

points y with l−1(y) nonmeager in P is at most countable. Therefore, one can choose
inductively aj ∈ Vj∩P \k−1[J ] such that aj /∈

⋃
i<j

(k−1[k(ai)]∪k−1[l(ai)]∪l−1[k(ai)]).

Then K = {a1, . . . , an} satisfies (12), cf. (13).
We have demonstrated that each Gc,u is comeager, and in effect almost every

Cantor set K in P satisfies (12) simultaneously for all pairs c 6= u with c ∈ C,

u ∈ C ∪D. Let us fix any such K. We shall find a Cantor set T in 2
�
satisfying (10)

and (11). Let

G = {t ∈ 2
�

: h(x1)(t) 6= h(x2)(t) for any x1 6= x2, x1, x2 ∈ K,(14)

and h(x1)(t) 6= h(x2)(d) for any d ∈ D and x1, x2 ∈ K}.

539



Using the continuity of the mapping (x, t) 7→ h(x)(t) on the product K × 2
�
, one

easily verifies that G is a Gδ set. It is transparent that G ∩ D = ∅ and, by (12),
C ⊂ G. Let R be the closed symmetric set in 2

�
× 2

�
consisting of pairs (s, t)

such that h(x1)(s) = h(x2)(t) for some x1, x2 ∈ K. Then G ×D ∩ R = ∅, cf. (14).
Therefore, Lemma 2.1 can be applied to the triple G,D,R, providing a Cantor set
T ⊂ G ∪ D with T ∩D = T and (s, t) /∈ R for any distinct s, t ∈ T . One readily

checks that T satisfies also (11). �

4. Set-valued Borel functions

Let us recall that K (E) is the space of compact subsets of E with the Vietoris
topology and the phrase “almost all” refers to the Baire category.

The following fact provides an extension of the Holický-Zelený theorem.

4.1. Theorem. Let S,E be complete spaces without isolated points and let

F : S → K (E) be a Borel mapping whose values are boundary in E. Then the
following conditions are equivalent:

(i) for almost all x ∈ E, the set {s ∈ S : x ∈ F (s)} is not σ-compact,
(ii) for almost all Cantor sets K in E there is a homeomorphism k : K × � � → P ,

P ⊂ S, such that x ∈ F (k(x, t)) and F (s) ∩K = ∅ for s ∈ P \ P .

We shall first establish a counterpart to Lemma 2 in [5].

4.2. Lemma. Let X be a dense Gδ subset of the complete space without

isolated points E and let H : X → K (E) be a Borel mapping such that x /∈ H(x)
and the interior of H(x) is empty for all x ∈ X . Then for almost all K ∈ K (E),
K ∩⋃{H(x) : x ∈ K} = ∅.
���������

. Let P be a dense Gδ subset of X such that H restricted to P is

continuous. Since K (P ) ⊂ K (E) is comeager and the set L = {K ∈ K (P ) :
K ∩H(x) = ∅ for x ∈ K} is open in K (P ), it is sufficient to prove the density of
L . Let V1, . . . , Vn be nonempty open subsets of P . Since {(x, t) : x ∈ P, t ∈ H(x)}
is Borel with all vertical sections meager, by the Kuratowski-Ulam theorem the set

Z = {t ∈ E : {x ∈ P : t ∈ H(x)} is nonmeager} is meager. Therefore we can
successively choose ti ∈ P ∩ Vi \

[i−1⋃
j=1

H(tj) ∪
i−1⋃
j=1

{x ∈ P : tj ∈ H(x)} ∪ Z
]
for

i = 1, . . . , n. Then {t1, . . . , tn} belongs to L and hits every Vi. �

Before passing to the proof of Theorem 4.1, let us make a simple observation. If
L is a comeager family of compact subsets of a complete space X , then

⋃
L is
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comeager in X . Indeed, let L ′ ⊂ L be dense Gδ in K (X). Then
⋃

L ′ ⊂ X is

analytic. Thus
⋃

L ′ = (U \M1) ∪M2, where U is open and Mi are meager in X ,
cf. [6, 8.21, 29.5]. If U \M1 = X ,

⋃
L ′ is comeager in X . Otherwise let us take

the nonempty open V = X \ U \M1. Then K (V \M2) is comeager in K (V ) and
disjoint from L ′, a contradiction. �
���������

of Theorem 4.1. (i)⇒(ii). Let X ⊂ E be a dense Gδ set such that
{s ∈ S : x ∈ F (s)} is not σ-compact for all x ∈ X . Let us set

(15) A = {(x, s) ∈ X × S : x ∈ F (s)}, B = X × S \A.

Every σ-compact set containing Ax hits Bx, x ∈ X . Therefore, the assumptions
of Theorem 3.1 are satisfied and let h be the map described in this theorem. By

Lemma 3.2 for almost all Cantor setsK in X , and hence in E, there is a Cantor set T
in 2

�
satisfying (10) and (11). Moreover, one can also demand that (x, h(x)(t)) ∈ A

for x ∈ K, t ∈ T \D, using a simple argument that follows the proof of Theorem 3.1.
The map h is continuous on a dense Gδ subset X ′ of X . To simplify the notation
we shall assume that X ′ = X . Let d ∈ D and let us define H : X → K (E) by
H(x) = F (h(x)(d)). By (15) and condition (3) in Theorem 3.1, x /∈ H(x). Therefore,
by Lemma 4.2, we can assume in addition that

(16) K ∩ F (h(x)(d)) = ∅ for all x ∈ X and d ∈ D.

We shall verify that each such K satisfies (ii). Let g : � � → T \D be any homeo-
morphism. Let us define k : K × � � → S by

(17) k(x, t) = h(x)(g(t)), P = k[K × � � ].

Using (11), one easily checks that k is an embedding. By (17), x ∈ F (k(x, t)) for
(x, t) ∈ K × � � . Let us note that P is included in the compact set ⋃

x∈K

h(x)[T ].

Thus, if s ∈ P \P then s = h(x)(d) for some d ∈ D. Therefore, by (16), F (s)∩K = ∅
for s ∈ P \ P .
(ii)⇒(i) Let us note that if K is a Cantor set described in (ii), then for every

x ∈ K the set {s ∈ S : x ∈ F (s)} is not σ-compact. Therefore, (i) follows from the
remark preceding the proof. �

Corollary 4.3. Let S,E be complete spaces and let F : S → K (E) be a Borel
mapping. Suppose that the set {x ∈ S : y ∈ F (x)} is not σ-compact for uncountably
many y ∈ E. Then there is a closed subset S̃ of S and a Borel function f : S → E

with f(x) ∈ F (x) whenever F (x) 6= ∅, such that f [S̃] is not Borel.
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���������
. Let us first assume that E is the ternary Cantor set C ⊂ [0, 1], all

values of F are nonempty and the set {x ∈ S : y ∈ F (x)} is not σ-compact for all
but countably many y ∈ C . Let us set

A = {(y, t) : t ∈ S, y ∈ F (t)}, B = C × S \A.

For each open interval Jk with rational endpoints let us put A(Jk) = {s : Jk ⊂ F (s)}.
Since every horizontal section of the Borel set (Jk × S) ∩ B is σ-compact, the set
S \A(Jk) = πS [(Jk × S) ∩B] is Borel, πS being the projection. Let us consider two
cases.

A. The set A(Jk) is not σ-compact for some k ∈ � . Then by the Hurewicz theorem
there is a Cantor set T ⊂ S such that T \ A(Jk) is countable and dense in T . Let
g1 : T ∩ A(Jk) → Jk be a continuous function with g1[T ∩ A(Jk)] not Borel, and let
g2 : S → C be any Borel selection of F . Then S̃ = T and the function f : S → C

that agrees with g1 on S̃ ∩ A(Jk) and with g2 on S \ (A(Jk) ∩ S̃) has the required
properties.

B. A(Jk) is σ-compact for all k ∈ � . Let us put A′ = A \
∞⋃

k=1

Jk × A(Jk). Then

every horizontal section of the Borel set A′ is compact, boundary and nonempty.

For any x, the section (A′)x is the difference of Ax and its σ-compact subset, and
hence it is not σ-compact. Therefore we can assume without loss of generality that

the set F (x) is boundary for all x ∈ S. Let K and k be respectively a Cantor set
and a homeomorphism, such as in Theorem 4.1. Let M ⊂ K × � � be a closed set
such that πK [M ] is not Borel. Let us put N = k[M ], S̃ = k[M ] and let f : S → C

coincides on N with πK ◦ k−1(x) and with any Borel selection for F on S \N . Since
K ∩ f [S̃] = πK [M ], the set f [S̃] is not Borel.
Let us consider now the general case. Because the set of all y ∈ E such that

{t ∈ S : y ∈ F (t)} is not σ-compact is analytic (see [2, Remarque (b), p. 255]), it
contains a Cantor set C . Let X = {x ∈ S : F (x) ∩ C 6= ∅}. We shall apply the
reasoning from the first part of the proof to the Borel function F ′ on S which sends
x ∈ X to F (x)∩C and associates to x ∈ S\X a fixed singleton {c0}, c0 ∈ C . In effect,
we obtain a closed set S̃ in S and a Borel map f : S → C , f(x) ∈ F ′(x), with f [S̃]
non-Borel. It suffices to replace the function f on the set {x ∈ S \X : F (x) 6= ∅} by
any Borel selection for F . The proof is completed. �
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