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Abstract. By using the Seiberg-Witten invariant we show that the region under the
Noether line in the lattice domain 
 × 
 is covered by minimal, simply connected, symplectic
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0. Introduction

Let (X,ω) be a simply connected, symplectic 4-manifold with a symplectic form ω.

Then X has an almost complex structure compatible with the symplectic structure.
The Noether formula says that the number c1(X)2 + c2(X) is divisible by 12. The
rank b+2 (X) of the space H2,+(X ; � ) of self-dual harmonic 2-forms on X is odd
because the space X is simply connected. For simplicity we denote χ(X) = 1

2 (1 +
b+2 (X)). A compact symplectic 4-manifold X is called minimal if it contains no
symplectically embedded sphere with self-intersection number −1. Let F denote

the set of all minimal, simply connected, symplectic 4-manifolds.
Define a map f : F −→ � × � by

X 7−→ (χ(X), c21(X)).

It is known that χ(X) > 0 and c21(X) > 0 if X ∈ F with b+2 (X) > 1 (for
details see [14]). It is also well known that a complex surface X is either rational,

This work was supported by grant No. R01-1999-000-00002-0 from the interdisciplinary
research program of the KOSEF.
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elliptic, or a surface of general type. The simply connected, minimal rationals X

are diffeomorphic to ��� 2, S2 × S2 or ��� 2 ] ��� 2(the Hirzebruch surfaces). Then
b+2 (X) = 1 and c21(X) = 9 or 8. Hence f(X) = (1, 9) or (1, 8). If X is minimal
elliptic, then f(X) = (χ(X), c21(X)) = (n, 0) for a natural number n ∈ � . For
surfaces X of general type we know that c21(X) > 0 and the two famous inequalities,
the Noether inequality and the Bogomolov-Miyaoka-Yau inequality, give constraints

for c21(X) in terms of χ(X):

(∗) 2χ(X)− 6 6 c21(X) 6 9χ(X).

It is known that most of the points in the region (∗) correspond to some minimal
surfaces of general type. That is, for any (a, b) ∈ {(a, b) ∈ � × � | 2a− 6 6 b 6 9a},
there is a minimal surface X of general type such that (a, b) = (χ(X), c21(X)). In this
paper we will show that the region under the Noether line c21 = 2χ−6 can be covered
by minimal, simply connected, symplectic 4-manifolds by using the properties of the

Seiberg-Witten invariant and the fiber sum.

1. The irreducibility of 4-manifold

In this section we review the definitions and the basic properties of the Seiberg-

Witten invariants.
First we recall briefly the Seiberg-Witten invariant for a compact, oriented,

Riemannian 4-manifold X with b+2 (X) > 1. A Spinc-structure s is defined by
a triple (W+,W−, %), where W± are Hermitian 2-plane bundles and % : T ∗X →
Hom(W+,W−) satisfies the Clifford relation

%∗(e)%(e) = |e|2 IdW+ .

Let L = det(W+) be a determinant line bundle ofW+. In particular, when X is a

symplectic manifold, the Spinc-structure on X which corresponds to a given complex
line bundle L is characterized by the fact that its bundle W+ is given by

W+ = E ⊕ (K−1 ⊗E),

where K is the canonical bundle of X . A connection A of the line bundle on L with
the Levi-Civita connection on T ∗X defines a covariant derivative ∇A : Γ(W+) →
Γ(W+ ⊗ T ∗X). The composition of the covariant derivative ∇A and the Cliffold
multiplication defines a Dirac operator

DA : Γ(W+) −→ Γ(W−).
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For a connection A of L and a section Φ ∈ Γ(W+) of W+, the equations




DAΦ = 0,

F+
A =

1
4
τ(Φ ⊗ Φ∗)

are called the Seiberg-Witten equations. Here F+
A is the self-dual part of the cur-

vature of A and τ : End(W+) → Γ+(T ∗X)⊗ � is the adjoint of the Cliffold multi-
plication. The gauge group G = C∞(X,U(1)) of the complex line bundle L acts on
the space of solutions of the SW-equations. The quotient of the space of solutions
by the gauge group is called the moduli space of the line bundle L. Then the moduli
space is generically a compact smooth manifold with the dimension

1
4
(c21(L)− (2e(X) + 3σ(X))),

where e(X) is the Euler characteristic and σ(X) is the signature of X . The moduli
space defines a diffeomorphic invariant on X which is the so called Seiberg-Witten
invariant SWX(L) : Spinc(X) → � . Here Spinc(X) is the set of isomorphism classes
of Spinc-structures on X . For details, see [12].

Definition 1.1. A cohomology class c = c1(L) ∈ H2(X ; � ) is called a basic class
if SWX(L) 6= 0. The manifold X is said to be of simple type if c2 = 2e(X) + 3σ(X)
for every basic class c ∈ H2(X ; � ).

Theorem 1.2 [16]. Let (X,ω) be a symplectic 4-manifold with its orientation
given by the volume form ω∧ω, and let b+2 (X) > 2. If K is the canonical line bundle
of X associated to ω, then its Seiberg-Witten invariant SWX(K) = ±1 is non-zero.

Theorem 1.3 [16]. Every compact symplectic 4-manifold X with b+2 (X) > 2 is
of simple type.

A smooth 4-manifold X is said to be irreducible if the space X cannot be decom-

posed into a smooth connected sum X = X1 ] X2 with non-spheres.

Proposition 1.4. Let X be a simply connected 4-manifold with nontrivial

Seiberg-Witten invariants. If for any basic classes Ki, Kj on X

(Ki −Kj)2 6= −4,

then the space X is irreducible.
���������

. Since SWX 6≡ 0, there is a basic class of X . Assume that X is reducible.
Then X = X1 ] X2 and one of the Xi’s, say X2, has negative definite intersection
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form. By Donaldson there is an element e ∈ H2(X2) such that e · e = −1. If K is
a basic class of X1, then K ± e are also basic classes on X , where e ∈ H2(X2) with
e · e = −1. Therefore {(K + e)− (K − e)}2 = (2e)2 = −4 gives a contradiction. �

Corollary 1.5. Let X be a simply connected 4-manifold satisfying the assump-
tion of Proposition 1.4. Then X is minimal.

2. Fiber sums of elliptic surfaces

LetX be a closed, oriented, smooth 4-manifold with a basic class c1(L) ∈ H2(X ; � )
and let x0 be a fixed point in X .

Definition 2.1. The space

M̂X(L) = {(A,ψ, ϕ) | F+
A = 1

4τ(ψ ⊗ ψ∗), DAψ = 0, |ϕ| = 1, ϕ ∈ W+|x0}/G

is called the framed Seiberg-Witten moduli space. Here G is the gauge group
C∞(X,U(1)) of the complex line bundle L.

Let M be a 3-manifold embedded respectively in X and Y with zero self-
intersections. If there is only the trivial solution of Seiberg-Witten equations on

� ×M , then M̂ (X ∪
M
Y ) satisfies a gluing law in the limit as the length of the neck

goes to infinity ([1]).

Let X∞ = X ∪
M

([0,∞)×M), M∞ = � ×M , and Y∞ = Y ∪
M

([0,∞)×M). For R

large enough applying the neck-streching argument, we have

M̂ (X ∪
M

[0, R]×M ∪
M
Y ) ∼= M̂ (X∞) ×

M̂ (M∞)

M̂ (Y∞).

Let E(1) be the elliptic surface over ��� 1 which is diffeomorphic to ��� 2 ] 9 ��� 2.

By repeating the fiber sums we have

E(n) = E(n− 1) ]
f
E(1) for n > 2,

where f is a generic fiber. That is,

E(n) = (E(n− 1)\N(f)) ∪
∂(N(f))

(E(1)\N(f)),

where N(f) is a tubular neighbourhood of a generic fiber f lying in a cusp neigh-
bourhood.
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There is only the trivial solution on � × T 3 because it has zero scalar curvature.

Let X = E(n − 1)\N(f), Y = E(1)\N(f) and M = � 3 . Then by the definition
above E(n), X∞ = (E(n−1)\N(f))∪ [0,∞)×T 3, Y∞ = (E(1)\N(f))∪ [0,∞)×T 3,
and M∞ = � × T 3. Since there is only the trivial (static) solution on � × T 3, we

have
M̂ (E(n)) ∼= M̂ (E(n− 1)) ×

M̂ ( � ×T 3)

M̂ (E(1)).

In [12] it is shown that

ML(E(1)) = ML( � P 2 ] 9 � P 2) ∼=
{
{(A, 0)} if c1(L) · [ωg] > 0,

{(A,ψ) | ψ 6≡ 0} if c1(L) · [ωg] < 0,

where ωg is the symplectic form depending on a generic g on E(1). If K is a basic
class of E(n− 1), then

M̂K+f (E(n)) ∼= M̂K(E(n− 1)) ×
M̂ ( � ×T 3)

M̂f (E(1))

∼= M̂K(E(n− 1)×Mf (E(1))
∼= M̂K(E(n− 1)).

Similarly, we get M̂K−f (E(n)) ∼= M̂K(E(n− 1)). So we have

Lemma 2.1. For n > 3

MK+f (E(n)) ∼= MK−f (E(n)) ∼= M (E(n− 1)).

Theorem 2.2. The basic classes of E(n) are of the form

{kf | k = −(n− 2),−(n− 4), . . . , n− 4, n− 2}, (n > 2).

���������
. We prove Theorem 2.2 by induction on n,

(1) n = 2, in [2] the only basic class of E(2) is 0.
(2) Assume that the set of basic classes of E(n− 1) is

{kf | k = − ((n− 1)− 2),−((n− 1)− 4), . . . , (n− 1)− 4, (n− 1)− 2}
= {kf | k = −(n− 3),−(n− 5), . . . , (n− 5), (n− 3)}.

Then by Lemma 2.1, the set of basic classes of E(n) is

{kf | k = −(n− 2),−(n− 4), . . . , n− 4, n− 2}.

�
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3. Rational blow-up

The elliptic surface E(1) can be constructed by blowing up ��� 2 at 9 intersection

points of a generic pencil of cubic curves. The fiber class of E(1) is f = 3h − e1 −
e2 − . . .− e9 where 3h is the class of the cubic in H2( ��� 2; � ). The nine exceptional
curves ei are disjoint sections of the elliptic fibration

E(1) −→ ��� 1.

The elliptic surface E(n) can be obtained as the fiber sum of n copies of E(1)
and these sums can be made so that the sections glue together to give nine disjoint
sections of E(n), each of square −n.
Consider E(4) with nine disjoint sections of square −4. Each of the nine sections

gives an embedded configuration C2. Therefore E(4) contains disjoint nine configu-
ration space C2. Let Yi denote the space obtained by the rational blow downs of the
first i-th sections, 1 6 i 6 9. For i 6 8, Yi is simply connected. In [11] Gompf showed

that all these manifolds admit symplectic structures. Therefore Yi (1 6 i 6 8) is a
simply connected symplectic 4-manifold.

To find the basic classes of Yi we can use the rational blow-down formula of
Fintushel and Stern [9].

Theorem 3.1 (Rational blow-down [9]). Let the rational blow-up Y of Z denote
Y = X ∪Cp and let the rational blow-down Z of Y denote Z = X ∪Bp where Bp is

a rational ball. If KY ∈ H2(Y ; � ) and KZ ∈ H2(Z; � ) are characteristic elements so
that K2

Y > 2e(Y ) + 3σ(Y ) and i∗YKY = i∗ZKZ where iY : X → Y and iZ : X → Z,

then

SWY (KY ) = SWZ(KZ).

Proposition 3.2. The basic classes of Yi are of the form

±(2f + e1 + e2 + . . .+ ei) i = 1, . . . , 8

where ej is the hyperplane class in the j-th copy of the ��� 2’s (1 6 j 6 i).
���������

. First, consider the basic classes of Y1 and consider the configuration C2

in ��� 2 where the sphere represents 2e1 = u1 where e1 is the hyperplane class in ��� 2.
Let Y = E(4) = X ∪ C2 and Z = X ∪ B2 = Y1. Let i : X → Y be the inclusion.

Over the rational coefficient, the cohomology splits into

H2(Y ) = H2(X)⊕H2(C2).
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It follows that i∗K is just the projection of K into H2(X). In other words,

i∗K = K + a1u1

where a1 is the unique rational number such that i∗YK · u1 = 0. With the rational
coefficient,

H2(Y1) = H2(X)⊕H2(B2) ∼= H2(X).

Since the basic classes of Y are 0, ±2f , we can consider

i∗Y (0), i∗Y (+2f) and i∗Y (−2f)

as the candidates for the basic classes of Y1 by the rational blow-down formula of

Theorem 3.1. Since u2
1 = −4 and KE(4) · u1 = 2, by simple calculation, we obtain

i∗Y (0) = 0, i∗Y (2f) = 2f + e1 and i∗Y (−2f) = −2f − e1 = −(2f + e1).

Since Y1 is a symplectic manifold with b
+
2 > 1, Y is of simple type by Theorem 1.3.

Therefore i∗Y (0) is not a basic class of Y1 because of c21(Y1) = 1. By Theorem 1.2,
±(2f + e1) are the only basic classes of Y1.

To repeat the above process, let Y = Y1 = X ∪ C2 and Z = X ∪ B2 = Y2. Here

the configuration C2 ⊂ ��� 2 in which the sphere represents 2e2 = u1 where e2 is the
hyperplane class in ��� 2.

Repeating the above method, the basic classes of Y2 are

±(2f + e1 + e2).

Similarly, if we repeat the above process i − 2 times, then the basic classes of Yi

are

±(2f + e1 + e2 + . . .+ ei) i = 1, . . . , 8

where ej is the hyperplane class in the j-th copy of the ��� 2’s. �

Lemma 3.3 [9]. For n > 4, the elliptic surface E(n) contains a pair of disjoint
configurations Cn−2 in which the spheres uj (1 6 j 6 n − 1) are sections of E(n)
and for 1 6 j 6 n− 2, uj · f = 0. Furthermore, the rational blow-down of this pair
of configurations is the Horikawa surface H(n).

The first case n = 4 gives the example H(4) = Y2. The Horikawa surfaces H(n)
lie on the Noether line 2χ− 6 = c21.

271



Proposition 3.4. The basic classes of H(n) are of the form

±((n− 2)f + e1 + e2 + . . .+ en−3 + e1
′ + e2

′ + . . .+ en−3
′)

where e1, . . . , en−3 and e1′, . . . , en−3
′ are the exceptional classes in H(n).

���������
. By Lemma 3.3, the Horikawa surface H(n) is the rational blow-down

of the pair of configurations Cn−3 in E(n). The configurations Cn−3 embed into

(n− 3) ��� 2 representing the elements

u1 = 2e1 + e2 + . . .+ en−3, u2 = e2 − e1, . . . , un−3 = en−3 − en−4,

where ei is the hyperplane class in the i-th copy of the ��� 2’s (1 6 i 6 n− 3). Also
the other configurations Cn−3 embed into (n− 3) ��� 2 representing the elements

u1
′ = 2e1′ + e2

′ + . . .+ en−3
′, u2

′ = e2
′ − e1

′, . . . , un−3
′ = en−3

′ − en−4
′,

where ei
′ is the hyperplane class in the i-th copy of the ��� 2’s (1 6 i 6 n − 3). By

Theorem 2.2, the basic classes of E(n) are of the form

{kf | k = −(n− 2),−(n− 4), . . . , n− 4, n− 2}.

Let Y = E(n) = X ∪ Cn−3 and Z = X ∪ Bn−3 ≡ Y (n). Let i : X → E(n) be the
inclusion. Over the rational coefficient, the cohomology splits into

H2(E(n)) = H2(X)⊕H2(Cn−3).

It follows that i∗K is just the restriction of the canonical class K ∈ H2(E(n)) into
H2(X). In other words,

i∗K = K + a1u1 + a2u2 + . . .+ an−3un−3,

where aj are the unique rational numbers such that i∗K ·uj = 0 for all 1 6 j 6 n−3.
With the rational coefficients we have

H2(Y (n)) = H2(X)⊕H2(Bn−3) = H2(X).

Since the basic classes of E(n) are kf (k = −(n − 2),−(n − 4), . . . , n − 4, n − 2),
we can consider i∗(kf) (k = −(n− 2),−(n− 4), . . . , n− 4, n− 2) as the candidates
for the basic classes of Y (n).
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First, let i∗(f) = f + a1u1 + a2u2 + . . . + an−3un−3. Since i∗(f) · uj = 0 for all
1 6 j 6 n− 3, we have

i∗(f) · u1 = 0 ⇒ 1− na1 + a2 = 0,

i∗(f) · u2 = 0 ⇒ a1 − 2a2 + a3 = 0,

i∗(f) · u3 = 0 ⇒ a2 − 2a3 + a4 = 0,
...

i∗(f) · un−3 = 0 ⇒ an−4 − 2an−2 = 0.

Then we get

a1 =
n− 3

(n− 2)2
, a2 =

n− 4
(n− 2)2

, . . . , an−4 =
2

(n− 2)2
, an−3 =

1
(n− 2)2

.

Therefore,

i∗(f) = f + a1u1 + . . .+ an−3un−3

= f +
n− 3

(n− 2)2
u1 + . . .+

1
(n− 2)2

un−3

= f +
1

n− 2
e1 +

1
n− 2

e2 + . . .+
1

n− 2
en−3.

Similarly i∗(kf) = k(f + 1
n−2e1 + 1

n−2e2 + . . . + 1
n−2en−3) for all k = −(n − 2),

−(n− 4), . . . , n− 4, n− 2. Since Y (n) is a symplectic manifold with b+2 > 1, Y (n) is
of simple type. And by Theorem 1.2, ±((n− 2)f + e1 + e2 + . . .+ en−3) are the only
basic classes of Y (n) and (±((n− 2)f + e1 + e2 + . . .+ en−3))2 = n− 3.
To repeat the above process, let Y = Y (n) = X∪Cn−3 and Z = X∪Bn−3 = H(n).

The basic classes H(n) are

±((n− 2)f + e1 + . . .+ en−3 + e1
′ + . . .+ en−3

′)

and

±((n− 2)f + e1 + . . .+ en−3 + e1
′ + . . .+ en−3

′)2 = 2n− 6.

�

Remark. In the proof of Proposition 3.4, Y (n) (n > 4) is a simply connected,
symplectic 4-manifold and Y (n) are not homotopy equivalent to any complex surface.
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4. Main theorem

Let X be a simply connected, symplectic 4-manifold. Let X contain a torus f

with square 0 lying in a cusp neighbourhood. Taking the fiber sum of X with the
regular elliptic surface E(n) along f , the fiber sum X ]

f
E(n) is a simply connected,

symplectic 4-manifold. We know the following relation:

(χ(X ]
f
E(n)), c21(X ]

f
E(n))) = (χ(X) + n, c21(X)).

Denote D ≡ {(a, b) ∈ � × � | 0 < b < 2a− 6}.

Theorem 4.1. If (a, b) ∈ D is a point in the region under the Noether line,

then there is a minimal, simply connected, symplectic 4-manifold X such that

(χ(X), c21(X)) = (a, b).

���������
. First, to prove Theorem 4.1 we only have to show that for every b > 0,

there is a simply connected symplectic manifold X which contains a torus f with
square 0 lying in a cusp neighbourhood.
Suppose that b is even. Then by Lemma 3.3, the Horikawa surface H(n) satisfies

the above statement. That is, the Horikawa surface H(n) is the simply connected,
symplectic manifold which contains a torus f with square f · f = 0 lying in a cusp
neighbourhood. And H(n) lies on the Noether-line 2χ− 6 = c21 = b.

Suppose that b is odd. If b 6 7, then the manifolds Yb (b = 1, 3, 5, 7) are the simply
connected, symplectic manifolds which contain a torus f with square f · f = 0 lying
in a cusp neighbourhood. If b > 9, then the manifold Y7 ]

f
H(n) (n > 4) lies on the

line 2χ − 7 = c21 and is simply connected, symplectic 4-manifold which contains a
torus f with square f · f = 0 lying in a cusp neighbourhood.
Therefore, for every b > 0, there is a simply connected manifold X (= H(n), Yb

(b = 1, 3, 5, 7), Y7 ]
f
H(n) (n > 4)) which contains a torus f with square f · f = 0

lying in a cusp neighbourhood.

To complete the proof of Theorem 4.1, we have to show that X]
f
E(n) is irreducible

when X is either H(n), Yb, or Y7]
f
H(n). By Proposition 3.2 and Proposition 3.4, the

basic classes of X are only ±KX when X is H(n) or Yi. Therefore the set of basic
classes of X ]

f
E(n) is

{±KX + kf | k = −(n− 2),−(n− 4), . . . , n− 4, n− 2}.
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The differences of two basic classes are k1f or ±(2KX + k2f) for some integers k1,

k2. The squares of these are

(k1f)2 = 0,

(±(2KX + k2f))2 = 4K2
X > 0.

Therefore, by Proposition 1.4, X ]
f
E(n) is irreducible when X is H(n) or Yi.

Similarly, the basic classes of Y7 ]
f
H(n) are ±(KY7 ±KH(n)). Therefore the set of

basic classes of (Y7 ]
f
H(n))]

f
E(m) is

{±(KY7 ±KH(n)) + kf | k = −(m− 2),−(m− 4), . . . ,m− 4,m− 2}.

Then the differences of two basic classes are k1f or ±(2(KY7 ± KH(n)) + k2f) for
some integers k1, k2. The squares of these are

(k1f)2 = 0,

(±(2(KY7 ±KH(n)) + k2f))2 = 4(KY7 ±KH(n))2 > 0.

Therefore, by Proposition 1.4, (Y7 ]
f
H(n))]

f
E(m) is irreducible. �
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