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Abstract. Let G be an abstract class (closed under isomorpic copies) of left R-modules.
In the first part of the paper some sufficient conditions under which G is a precover class
are given. The next section studies the G -precovers which are G -covers. In the final part
the results obtained are applied to the hereditary torsion theories on the category on left
R-modules. Especially, several sufficient conditions for the existence of σ-torsionfree and
σ-torsionfree σ-injective covers are presented.

Keywords: precover, cover, (pre)cover class of modules, hereditary torsion theory, rela-
tively injective modules
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Throughout this paper R denotes a ring with identity and σ = (T ,F ) a hereditary
torsion theory in the category of left R modules, R-mod. An R-module M is said to
be σ-injective if Ext1R(T,M) = 0 for any σ-torsion module T .
In order to study the structure of a module, it is useful to approximate the module

using the so-called G -cover, where G is a class of left R-modules. The crucial question
is the existence of such covers (cf. [9]). Associated to a torsion theory σ there exist
two important classes of modules, the class of σ-torsionfree modules and the class
of σ-torsionfree σ-injective modules (cf. [6], [7], [8]). In this note we consider the
problem of existence of covers for a general class of modules and we apply our results
to the case of the above mentioned two classes.
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ria. The first author has been partially supported by the Grant Agency of the Charles
University, grant #GAUK 10/97/B–MAT/MFF and also by the institutional grant CEZ
# J13/98: 113 200 007. The second author has been partially supported by PB98-1005
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1. Auxiliary results

Recall that a class of modules is said to be abstract, if it is closed under isomorphic
copies, co-abstract, if its members are pairwise non-isomorphic, hereditary, if it is
abstract and closed under submodules and inductive, if it is closed under unions of
chains. We further say that the homomorphisms f : F → M and g : G → M are
M -equivalent, if there is an isomorphism π : F → G such that gπ = f .

Lemma 1.1. Let F =
⊕
δ∈D

Fδ be a direct sum of modules and f : F → M an

arbitrary homomorphism. Then there is a subset D′ ⊆ D such that F = U ⊕ V ,
where U =

⊕
δ∈D′

Fδ , V ⊆ Ker f and for δ, ε ∈ D′, δ 6= ε, the homomorphisms f
∣∣Fδ

and f
∣∣Fε are not M -equivalent.

���������
. For the sake of simplicity denote fδ = f

∣∣Fδ for every δ ∈ D and we
define an equivalence relation ∼ on D in such a way that δ ∼ ε if and only if the
homomorphisms fδ and fε areM -equivalent. In this case we denote by πεδ : Fδ → Fε
the isomorphism for which fεπεδ = fδ. For each δ ∈ D let Dδ = {ε ∈ D | ε ∼ δ} be
the equivalence class containing δ and D′

δ = Dδ \ {δ}. Now for every ε ∈ D′
δ we set

Gεδ = {x− πεδ(x) | x ∈ Fδ} and we are going to verify that

⊕

ε∈Dδ

Fε = Fδ ⊕
( ⊕

ε∈D′
δ

Gεδ

)
.

In order to show that the sum on the right is direct, let x +
n∑
i=1

yi ∈ Fδ +
∑
ε∈D′

δ

Gεδ

be such that x ∈ Fδ , yi ∈ Gεiδ , where ε1, . . . , εn ∈ D′
δ are pairwise different and

x +
n∑
i=1

yi = 0. There are elements xi ∈ Fδ such that yi = xi − πεiδ(xi), i =

1, . . . , n, and so x +
n∑
i=1

yi = x +
n∑
i=1

xi −
n∑
i=1

πεiδ(xi) = 0, which yields xi = 0 for

every i = 1, . . . , n and consequently x = 0. Now if x +
n∑
i=1

yi, x ∈ Fδ, yi ∈ Fεi ,

{ε1, . . . , εn} ⊆ D′
δ, are arbitrary, then yi = πεiδ(xi) for suitable xi ∈ Fδ , i = 1, . . . , n,

hence x+
n∑
i=1

yi = x+
n∑
i=1

xi −
( n∑
i=1

(xi − πδεi(xi)
)
∈ Fδ ⊕

( ⊕
ε∈D′

δ

Gεδ

)
and the above

equality is proved.
Let D′ ⊆ D be any set of representatives of the equivalence classes under ∼.

Setting U =
⊕
δ∈D′

Fδ and V =
⊕
δ∈D′

(
⊕
ε∈D′

δ

Gεδ), we obviously have F = U ⊕ V , where

V ⊆ Ker f by the definition of the relation ∼. Finally, the M -equivalence of fδ and
fε means that δ ∼ ε, which is impossible for δ, ε ∈ D′, δ 6= ε. �

192



Definition 1.2. Let G be an abstract class of modules and let G ′ = {Gα | α ∈ A}
be a co-abstract subset of G . If M ∈ R-mod is arbitrary, then for every α ∈ A and
g ∈ Hom(Gα,M) we denote by Gαg an isomorphic copy of Gα. For all subsets B ⊆ A

and Hα ⊆ Hom(Gα,M) we take the direct sum Y =
⊕
α∈B

( ⊕
g∈Hα

Gαg

)
and denote

by {Xγ | γ ∈ C} the set of all modules from G which lie between Y and E(Y ) for
some Y , where E(Y ) is a fixed injective envelope of Y . Now for each γ ∈ C and
each g ∈ Hom(Xγ ,M) we take an isomorphic copy Xγg of Xγ together with the
isomorphism ψγg : Xγ → Xγg and we finally set

(1) G = GM =
⊕

γ∈C

(⊕
g∈Hom(Xγ ,M)

Xγg

)
.

Moreover, ϕ = ϕM : GM →M will denote the natural evaluation homomorphism
induced by the maps gψ−1

γg : Xγg →M .

Lemma 1.3. Let G be an abstract class of modules and G ′ a co-abstract subset

of G . Further, let M ∈ R-mod be an arbitrary module, let ϕ : G →M be as in the
preceding definition and let f : F →M with F ∈ G be an arbitrary homomorphism.

If F contains an essential submodule F ′ =
⊕
δ∈D′

Fδ , where each Fδ is isomorphic to a

member of G ′, and for any δ, ε ∈ D′, δ 6= ε, the homomorphisms f
∣∣Fδ and f

∣∣Fε are
not M -equivalent, then there is a homomorphism g : F → G such that ϕg = f .

���������
. As above, we will use the brief notation fδ = f

∣∣Fδ for each δ ∈ D′.
If {Gα | α ∈ A} is any list of elements of G ′ then for each δ ∈ D′ there is an
isomorphism θαδ : Fδ → Gα which induces isomorphism ϕαδ : Fδ → Gα,fδθ

−1
αδ
. Since

the equality fδθ
−1
αδ = fεθ

−1
βε for some δ 6= ε inD′ yields a contradiction fδ = fεθ

−1
βε θαδ ,

the isomorphisms ϕαδ induce isomorphism ψ′ : F ′ → Y , Y =
⊕
δ∈D′

Gα,fδθ
−1
αδ
. This

isomorphism extends to isomorphism ψ : F → Xγ for a suitable Xγ ∈ G lying
between Y and its injective envelope E(Y ). Denoting h = fψ−1 : Xγ → M and
ιγh : Xγh → G the canonical embedding, we can take g : F → G as g = ιγhψγhψ.
Then we have ϕg = ϕιγhψγhψ = hψ−1

γhψγhψ = hψ = f and the proof is complete.
�

Let ϕ : F →M and ψ : G→M be homomorphisms. We define an ordering 6 on
the class of all pairs (F, ϕ) in such a way that we put (F, ϕ) 6 (G,ψ) if and only if
F 6 G and ψ

∣∣F = ϕ.

Recall that for an abstract class G of modules a homomorphism ϕ : G → M ,
G ∈ G , is a G -precover of the moduleM , if for each F ∈ G and each homomorphism
f : F →M there is a homomorphism g : F → G such that ϕg = f . A G -precover ϕ
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of M is called a G -cover, if each endomorphism g of G with ϕg = ϕ is an automor-
phism of G.

Lemma 1.4. Let G be an abstract class of modules and ϕ : F →M a G -precover

of the moduleM . If f : F → F is a non-surjective monomorphism such that ϕf = ϕ,
then there is a G -precover ϕ0 : F0 → M of M such that (F, ϕ) < (F0, ϕ0) and an
isomorphism σ : F → F0 such that ϕ0σ = ϕ.

���������
. Using “standard” arguments, we can replace f(F ) in F by F and we

obtain F0 = F ∪ Y , where Y is a copy of F \ f(F ). Defining σ as the identity map
on Y and as f−1 on f(F ) and ϕ0 as ϕ on Y and as ϕf on F , one can easily verify
all the properties stated. �

Lemma 1.5. Let G be an abstract class of modules and

G
ψ−−−−→ M

f

y
∥∥∥

F
ϕ−−−−→ M

be a commutative diagram with F,G ∈ G . If ψ is a G -precover of M , then so is ϕ.
���������

is obvious. �

2. Existence of precovers

If G is an abstract class of modules such that every left R-module has a G -precover,
then it is usual to say that G is a precover class. In other words this means that for
each M ∈ R-mod there is a module G ∈ G and a homomorphism f : F → M such
that every homomorphism f : F → M , F ∈ G , factors through ϕ, i.e. f = ϕg for
some homomorphism g : F → G. Rada and Saorín [5, Theorem 3.4] observed that to
ensure that every module has a G -precover it suffices to consider any (co-abstract)
subset G ′ ⊆ G having the property that every homomorphism f : F → M , F ∈ G ,
factors through a direct sum of members of G ′. We start this section with the simple
proof of this fact, namely of [5, Corollary 3.7]. Anyway, this result show that “small”
classes G of modules are precover classes in the sense that G consists of all direct
sums of members of a (co-abstract) subset G ′ of G and their isomorphic copies. For
such classes it is usual to use the notation G = Coprod(G ′). On the other hand,
large classes, e.g. G = R-mod, are also precover classes (the identity map 1M for
every moduleM ∈ R-mod). So, we shall continue in this section with some sufficient
conditions for precover classes.

194



Proposition 2.1. If G ′ is any (co-abstract) set of modules, then G = Coprod(G ′)
is a precover class.

���������
. We are going to verify that for every module M the homomorphism

ϕ : G →M from Definition 1.2 is a Coprod(G ′)-precover of M . So, let f : F →M ,
F =

⊕
δ∈D

Fδ , where Fδ is an isomorphic copy of a member of G ′ for each δ ∈ D, be

arbitrary. By Lemma 1.1 there is a subset D′ of D such that F = U ⊕ V , where
U =

⊕
δ∈D′

Fδ and V ⊆ Ker f . By Lemma 1.3 there is h : U → G such that ϕh = f
∣∣U

and consequently for g = h⊕ 0: F → G we obviously have ϕg = f . �

We say that a class G of modules is G -cohereditary, if it is closed under factor-
modules by submodules lying in G . Further, submodule N of a module M is said to
be G -pure in M , if the factor-module M/N lies in G .

Theorem 2.2. Let G be a G -cohereditary class of modules closed under direct

sums and such that the set of G -pure submodules of any module lying in G is
inductive. If G ′ is a co-abstract subset of the class G such that each F ∈ G contains

an essential submodule isomorphic to a member of Coprod(G ′), then G is a precover

class.
���������

. LetM ∈ R-mod be arbitrary and let ϕ : G→M be as in Definition 1.2.
To show that ϕ is a G -precover of the module M , let f : F → M , F ∈ G , be an
arbitrary homomorphism. The hypothesis yields the existence of a maximal G -pure
submodule of F contained in Ker f and as can be easily verified, we may without loss
of generality assume thatKer f contains no non-zero submodule which is G -pure in F .
By hypothesis and Lemma 1.1 the module F contains an essential submodule F ′ of
the form F ′ = U ⊕ V , where U =

⊕
δ∈D′

Fδ with no f
∣∣Fδ, f

∣∣Fε, δ, ε ∈ D′, δ 6= ε, M -

equivalent and V ⊆ Ker f . Further, V ∈ G , G being abstract and closed under direct
sums, and consequently V is G -pure in F owing to the fact that G is G -cohereditary.
Thus V = 0, F ′ = U is essential in F and it suffices to use Lemma 1.3. �

Recall that an abstract class G of modules is said to be closed under extensions,
if G ∈ G whenever there is H 6 G such that both H and G/H belong to G .

Theorem 2.3. Let G be an abstract, G -cohereditary and inductive class of
modules closed under direct sums and extensions. If G ′ is a co-abstract subset of

the class G such that each F ∈ G contains an essential submodule isomorphic to a

member of Coprod(G ′), then G is a precover class.
���������

. Let M ∈ R-mod be arbitrary, ϕ : G → M as in Definition 1.2 and
let f : F → M , F ∈ G , be an arbitrary homomorphism. By hypothesis there is an

195



essential submodule F ′ ∈ G of F which can be by virtue of Lemma 1.1 written in
the form F ′ = U ⊕ V , V ⊆ Ker f , V ∈ G . The class G is inductive and so there is a
submodule V ′ ⊆ Ker f maximal with respect to V ⊆ V ′ and V ′ ∈ G . By hypothesis,
the factor-module F = F/V ′ belongs to G and f induces f : F → M naturally in
such a way that fπ = f , π being the canonical projection F → F . Similarly to
the case of F there is an essential submodule F ′ = U ⊕ V of F with V ⊆ Kerf .
Then V = Ṽ /V ′, where Ṽ ⊆ Ker f and Ṽ ∈ G owing to the fact that G is closed
under extensions. Now the maximality of V ′ yields V = 0 and an application of
Lemma 1.3 gives the existence of a homomorphism g : F → G with ϕg = f , from
which the assertion follows easily. �

Proposition 2.4. Let G be an abstract class of modules closed under injective

hulls. If M is an injective module, then a homomorphism ϕ : G → M is a G -

precover of M if and only if for every H ∈ G , H injective, and every homomorphism
f : H →M there is a homomorphism g : H → G such that ϕg = f .

���������
. Only the sufficiency requires verification. So, let F ∈ G and h : F →M

be arbitrary. If i : F → E(F ) = H is the canonical embedding, then there is
f : H →M with fi = h, M being injective. By hypothesis, there is g : H → G such
that ϕg = f . Thus ϕgi = fi = h and we are through. �

We say that a co-abstract set G ′ is closed under injective hulls, if G ′ with each its
element contains a copy of its injective hull.

Theorem 2.5. Let G be a hereditary class of modules closed under direct sums
and injective hulls and let G ′ be a co-abstract subset of G closed under injective

hulls. If, for each F ∈ G , F injective, the set of G -pure submodules is inductive
and F contains an essential submodule isomorphic to a member of Coprod(G ′), then
every injective module has a G -precover.

���������
. LetM ∈ R-mod be injective and let ϕ : G→M be as in Definition 1.2.

By Proposition 2.4 it suffices to test the homomorphism ϕ by the injective elements
of G only. So, let f : F → M , F ∈ G injective, be an arbitrary homomorphism.
By hypothesis and Lemma 1.1 there is an essential submodule F ′ = U ⊕ V of F
such that V ⊆ Ker f and U =

⊕
δ∈D′

Fδ where no different f
∣∣Fδ, f

∣∣Fε, δ, ε ∈ D′, are
M -equivalent.
If V = 0 then an application of Lemma 1.3 finishes the proof. Assuming V 6= 0

we shall adopt the notation of Lemma 1.1 and its proof. So, there are δ 6= ε in D
with δ ∼ ε and consequently Gεδ ∼= Fδ is isomorphic to a member of G ′. Moreover,
since F is injective, we may assume that Fδ and consequently Gεδ are also injective.
Then F = Gεδ ⊕ L where L can be taken as the injective hull of the direct sum of
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all remaining Fδ′ and Gε′δ′ and so L ∈ G by the hypotheses. Thus the isomorphism
F/Gεδ ∼= L shows that Gεδ is a G -pure submodule of F contained in Ker f . So, the
hypothesis yields the existence of a maximal G -pure submodule K of F contained
in Ker f . Denoting F = F/K and π : F → F the canonical projection, there is a
natural homomorphism f : F → M with fπ = f . Now if i is the embedding of F
into its injective envelope H = E(F ) then the injectivity of M yields the extension
f∗ : H → M of f , f∗i = f . By hypothesis and Lemma 1.1 the module H contains
an essential submodule H ′ = U ⊕V with V ∼= Ker f∗. Now it remains to verify that
V = 0, since in that case Lemma 1.3 yields the existence of g : H → G with ϕg = f ∗

and consequently ϕgiπ = f∗iπ = fπ = f .
Proving indirectly let us assume that V 6= 0. As in the case V 6= 0 we can find

a non-zero submodule L ⊆ Ker f∗ which is G -pure in H . Then 0 6= L ∩ F ⊆ Ker f
and F

L∩F
∼= F+L

L 6 H
L yields that L ∩ F is G -pure in F , G being a hereditary class

of modules. Thus we have obtained a G -pure submodule 0 6= L ∩ F = S/K of
F = F/K contained in Ker f . Hence S ⊆ Ker f , K ⊂ S and S is G -pure in F since
F/S ∼= F/K/S/K ∈ G . This contradicts the maximality of K and completes the
proof of the theorem. �

Theorem 2.6. If G is a hereditary class of modules, then every module has a
G -precover if an only if every injective module has a G -precover.

���������
. Only the sufficiency requires verification. So, let M ∈ R-mod be

arbitrary and let β : M → E(M) be its injective hull. If ϕ : F → E(M) is a
G -precover of E(M), then it is easy to see that in the pullback diagram

G
ψ−−−−→ M

f

y
yβ

F
ϕ−−−−→ E(M)

the homomorphism f is injective, hence G ∈ G by hypothesis and it is easy to see
that the homomorphism ψ : G→M is a G -precover of the module M . �

3. Precovers that are covers

Theorem 3.1. Let G be an abstract class of modules. If ϕ : F →M is a G -cover

of the module M then in every commutative diagram

(∗)
F

ϕ−−−−→ M

f

y
∥∥∥

G
ψ−−−−→ M
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where ψ is a G -precover of M , the homomorphism f is injective. The converse holds

if the class G is inductive.
���������

. Since ϕ is a G -precover of the module M , there is a homomorphism
g : G → F such that ϕh = ψ. But then ϕhf = ψf = ϕ yields that hϕ is an
automorphism of F and consequently f is a monomorphism.
To prove the converse we will say, for the sake of brevity, that a G -precover ϕ of

the module M has the property (∗) if it satisfies the condition of the theorem, i.e. if
for any G -precover ψ : G → M of M , every homomorphism f : F → G making the
diagram (∗) commmutative is injective.
Take any set X with F ⊆ X , |F | < |X |, and consider the family Σ = {(F0, ϕ0)},

where F0 ⊆ X and ϕ0 : F0 → M is a G -precover of the module M having the
property (∗). Since (F, ϕ) ∈ Σ, Σ is non-empty and we can define the natural
order 6 on Σ in such a way that {(F0, ϕ0)} 6 {(F1, ϕ1)} if and only if F0 ⊆ F1 and
ϕ1

∣∣F0 = ϕ0.
Let us verify, that Zorn’s lemma can be applied. If {(Fi, ϕi) | i ∈ I} ⊆ Σ is any

chain, set F ∗ =
⋃
i∈I

Fi and define ϕ∗ : f∗ → M via ϕ∗(x) = ϕi(x) whenever x ∈ Fi.
Obviously, F ∗ ⊆ X and F ∗ ∈ G by the hypothesis. To show that ϕ∗ is a G -precover
of M it suffices to apply Lemma 1.5 to the commutative diagram

Fi
ϕi−−−−→ M

ιi

y
∥∥∥

F ∗ ϕ∗−−−−→ M

with the inclusion map ιi, i ∈ I . In order to verify the property (∗), consider the
commutative diagram

Fi
ιi−−−−→ F ∗ ϕ∗−−−−→ M

gi

y g

y
∥∥∥

G G
ψ−−−−→ M

and assume that Ker g 6= 0. Then Ker g∩Fi 6= 0 for a suitable i ∈ I . Since ϕ∗ιi = ϕi
and ψgi = ψgιi = ϕ∗ιi = ϕi, the homomorphism gi is injective by the property (∗),
owing to the fact that (Fi, ϕi) ∈ Σ. On the other hand, Fi∩ Ker gi = 0, which
contradicts the choice of i ∈ I , and consequently (F ∗, ϕ∗) ∈ Σ.
Now we are going to verify that ϕ is a G -cover of the moduleM . Proving indirectly,

let us assume that there exists an endomorphism f of the module F such that ϕf = ϕ,
f is injective, but not surjective. By Lemma 1.4 and Zorn’s lemma there is a maximal
element (F ∗, ϕ∗) of Σ such that (F, ϕ) < (F ∗, ϕ∗). By the property (∗) there exists
a monomorphism f1 : F ∗ → F with f1ϕ = ϕ∗. Now the composition of f1 with the
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inclusion map ι : F → F ∗ yields an injective non-surjective endomorphism ιf1 of F ∗

such that ϕ∗ιf1 = ϕf1 = ϕ∗. To obtain the final contradiction with the maximality
of (F ∗, ϕ∗) it suffices now to apply Lemma 1.4. �

As a consequence of this theorem we can easily derive the result [9, Theorem 2.2.8]
on the existence of G - covers.

Corollary 3.2. Let G be an abstract class of modules closed under direct limits.
If a module M has a G -precover, then it has a G -cover.

���������
. Using [9, Lemma 2.2.10] we see that there exists a G -precover of M

having the property (∗) and Theorem 3.1 applies. �

Theorem 3.3. Let G be an abstract and inductive class of modules and let

ϕ : F → M be a G -precover of the module M . If each endomorphism f of F with
ϕf = ϕ is injective and f(F ) is essential in F , then ϕ is a G -cover of M .

���������
. Similarly as in the preceding proof we shall consider a set X with

F ⊆ X , |F | < |X | and the family Σ = {(F0, ϕ0)} with F ⊆ F0 ⊆ X , F essential
in F0, and ϕ0 : F0 → M a G -precover of the module M . The collection Σ is non-
empty since (F, ϕ) ∈ Σ, and it is ordered by the relation 6 where (F0, ϕ0) 6 (F1, ϕ1)
if and only if F0 ⊆ F1 and ϕ1

∣∣F0 = ϕ0.
If {(Fi, ϕi) | i ∈ I} is a chain in Σ, then we set F ∗ =

⋃
i∈I

Fi and ϕ∗(x) = ϕi(x)

whenever x ∈ Fi. Then F ∗ ∈ G by hypothesis, ϕ∗ is a G -precover ofM by Lemma 1.5
and so (F ∗, ϕ∗) ∈ Σ, F being obviously essential in F ∗.
Consider the commutative diagram

F
ϕ−−−−→ M

ι

y
∥∥∥

F ∗ ϕ∗−−−−→ M

f1

y
∥∥∥

F
ϕ−−−−→ M

where (F ∗, ϕ∗) is a maximal element of Σ, ι is the embedding and f1 is an arbitrary
homomorphism making the bottom square commutative. Now ϕf1ι = ϕ∗ι = ϕ and
consequently f1ι is injective by hypothesis. Further, for y ∈ Ker f1 ∩ ι(F ) we have
y = ι(x) for some x ∈ F , and so f1(y) = f1ι(x) = 0 yields y = 0, which means that
Ker f1 ∩ ι(F ) = 0. Thus Kerf1 = 0, ι(F ) being essential in F ∗. Moreover, Im(f1ι)
is essential in F by hypothesis and so is Im f1 in view of the obvious inclusion
Im (f1ι) ⊆ Im f1.
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Our next step is to show that f1 is an epimorphism. If not, then ιf1 is a non-
surjective monomorphism of F ∗ such that ϕ∗ιf1 = ϕf1 = ϕ∗ and consequently
Lemma 1.4 yields a contradiction with the maximality of (F ∗, ϕ∗).
To complete the proof it suffices to consider the commutative diagram

F ∗ ϕ∗−−−−→ M

f1

y
∥∥∥

F
ϕ−−−−→ M

f

y
∥∥∥

F
ϕ−−−−→ M

Since ϕff1 = ϕf1 = ϕ∗, ff1 is an epimorphism by the preceding part, and so is f ,
as we wished to show. �

Let G be an abstract class of modules. We say that a proper submodule N of a
module M is almost G -pure in M , if the factor-module M/N contains a non-zero
submodule from G . Furthermore, we say that a module U is almost G -hereditary, if
every non-zero submodule of U contains a non-zero submodule from G . Finally, the
class G is called almost G -hereditary, if every module U ∈ G is almost G -hereditary.

Theorem 3.4. Let G be an abstract inductive class of modules and let ϕ : F →
M be a G -precover of the moduleM . If F is almost G -hereditary and Kerϕ contains
no non-zero submodule almost G -pure in F , then ϕ is a G -cover of M .

���������
. The idea of the proof is to verify that any endomorphism f of the

module F such that ϕf = ϕ is injective with essential image and then apply the
preceding theorem.
First, F/Kerf ∼= Im f 6 F yields that Im f contains a non-zero element from G ,

hence Ker f is almost G -pure in F and Ker f = 0 by hypothesis, owing to the
obvious inclusion Kerf ⊆ Kerϕ. Continuing indirectly, let us suppose that f(F ) is
not essential in F . Thus there is a non-zero submoduleK of F with f(F )∩K = 0 and
we may without loss of generality assume that K ∈ G , F being almost G -hereditary.
Setting S = {x − f(x) | x ∈ K} we have x − f(x) = 0 if and only if x = f(x) ∈
K ∩ f(F ) = 0, and the mapping g : K → S given by g(x) = x − f(x), x ∈ K, is an
isomorphism. Thus S ∼= K lies in the class G and obviously S ⊆ Kerϕ. Further,
S ∩ f(F ) = 0 since for x − f(x) = f(y), x ∈ K, y ∈ F , we have x = f(x + y) ∈
K ∩ f(F ) = 0, and so Im f ∼= f(F )⊕S

S 6 F
S . By hypothesis, Im f contains a non-zero

submodule from G , hence 0 6= S ⊆ Kerϕ is almost G -pure in F , which contradicts
the hypothesis. �
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4. Applications

Recall that a hereditary torsion theory σ = (T ,F ) for the category R-mod con-
sists of two abstract classes T and F , the σ-torsion class and the σ-torsionfree
class, respectively, such that Hom(T, F ) = 0 whenever T ∈ T and F ∈ F , the
class T is closed under submodules, factor modules, extensions and direct sums,
the class F is closed under submodules, extensions and direct product and for each
module M there exists an exact sequence 0 → T → M → F → 0 such that T ∈ T

and F ∈ F . With each hereditary torsion theory we associate a Gabriel filter of left
ideals L = {I 6 R | R/I ∈ T } and the torsion part σ(M) = T of the module M
consists of all elements a ∈ M with (0 : a) ∈ L . The torsion theory σ is said to
be of finite type, if the filter L contains a cofinal subset of finitely generated left
ideals. For more details see e.g. [3] or [1]. The following two consequences of the
above theory can be found in [7, Theorem] and [2, Theorem 1].

Corollary 4.1. If σ = (T ,F ) is a hereditary torsion theory of finite type for
R-mod, then every module has a σ-torsionfree cover.

���������
. First we show that every R-module has a σ-torsionfree precover. Since

the class F is hereditary, it suffices by virtue of Theorem 2.6 to show that every
injective module has an F -precover. For this reason we are going to verify the
hypotheses of Theorem 2.5. Clearly, F is closed under direct sums and injective
hulls. If F ′ is a co-abstract set consisting of injective hulls of cyclic modules from
F , then obviously every injective module F ∈ F contains an essential submodule
isomorphic to a member of Coprod(F ′). Since the set of F -pure submodules of
any module is inductive by [3, Proposition 6.18], the proof of this part is complete.
Now if ψ : G → M is an F -precover of the module M , then Kerψ contains a
maximal F -pure submodule K of G. Denoting F = G/K and ϕ : F → M the
homomorphism naturally induced by ψ, Lemma 1.5 yields that ϕ is a σ-precover
of M and Theorem 3.4 applies. �

Corollary 4.2. Over any commutative domain every module has a torsionfree
cover.

���������
is obvious. �

Let σ = (T ,F ) be a hereditary torsion theory for R-mod and let I denote the
class of σ-torsionfree σ-injective modules.

Lemma 4.3. If σ is a hereditary torsion theory of finite type, then a σ-torsionfree
moduleM is σ-injective if the induced map Hom(R,M) → Hom(I,M) is an epimor-
phism for every finitely generated left ideal I from L .
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���������
. In view of the relative Baer’s criterion, we can investigate the commu-

tative diagram

I
i−−−−→ J

ι−−−−→ R

f ′
y f

y
yg

M M M

with J ∈ L and f : J → M given. By hypothesis there is a finitely generated left
ideal I ∈ L with the inclusion map i : I → J and a homomorphism g : R→M such
that gιi = f ′, where f ′ = f | I = fi. For an arbitrary j ∈ J we haveK = (I : j) ∈ L

and for each k ∈ K we have k(f−gι)(j) = (f−gι)(kj) = 0 since kj ∈ I and f
∣∣I = gιi.

Hence K(f − gι)(j) = 0, which means (f − gι)(j) ∈ σ(M) = 0 and consequently
f = gι, as desired. �

Lemma 4.4. If σ = (T ,F ) is a hereditary torsion theory of finite type, then
the class I of all σ-torsionfree σ-injective modules is inductive.

���������
. See [3, Proposition 42.9]. �

The following two corollaries partly generalize some results from [8, Corollary 2.10]
and [4, Proposition 2], respectively. Recall that a hereditary torsion theory σ is called
exact if M ∈ I implies E(M)/M ∈ I and that σ is called perfect if it is exact and
of finite type.

Corollary 4.5. If σ = (T ,F ) is a perfect torsion theory for R-mod, then every
module has a σ-torsionfree σ-injective cover.

���������
. Using Theorem 2.3 we first show that every module has an I -precover.

The class I of all σ-torsionfree σ-injective modules is I -cohereditary by [3, Propo-
sition 44.1], it is inductive by Lemma 4.4 and it is easy to see that it is closed under
direct sums and extensions. Taking any co-abstract subset I ′ of I consisting of
elements which are essential extensions of σ-torsionfree cyclic modules, then using
[3, Proposition 10.11] it is a routine to check that each F ∈ I contains an essen-
tial submodule isomorphic to a member of Coprod(I ′). Thus every module has
an I -precover and by virtue of inductivity and Lemma 1.5 we may assume that
for an arbitrary module M there exists an I -precover ϕ : F → M such that Kerϕ
contains no non-zero submodule I -pure in F . Considering the diagram (∗) in The-
orem 3.1, the isomorphism F/Ker f ∼= Im f yields that Ker f is σ-closed in F and
consequently I -pure in F by [3, Proposition 10.11]. In view of the obvious inclusion
Ker f ⊆ Kerϕ, Ker f = 0 and ϕ is the I -cover of M by Theorem 3.1. �
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Corollary 4.6. If σ = (T ,F ) is a centrally splitting torsion theory for R-mod,
then every module has a σ-torsionfree σ-injective cover.

���������
. The corresponding radical filter L has the smallest element I = Re,

e being a central idempotent, and so σ is obviously of finite type. Let M ∈ F

be arbitrary. Assuming σ(E(M)/M) = K/M 6= 0, for each x ∈ K \M we have
Ix ⊆ M , i.e. ex ∈ M . Moreover, e(x − ex) = 0, so I(x − ex) = 0 and x = ex,
M being σ-torsionfree. Hence x ∈ M , which is a contradiction proving that every
σ-torsionfree module is σ-injective; an application of Corollary 4.1 completes the
proof. �
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