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BERNSTEIN-TYPE OPERATORS ON THE HALF LINE
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Abstract. We define Bernstein-type operators on the half line [0,+∞[ by means of two
sequences of strictly positive real numbers. After studying their approximation properties,
we also establish a Voronovskaja-type result with respect to a suitable weighted norm.

Keywords: Bernstein-Chlodovsky operators, approximation process, Voronovskaja-type
formula
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1. Introduction and notation

In [4] Chlodovsky introduced and studied a sequence of positive linear operators

(C∗n)n>1 on the space C([0,+∞[) of all real valued continuous functions on the half
line [0,+∞[, defined by

(1.1) C∗nf(x) :=





n∑

k=0

f

(
bnk

n

)(
n

k

)(
x

bn

)k(
1− x

bn

)n−k

if 0 6 x 6 bn,

f(x) if x > bn,

where (bn)n>1 is a divergent sequence of strictly positive real numbers.
Roughly speaking, the above operators, known as Bernstein-Chlodovsky operators,

behave basically like the classical Bernstein ones on [0, bn], interpolating, in the
meanwhile, the function f elsewhere.

A deeper analysis of their approximation properties was subsequently carried out
in [8], [10] with respect to functions belonging to particular subspaces of C([0,+∞[).
In this framework and without the assumption of completeness, it seems also useful
to refer the reader to [6], [7], [9], [11] for general results concerning the approximation
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of continuous functions on unbounded intervals and for some interesting extensions

of the classical Korovkin’s Theorem.

The purpose of this paper is to consider a generalization of Bernstein-Chlodovsky

operators (1.1) by using two sequences (bn)n>1 and (cn)n>1 of strictly positive real
numbers, satisfying particular assumptions.

As a consequence, our definition (2.1) actually turns out to be more flexible

than (1.1), allowing to state, beyond classical approximation results, a Voronovskaja-
type formula, which, as far as we know, cannot be stated for the classical C∗

n.

The corresponding differential operator is a rather general second-order one de-

generating at the boundaries with coefficients depending on the sequences (bn)n>1

and (cn)n>1, and may be readily shown to be the generator of a strongly continuous

positive contraction semigroup, due to some classical results stated in [5] and [12].

It would be perhaps interesting, falling, actually, within a wide program of in-
vestigation which has been inspiring the authors and other researchers in the last

years, to prove that such a semigroup may be represented in terms of powers of the
operators Cn as an application of the classical Trotter representation theorem [13]

(see, also, [1], Proposition 1.6.7, p. 67): this may virtually justify further analysis in
the concern.

As for the notation, throughout the paper, besides C([0,+∞[), we will sometimes
deal with the subspace UCb([0,+∞[) of all bounded uniformly continuous functions
on [0,+∞[ which is a Banach lattice, if endowed with the sup- norm‖·‖.
For every α > 0 we will be mainly concerned with the weighted space

(1.2) E0
α := {f ∈ C([0,+∞[) | ∃ lim

x→+∞
f(x)

1 + xα
= 0},

which becomes a Banach lattice with respect to the norm

(1.3) ‖f‖α := sup
x>0

|f(x)|
1 + xα

.

Such spaces have been already considered in [2], [3] in which a worthy generalization
of the classical Baskakov operators is studied.

As usual, for every integer m > 1, Cm([0,+∞[) is the vector space of all real
valued m-times continuously differentiable functions on [0,+∞[. For every p > 0, ep

is the test function defined by ep(x) := xp (x > 0), whereas, for each x > 0, ψx is

the function defined by ψx(t) := t− x (t > 0).
The symbol ω(·, ·) will denote the classical modulus of continuity, as usual.
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2. The operators Cn

Let us consider two sequences (bn)n>1 and (cn)n>1 of strictly positive real numbers

satisfying the following assumptions:
1) bn → +∞ as n→ +∞;
2) bn/n→ 0, bn − cn → 0 as n→ +∞;
3) bn 6 cn for every n > 1.
It immediately follows that, correspondingly, cn → +∞ and cn/n → 0 as well,

and, in addition, bn ≈ cn as n→ +∞.
For every n > 1 and for every f ∈ E0

α we set

(2.1) Cnf(x) :=





n∑

k=0

f

(
cnk

n

)(
n

k

)(
x

bn

)k(
1− x

bn

)n−k

if 0 6 x 6 bn,

f(cn) if bn < x 6 cn,

f(x) if x > cn.

Since Cn(f) = f in [cn,+∞[ by definition, we may refer to Cn as to a positive

linear operator acting from E0
α into itself. Moreover, Cn(e0) = e0 and therefore

‖Cn‖ = ‖Cn(e0)‖ = 1; in addition, a very simple computation shows that

Cne1(x) =





cn
bn
x if 0 6 x 6 bn,

cn if bn < x 6 cn,

x if x > cn,

(2.2)

Cne2(x) =





c2n
b2n
x2 +

c2n
nb2n

x(bn − x) if 0 6 x 6 bn,

c2n if bn < x 6 cn,

x2 if x > cn,

(2.3)

Cnψx(x) =





(
cn
bn

− 1
)
x if 0 6 x 6 bn,

cn − x if bn < x 6 cn,

0 if x > cn,

(2.4)

and

Cnψ
2
x(x) =





(
cn
bn

− 1
)2

x2 +
c2n
nb2n

x(bn − x) if 0 6 x 6 bn,

(cn − x)2 if bn < x 6 cn,

0 if x > cn.

(2.5)

An approximation result is indicated below.
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Theorem 2.1. For every f ∈ E0
α (α > 2) we have

(2.6) lim
n→+∞

‖Cn(f)− f‖α = 0,

i.e., the sequence (Cn)n>1 is a positive approximation process.

More precisely, for n large enough we have

(2.7) ‖Cn(f)− f‖α 6 2ω

(
f,

√
(cn − bn)2 +

c2n
nbn

)
.

���������
. Indeed, let us fix n > 1. On account of (2.2) and (2.3), we get

|Cne1(x)− x|
1 + xα

6





(
cn
bn

− 1
)
if 0 6 x 6 bn,

cn − bn
1 + bαn

if bn < x 6 cn,

|Cne2(x)− x2|
1 + xα

6





(
c2n
b2n

− 1
)

+
c2n
nbn

if 0 6 x 6 bn,

2cn(cn − bn)
1 + bαn

if bn < x 6 cn.

Now observe that each member on the right-hand side in the above estimates tends

to 0 as n→ +∞, as a consequence of the assumptions on the sequences (bn)n>1 and
(cn)n>1. Moreover, by definition, |Cnei(x) − ei(x)| = 0 whenever x ∈ [cn,+∞[ and
therefore, since obviously Cn(e0) = e0, we have just shown that

lim
n→+∞

‖Cn(ei)− ei‖α = 0 for i = 0, 1, 2,

which implies (2.6) on account of Korovkin’s theorem (see, e.g., [1], Proposition 4.2.5,
p. 215).

In order to establish (2.7), let us first note that by virtue of [1], Proposition 5.1.2,
p. 268, a pointwise estimate

|Cnf(x)− f(x)| 6 2ω(f,
√
Cnψ2

x(x))

=





2ω

(
f,

√(
cn
bn

− 1
)2

x2 +
c2n
nb2n

x(bn − x)

)
if 0 6 x 6 bn,

2ω(f, cn − x) if bn < x 6 cn,
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holds true for any f ∈ E0
α. The uniform estimate (2.7) now immediately follows,

since a straightforward computation yields for n large enough

sup
06x6cn

√
Cnψ2

x(x)
1 + xα

6

√
(cn − bn)2 +

c2n
nbn

.

�

The following two lemmas will be very useful in the sequel.

Lemma 2.2. Let (%n)n>1 be a divergent sequence of strictly positive real num-

bers such that

(2.8) %n
cn
n
→ 2a and %n

(
cn
bn

− 1
)
→ b as n→ +∞,

where a > 0 b > 0. Then, if α > 4, we have

(2.9) lim
n→+∞

%n

1 + xα

n∑

k=0

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k(
cn
k

n
− x

)4

= 0

uniformly on [0,+∞[.
���������

. For any n > 1 and x > 0 a direct computation shows that

n∑

k=0

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k(
cn
k

n
− x

)4

= x4

[
1− 4

cn
bn

+ 6
c2n
b2n

− 6
c2n
nb2n

− 4
c3n(n− 1)(n− 2)

n2b3n
+
c4n(n− 1)4(n− 2)

n5b4n

]

+ x3

[
6
c2n
nbn

− 12
c3n(n− 1)
n2b2n

+ 3
c4n(n− 1)2

n3b3n
− 3

c4n(n− 1)
n3b3n

+ 3
c4n(n− 1)4

n5b3n

]

+ x2

[
−4

c3n
n2bn

+ 6
c4n(n− 1)
n3b2n

+
c4n(n− 1)3

n5b2n

]
+ x

c4n
n3bn

.

Let us denote by αn, βn, γn, δn the coefficients of the powers x4, x3, x2 and x,

respectively, in the above equality; since α > 4 by assumption, for any n > 1 and
x > 0 we have

%n

1 + xα

∣∣∣∣
n∑

k=0

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k(
cn
k

n
− x

)4∣∣∣∣

6 x4

1 + xα
|%nαn|+

x3

1 + xα
|%nβn|+

x2

1 + xα
|%nγn|+

x

1 + xα
|%nδn|

6 |%nαn|+ |%nβn|+ |%nγn|+ |%nδn|.
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Now the assertion easily follows, because all sequences in the above last term tend

to 0 as n → +∞ on account of (2.8) and the conditions on (bn)n>1 and (cn)n>1

stated just before the definition (2.1). �

Lemma 2.3. Under the assumptions (2.8), if α > 2, we have

(2.10) lim
n→+∞

‖%nCn(ψx)− be1‖α−1 = lim
n→+∞

‖%nCn(ψ2
x)− 2ae1‖α = 0.

���������
. Let us choose n > 1; then, on account of (2.4) and (2.5), we get the

estimates

|%nCnψx(x)− bx|
1 + xα−1

6





∣∣∣∣%n

(
cn
bn

− 1
)
− b

∣∣∣∣ if 0 6 x 6 bn,

%n(cn − bn) + bcn

1 + bα−1
n

if bn < x 6 cn,

|%nCnψ
2
x(x)− 2ax|

1 + xα
6





%n

(
cn
bn

− 1
)2

+
%nc

2
n

nb2n
+
∣∣∣∣
%nc

2
n

nbn
− 2a

∣∣∣∣ if 0 6 x 6 bn,

%n(cn − bn)2 + 2acn
1 + bαn

if bn < x 6 cn,

and all terms on the right-hand sides tend to 0 as n → +∞. Now, in order to find
out an estimate for x > cn, let us first observe that the function g(x) := x/(1+xα−1)
(x > 0) attains its maximum at a point, say x0, in ]0,+∞[. Of course there exists
k ∈  such that cn > x0 for any n > k and g is strictly decreasing in [cn,+∞[. It
immediately follows that for n > k and x ∈ [cn,+∞[

|%nCnψx(x) − bx|
1 + xα−1

= bg(x) 6 bcn

1 + cα−1
n

,

where again the term on the right-hand side tends to 0 as n → +∞. Arguing
similarly for Cnψ

2
x(x) gives (2.10). �

Now we are ready to prove our main result, which states a Voronovskaja-type

formula for the operators Cn.

Theorem 2.4. For any f ∈ C2([0,+∞[) ∩ E0
α (α > 4) such that f ′′ ∈

UCb([0,+∞[) we have

(2.11) lim
n→+∞

%n(Cnf(x)− f(x)) = axf ′′(x) + bxf ′(x) in E0
α,

(%n)n>1, a and b being the same as those appearing in Lemma 2.2.
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���������
. First of all, let us note that if f ∈ C2([0,+∞[) ∩ E0

α with f
′′ ∈

UCb([0,+∞[), because of the identity

(1) f ′(x) = f ′(0) +
∫ x

0

f ′′(s) ds (x > 0),

for a suitable constant K > 0 one has

(2)
|f ′(x)|
1 + x

6 K (x > 0).

Moreover, if |f ′′(x)| 6 M for every x > 0, then obviously

(3) |f ′(x) − f ′(y)| 6 M |x− y| (x, y > 0).

We will show that (2.11) holds true on each of the intervals [0, bn], ]bn, cn], and
]cn,+∞[, as suggested by the definition of our operators Cn.
To start with, fix n > 1 and note that if x ∈ [0, bn], by virtue of Taylor’s formula,

for any k = 0, 1, . . . , n there exists dn,k,x lying between x and cnk/n such that

f

(
cnk

n

)
− f(x) = f ′(x)

(
cn
k

n
− x

)
+
f ′′(x)

2

(
cn
k

n
− x

)2

+
f ′′(dn,k,x)− f ′′(x)

2

(
cn
k

n
− x

)2

.

After setting

(4) µ

(
x,
cnk

n

)
:=

f ′′(dn,k,x)− f ′′(x)
2

,

we may therefore write

%n(Cnf(x)− f(x)) = %nf
′(x)Cnψx(x) +

1
2
%nf

′′(x)Cnψ
2
x(x) + %nRn(x),

where

Rn(x) =
n∑

k=0

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k

µ

(
x,
cnk

n

)(
cn
k

n
− x

)2

.

It follows that

1
1 + xα

|%n(Cnf(x)− f(x))− axf ′′(x) − bxf ′(x)|

6 1
1 + xα

∣∣∣∣%n
1
2
f ′′(x)Cnψ

2
x(x)− axf ′′(x)

∣∣∣∣

+
1

1 + xα
|%nf

′(x)Cnψx(x) − bxf ′(x)|+ %n

1 + xα
|Rn(x)|,
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where the first two members on the right-hand side tend to 0 uniformly: simply
apply Lemma 2.3, taking also into account that f ′′ is bounded by assumption and
that

1
1 + xα

|%nf
′(x)Cnψx(x) − bxf ′(x)| 6 N

|f ′(x)|
1 + x

‖%nCn(ψx)− be1‖α−1

6 NK‖%nCn(ψx)− be1‖α−1

by virtue of (2) (here N is a suitable positive constant).
Therefore, in order to establish (2.11) in [0, bn], it is sufficient to show that

lim
n→+∞

%n(1 + xα)−1|Rn(x)| = 0 uniformly. To this aim, note that the assump-

tions on f together with the definition (4) ensure that |µ(x, t)| 6 M for every

(x, t) ∈ [0, bn]× [0, cn] and that lim
t→x

µ(x, t) = 0 uniformly with respect to x ∈ [0, bn].

Now fix ε > 0 and choose δ > 0 such that |µ(x, t)| < ε whenever |x − t| < δ; then
(2.9) and the second limit in (2.10) yield

%n

1 + xα

∣∣∣∣
n∑

k=0

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k(
cn
k

n
− x

)4∣∣∣∣ <
aεδ2

2M

and

|%nCnψ
2
x(x) − 2ax|

1 + xα
< a/2

for every x ∈ [0, bn] if n is large enough, say n > n0. It follows that for every
x ∈ [0, bn] and n > n0

%n

1 + xα
|Rn(x)|

6 ε%n

1 + xα

∣∣∣∣
n∑

k=0
|cnk/n−x|<δ

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k(
cn
k

n
− x

)2∣∣∣∣

+
%n

1 + xα

∣∣∣∣
n∑

k=0
|cnk/n−x|>δ

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k

µ

(
x,
cnk

n

)(
cn
k

n
− x

)2∣∣∣∣

6 ε%n

1 + xα
Cnψ

2
x(x) +

%nM

δ2(1 + xα)

∣∣∣∣
n∑

k=0

(
n

k

)(
x

bn

)k(
1− x

bn

)n−k(
cn
k

n
− x

)4∣∣∣∣

6 ε
|%nCnψ

2
x(x) − 2ax|

1 + xα
+

2aεx
1 + xα

+
aε

2
6 3aε.

Therefore lim sup
n→+∞

%n(1 + xα)−1|Rn(x)| 6 3aε and, consequently, since ε is arbitrary,

the proof is complete in this first case.

858



Now, if x ∈ ]bn, cn], since Cnf(x) = f(cn) by the definition (2.1), applying Taylor’s
formula together with (2.4) and (2.5) gives

1
1 + xα

|%n(f(cn)− f(x))− axf ′′(x)− bxf ′(x)|

=
1

1 + xα

∣∣∣∣%nf
′(cn)(cn − x)

− %n
1
2
f ′′(dn,x)(cn − x)2 − axf ′′(x)− bxf ′(x)

∣∣∣∣

6 1
1 + xα

|%nCnψx(x)f ′(cn)− bxf ′(x)|

+
1

1 + xα

∣∣∣∣%nCnψ
2
x(x)

f ′′(dn,x)
2

− axf ′′(x)
∣∣∣∣ := I1 + I2,

dn,x being a suitable point between x and cn. Next we show that each Ii tends to 0
uniformly; indeed, on account of (3), for a suitable N > 0 we have

I1 6 1
1 + xα

|%nCnψx(x)f ′(cn)− bxf ′(cn)|+ 1
1 + xα

|bxf ′(cn)− bxf ′(x)|

6 N |f ′(cn)|
1 + bn

‖%nCn(ψx)− be1‖α−1 +
Mbcn(cn − bn)

1 + bαn
,

and the term on the right-hand side tends to 0 due to the first limit in (2.10) and
to (2), because |f ′(cn)|/(1 + bn) ≈ |f ′(cn)|/(1 + cn) as n→ +∞.
Similarly, since |f ′′(x)| 6 M for every x > 0 by assumption, we get

I2 6 1
1 + xα

∣∣∣∣%nCnψ
2
x(x)

f ′′(dn,x)
2

− axf ′′(dn,x)
∣∣∣∣+

1
1 + xα

|axf ′′(dn,x)− axf ′′(x)|

6 M

2
‖%nCn(ψ2

x)− 2ae1‖α +
2Macn
1 + bαn

,

which easily yields I2 → 0, too, because of the second limit in (2.10).
At last, when x > cn and therefore Cnf(x) = f(x) by definition, we have, for n

large enough and a suitable N > 0 (see the last part of the proof of Lemma 2.3)

1
1 + xα

|axf ′′(x) + bxf ′(x)| 6 Macn
1 + cαn

+
N |f ′(x)|

1 + x
· bcn

1 + cα−1
n

,

where again the term on the right-hand side tends to 0 because of (2).
The proof of the theorem is now complete. �
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