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ON CAUCHY PROBLEM FOR FIRST ORDER

NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS
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�
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Abstract. On the segment I = [a, b] consider the problem

u′(t) = f(u)(t), u(a) = c,

where f : C(I, � ) → L(I, � ) is a continuous, in general nonlinear operator satisfying
Carathéodory condition, and c ∈ � . The effective sufficient conditions guaranteeing the
solvability and unique solvability of the considered problem are established. Examples
verifying the optimality of obtained results are given, as well.

Keywords: nonlinear functional differential equation, initial value problem, non–
Volterra’s type operator

MSC 2000 : 34K10

1. Statement of the problem and formulation of the main results

On the segment I = [a, b] we will consider the functional differential equation

(1.1) u′(t) = f(u)(t)

with the initial condition

(1.2) u(a) = c,

This work was supported by Grant No. 201/99/0295 of Grant Agency of Czech Republic
and by Grants Nos. 96-15-96195, 99-01-01278 of the RFBS and the Competition Centre
of the FNS.
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where f : C(I, � ) → L(I, � ) is a continuous operator and c ∈ � . In the case when f

is a Volterra operator, the problem (1.1), (1.2) has already been sufficiently studied
(see [1]–[3], [5], [6], [9]–[24] and references therein). There is also a lot of interesting
results on solvability and unique solvability of this problem even in the case when

f is not a Volterra operator (see, e.g., [1], [2], [7]–[9], [23]). However, in that case
the theory on the problem (1.1), (1.2) is not still completed. In the present paper,

we try to fill this gap in a certain way. More precisely, nonimprovable in some sense
conditions are found guaranteeing the existence and uniqueness of a solution of the

problem (1.1), (1.2).

Along with (1.1) we will consider an important special case when (1.1) is the

equation with deviated arguments, i.e.,

(1.1′) u′(t) = g
(
t, u(t), u(τ1(t)), . . . , u(τm(t))

)
,

where g : I × � m+1 → � is a function satisfying the local Carathéodory conditions
and τk : I → I (k = 1, . . . , m) are measurable functions.
Throughout this paper, the following notation and terms will be used:

� is the set of all real numbers;
� + is the set of all nonnegative real numbers;

[x]+ =
|x|+ x

2
, [x]− =

|x| − x

2
;

C(I, � ) is the Banach space of continuous functions u : I → � with the norm

‖u‖C = max{|u(t)| : t ∈ I};

C(I, � + ) = {u ∈ C(I, � ) : u(t) > 0 for t ∈ I};
L(I, � ) is the Banach space of Lebesgue integrable functions u : I → � with the

norm

‖u‖L =
∫ b

a

|u(t)| dt;

L(I, � + ) = {u ∈ L(I, � ) : u(t) > 0 for almost all t ∈ I};
LI is the set of linear operators ` : C(I, � ) → L(I, � ) such that

sup{|`(u)(·)| : ‖u‖C = 1} ∈ L(I, � +);

PI is the set of linear operators ` : C(I, � ) → L(I, � ) mapping C(I, � )+ into
L(I, � + ).
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We will say that an operator f : C(I, � ) → L(I, � ) satisfies the local Carathéodory
conditions if it is continuous and

f∗r (·) = sup{|f(u)(·)| : ‖u‖C 6 r} ∈ L(I, � + )

for an arbitrary r ∈ � + .

We will say that a function g : I × � m+1 → � satisfies the local Carathéodory
conditions if g(·, x0, x1, . . . , xm) : I → � is measurable for all (x0, x1, . . . , xm) ∈
� m+1 , g(t, ·, . . . , ·) : � m+1 → � is continuous for almost all t ∈ I and

g∗r(·) = sup{|g(·, x0, x1, . . . , xm)| : |xi| 6 r (i = 0, 1, . . . , m)} ∈ L(I, � + )

for an arbitrary r ∈ � + .

An absolutely continuous function u : I → � is said to be a solution of the equa-
tion (1.1) if it satisfies this equation almost everywhere on I .

Below we will always assume that the operator f : C(I, � ) → L(I, � ) and the
function g : I × � m+1 → � satisfy the local Carathéodory conditions.
Definition 1.1. We will say that an operator `0 ∈ LI belongs to the set SI if

the homogeneous problem

(1.3) u′(t) = `0(u)(t), u(a) = 0

has only the trivial solution and for any h ∈ L(I, � +) and c ∈ � + , the solution of
the equation

(1.4) u′(t) = `0(u)(t) + h(t)

satisfying (1.2) is a nonnegative function.

Effective conditions guaranteeing `0 ∈ SI can be found in [4].

Theorem 1.1. Let there exist `0 ∈ SI ∩ PI and h ∈ L(I, � + ) such that for any
u ∈ C(I, � ) the inequality

(1.5) f(u)(t) sgnu(t) 6 `0(|u|)(t) + h(t) a.e on I

is fulfilled. Then the problem (1.1), (1.2) has at least one solution.

Remark 1.1. An analogous result follows from Theorem 1.1 in [7].
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Theorem 1.2. Let for any u ∈ C(I, � ) the inequality

(1.6) [f(u)(t) + `1(u)(t)− `0(u)(t)] sgnu(t) 6 h(t) a.e. on I

be fulfilled, where `i ∈ PI (i = 0, 1) and h ∈ L(I, � + ). If, moreover, either

(1.7)

(∫ b

a

`1(1)(t) dt

)2

< 4
(

1−
∫ b

a

`0(1)(t) dt

)

or there exists an absolutely continuous function γ : I → ]0, +∞[ such that

γ′(t) > `0(γ)(t) + `1(1)(t) a.e. on I,(1.8)

γ(b) 6 2,(1.9)

then the problem (1.1), (1.2) has at least one solution.

Corollary 1.1. Let the inequality

(1.10) g(t, x0, x1, . . . , xm) sgn x0 6
m∑

i=0

pi(t)|xi|+ h(t)

hold on the set I × � m+1 , where pi ∈ L(I, � + ) (i = 0, 1, . . . , m) and h ∈ L(I, � + ).
Let, moreover, one of the following three conditions be fulfilled:

m∑

i=0

∫ τk(t)

t

pi(s) ds 6 1
e
for t ∈ I (k = 1, . . . , m);(1.11)

∫ b

a

m∑

k=1

pk(s)σk(s)
∫ τk(s)

s

m∑

i=0

pi(ξ) dξ exp
(∫ b

s

m∑

j=0

pj(ξ) dξ

)
ds < 1;(1.12)

m∑

i,k=0

∫ t

a

pk(s)
(∫ τk(s)

a

pi(ξ) dξ

)
ds 6 α

m∑

i=0

∫ t

a

pi(s) ds for t ∈ I,(1.13)

where τ0(t) ≡ t, σk(t) = 1
2 (1 + sgn(τk(t)− t)) for almost all t ∈ I (k = 1, . . . , m) and

α ∈ ]0, 1[. Then the problem (1.1′), (1.2) has at least one solution.

Corollary 1.2. Let the inequality

(1.14)

[
g(t, x0, x1, . . . , xm) +

m∑

i=0

pi(t)xi

]
sgnx0 6 h(t)
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be fulfilled on the set I× � m+1 , where pi ∈ L(I, � ) (i = 0, 1, . . . , m) and h ∈ L(I, � + ).
Let, moreover,

(t− τk(t))[pk(t)]− > 0 a.e. on I (k = 1, . . . , m)(1.15)

and

m∑

k=0

∫ b

a

[pk(s)]+ exp
( m∑

i=0

∫ b

s

[pi(ξ)]− dξ

)
ds < 2.(1.16)

Then the problem (1.1′), (1.2) has at least one solution.

Theorem 1.3. Let there exist `0 ∈ SI ∩ PI such that for any uk ∈ C(I, � )
(k = 1, 2) the inequality

[f(u1)(t) − f(u2)(t)] sgn(u1(t)− u2(t)) 6 `0(|u1 − u2|)(t) a.e. on I(1.17)

is fulfilled. Then the problem (1.1), (1.2) has a unique solution.

Theorem 1.4. Let for any uk ∈ C(I, � ) (k = 1, 2) the inequality

[f(u1)(t)− f(u2)(t) + `1(u1 − u2)(t) − `0(u1 − u2)(t)](1.18)

× sgn(u1(t)− u2(t)) 6 0 a.e. on I

be fulfilled, where `i ∈ PI (i = 0, 1). Let, moreover, either the condition (1.7) be
satisfied or there exist an absolutely continuous function γ : I → ]0, +∞[ satisfying
conditions (1.8), (1.9). Then the problem (1.1), (1.2) has a unique solution.

Corollary 1.3. Let the inequality

[g(t, x0, x1, . . . , xm)− g(t, y0, y1, . . . , ym)] sgn(x0 − y0) 6
m∑

i=0

pi(t)|xi − yi|(1.19)

be fulfilled on the set I × � m+1 , where pi ∈ L(I, � + ) (i = 0, 1, . . . , m). Let,
moreover, one of the conditions (1.11), (1.12) and (1.13) hold, where τ0(t) ≡ t,

σk(t) = 1
2 (1 + sgn(τk(t)− t)) for almost all t ∈ I (k = 1, . . . , m) and α ∈ ]0, 1[. Then

the problem (1.1′), (1.2) has a unique solution.

Corollary 1.4. Let the inequality

(1.20)

[
g(t, x0, x1, . . . , xm)−g(t, y0, y1, . . . , ym)+

m∑

i=0

pi(t)(xi−yi)
]

sgn(x0−y0) 6 0
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be fulfilled on the set I × � m+1 , where pi ∈ L(I, � ) (i = 0, 1, . . . , m). Let, moreover,
the conditions (1.15) and (1.16) be satisfied. Then the problem (1.1′), (1.2) has a
unique solution.

At the end of this section, we introduce examples verifying the optimality of the

above formulated conditions in the existence and uniqueness theorems.

Example 1.1. Consider the differential equation

(1.21) u′(t) =
m∑

i=0

pi(t)[|u(τi(t))| + 1],

where pk ∈ L(I, � + ) (k = 0, 1, . . . , m), τ0(t) ≡ t and τi : I → I (i = 1, . . . , m) are
measurable functions. If the condition (1.13) is fulfilled, where α ∈ ]0, 1[, then by
Corollary 1.3 the problem (1.21), (1.2) has a unique solution.

Let us show that if

(1.22)
m∑

i,k=0

∫ t

a

pk(s)
(∫ τk(s)

a

pi(ξ) dξ

)
ds >

m∑

i=0

∫ t

a

pi(s) ds > 0 for t ∈ ]a, b],

then for any c ∈ � + the problem (1.21), (1.2) has no solution1. Assume on the

contrary that for some c ∈ � + this problem has a solution u. Then we find

u(t) = c +
m∑

i=0

∫ t

a

pi(s)|u(τi(s))| ds + u0(t),(1.23)

where

u0(t) =
m∑

i=0

∫ t

a

pi(s) ds.

If we put

% = inf
{

u(t)
u0(t)

: a < t 6 b

}
,

then in view of (1.22) and (1.23) we get

% > inf
{

1
u0(t)

m∑

i=0

∫ t

a

pi(s)|u(τi(s))| ds : t ∈ I

}
+ 1

> % inf
{

1
u0(t)

m∑

i=0

∫ t

a

pi(s)u0(τi(s)) ds : t ∈ I

}
+ 1 > % + 1.

1 (1.22) is fulfilled, e.g., if p0(t) ≡ 0, τk(t) ≡ bk ∈ ]a, b], pk(t) ≡ αk/(bk − a) > 0 (k =
1, . . . , m) and

m�
k=1

αk = 1.
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The contradiction obtained proves the nonsolvability of the problem (1.21), (1.2).

This example shows that in Corollaries 1.1 and 1.3, the assumption α ∈ ]0, 1[ in
the inequality (1.13) cannot be replaced by the assumption α ∈ ]0, 1].

Example 1.2. Let ε ∈ ]0, 1[, a = 0, b = 3,

p(t) =





1 for 0 6 t 6 1,

0 for 1 < t < 2− ε
2 ,

1 for 2− ε
2 6 t 6 3,

p(t) =





0 for 0 6 t 6 1,

1
2−t for 1 < t < 2− ε

2 ,

0 for 2− ε
2 6 t 6 3,

τ(t) =

{
3 for 0 6 t < 2− ε

2 ,

1 for 2− ε
2 6 t 6 3.

Consider the differential equation

(1.24) u′(t) = −p(t)u(τ(t)) − p(t)u(t) + q(t),

where q ∈ L(I, � ). It is clear that the operator
f(u)(t) = −p(t)u(τ(t)) − p(t)u(t) + q(t)

satisfies the conditions (1.6) and (1.18), where `1(u)(t) = p(t)u(τ(t)), `0(u)(t) ≡ 0
and h(t) = |q(t)|. Moreover, the function

γ(t) = δ +
∫ t

0

p(s) ds,

where δ ∈ ]0, ε
2 ], satisfies the inequalities (1.8) and

(1.25) γ(b) 6 2 + ε.

On the other hand, the homogeneous problem

u′(t) = −p(t)u(τ(t)) − p(t)u(t), u(a) = 0

has the nontrivial solution

u0(t) =

{
t for 0 6 t 6 1,

2− t for 1 < t 6 3.

Consequently, we can find c ∈ � and q ∈ L(I, � ) such that the problem (1.24), (1.2)
has no solution.
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This example shows that in Theorems 1.2 and 1.4 the inequalities (1.9) and (1.7)

cannot be replaced by the inequalities (1.25) and

∫ b

a

`1(1)(t) dt < (2 + ε)
(

1−
∫ b

a

`0(1)(t) dt

)1
2

,

respectively, for an arbitrarily small ε > 0.
The same example shows as well that in Corollaries 1.2 and 1.4, the inequal-

ity (1.16) cannot be replaced by the inequality

m∑

k=0

∫ b

a

[pk(s)]+ exp
( m∑

i=0

∫ b

s

[pi(ξ)]− dξ

)
ds < 2 + ε

for an arbitrarily small ε > 0.

2. Auxiliary propositions

2.1. Lemmas on solvability of problem (1.1), (1.2).
From Corollary 2 of [9] we get

Lemma 2.1. Let there exist a positive number % and an operator ` ∈ LI such
that the homogeneous problem

(2.1) u′(t) + `(u)(t) = 0, u(a) = 0

has only the trivial solution and for every λ ∈ ]0, 1[ an arbitrary solution of the
problem

(2.2) u′(t) + `(u)(t) = λ[f(u)(t) + `(u)(t)], u(a) = λc

admits the estimate

(2.3) ‖u‖C 6 %.

Then the problem (1.1), (1.2) has at least one solution.

Definition 2.1. We will say that a pair of operators (`, `0) belongs to the set AI
if ` ∈ LI , `0 ∈ PI and there exists a positive number r such that for an arbitrary
h ∈ L(I, � + ), any absolutely continuous function u satisfying the inequality

(2.4) [u′(t) + `(u)(t)] sgnu(t) 6 `0(|u|)(t) + h(t) a.e. on I
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admits the estimate

(2.5) ‖u‖C 6 r(|u(a)|+ ‖h‖L).

Lemma 2.2. Let there exist (`, `0) ∈ AI and h ∈ L(I, � + ) such that for any
u ∈ C(I, � ) the inequality

(2.6) [f(u)(t) + `(u)(t)] sgn u(t) 6 `0(|u|)(t) + h(t) a.e. on I

is fulfilled. Then the problem (1.1), (1.2) has at least one solution.
���! 
 #"

. First note that due to the condition (`, `0) ∈ AI , the homogeneous

problem (2.1) has only the trivial solution.
Let r be a number from Definition 2.1. Put

% = r(|c| + ‖h‖L).

Assume now that u is a solution of the problem (2.2) for some λ ∈ ]0, 1[. Then
according to (2.6) it satisfies the differential inequality (2.4). Hence, in view of the
condition (`, `0) ∈ AI and the fact how % is defined, we get the estimate (2.3).

Since % depends neither on u nor on λ, from Lemma 2.1 it follows that the esti-
mate (2.3) guarantees the solvability of the problem (1.1), (1.2). �

Lema 2.3. Let there exist (`, `0) ∈ AI such that for any u1, u2 ∈ C(I, � ) the
inequality

[f(u1)(t)− f(u2)(t) + `(u1 − u2)(t)] sgn(u1(t)− u2(t))(2.7)

6 `0(|u1 − u2|)(t) a.e. on I

is fulfilled. Then the problem (1.1), (1.2) has a unique solution.
���! 
 #"

. (2.7) implies that the operator f for any u ∈ C(I, � ) satisfies the
inequality (2.6), where h(t) = |f(0)(t)|. Hence by Lemma 2.2 the problem (1.1),
(1.2) is solvable. It remains to show that this problem has not more than one

solution.
Let u1 and u2 be arbitrary solutions of the problem (1.1), (1.2). Put u(t) =

u1(t)− u2(t). Then by (2.7) we get

[u′(t) + `(u)(t)] sgn u(t) 6 `0(|u|)(t) a.e. on I, u(a) = 0.

This inequality and the condition (`, `0) ∈ AI result in that u(t) ≡ 0. Consequently,
u1(t) ≡ u2(t). �
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2.2 Lemmas on a priori estimates.

Lemma 2.4. Let `0 ∈ LI and let the homogeneous problem (1.3) have only the
trivial solution. Then there exists a positive number r0 such that for any h ∈ L(I, � ),
an arbitrary solution of the equation (1.4) admits the estimate

(2.8) ‖u‖C 6 r0(|u(a)|+ ‖h‖L).

���! 
 #"
. Denote by

� × L(I, � ) = {(c, h) : c ∈ � , h ∈ L(I, � )}

the Banach space with the norm

‖(c, h)‖ $ ×L = |c|+ ‖h‖L

and by V the operator mapping every (c, h) ∈ � × L(I, � ) to the solution v of the

problem (1.4), (1.2). According to Theorem 1.4 of [8], V : � × L(I, � ) → C(I, � )
is a linear bounded operator. Denote by r0 the norm of V . Then, clearly, for any

(c, h) ∈ � × L(I, � ) the inequality

‖V (c, h)‖C 6 r0(|c|+ ‖h‖L)

holds. Consequently, an arbitrary solution u of the equation (1.4) admits the esti-

mate (2.8). �

From the definition of the set SI we immediately obtain

Lemma 2.5. Let `0 ∈ SI , h ∈ L(I, � ) and vi : I → � (i = 1, 2) be absolutely
continuous functions satisfying the inequalities

v′1(t) 6 `0(v1)(t) + h(t), v′2(t) > `0(v2)(t) + h(t) a.e. on I,

and

v1(a) 6 v2(a).

Then

v1(t) 6 v2(t) for t ∈ I.
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Lemma 2.6. Let `0 ∈ PI . If either
∫ b

a

`0(1)(t) dt < 1

or there exists an absolutely continuous function γ : I → ]0, +∞[ such that

γ′(t) > `0(γ)(t) a.e. on I,

then `0 ∈ SI .

Lemma 2.6 is a corollary of Theorem 1.1 in [4].

Lemma 2.7. If `0 ∈ SI ∩ PI , then

(0, `0) ∈ AI .

���! 
 #"
. Let r0 be the number appearing in Lemma 2.4 and u : I → � an

arbitrary absolutely continuous function satisfying the differential inequality

u′(t) sgnu(t) 6 `0(|u|)(t) + h(t) a.e. on I,

i.e.

|u(t)|′ 6 `0(|u|)(t) + h(t) a.e. on I.(2.9)

Then by Lemma 2.5 it follows that

(2.10) |u(t)| 6 u(t) for t ∈ I,

where u(t) is a solution of (1.4) satisfying the initial condition

(2.11) u(a) = |u(a)|.

According to Lemma 2.4 we have

(2.12) ‖u‖C 6 r0(|u(a)|+ ‖h‖L).

(2.10) and (2.12) yield the estimate (2.5), where r = r0 is a number which depends
neither on u nor on h. Consequently, (0, `0) ∈ AI . �
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Lemma 2.8. If operators `i ∈ PI (i = 0, 1) satisfy the inequality (1.7) then

(2.13) (`1 − `0, 0) ∈ AI .

���! 
 #"
. First note that due to (1.7) and Lemma 2.6 we have `0 ∈ SI and,

consequently, the homogeneous problem (1.3) has only the trivial solution. Let r0

be the number appearing in Lemma 2.4. According to Definition 2.1, it is sufficient

to show that there exists a positive number r such that for any h ∈ L(I, � + ),
an arbitrary absolutely continuous function u : I → � satisfying the differential
inequality

(2.14) [u′(t) + `1(u)(t) − `0(u)(t)] sgn u(t) 6 h(t)

admits the estimate (2.5). If u does not change sign then (2.14) implies (2.9).
From (2.9) by Lemma 2.5 we have the estimate (2.10), where u is a solution of

the equation (1.4) satisfying the initial condition (2.11). On the other hand, due to
Lemma 2.4, the function u admits the estimate (2.12). Consequently,

(2.15) ‖u‖C 6 r0(|u(a)|+ ‖h‖L).

Suppose now that u changes sign. Then

(2.16) µi = max{(−1)iu(t) : t ∈ I} > 0 (i = 0, 1).

Moreover, there exist numbers ai ∈ [a, b] and bi ∈ [ai, b] (i = 0, 1) such that

[a0, b0] ∩ [a1, b1] = ∅,(2.17)

0 6 (−1)iu(ai) 6 |u(a)|, µi = (−1)iu(bi) (i = 0, 1)(2.18)

and for every i ∈ {0, 1} either ai = bi or ai < bi and (−1)iu(t) > 0 for ai < t < bi.

Therefore, from (2.14) we find for every i ∈ {0, 1} that

(2.19i) (−1)iu′(t) 6 (−1)i[`0(u)(t)− `1(u)(t)] + h(t) a.e. on [ai, bi].

If we integrate the inequality (2.190) from a0 to b0 and the inequality (2.191) from
a1 to b1, then in view of (2.18) we get

µ0 6 |u(a)|+
∫ b0

a0

`0(u)(t) dt−
∫ b0

a0

`1(u)(t) dt +
∫ b0

a0

h(t) dt,

µ1 6 |u(a)|+
∫ b1

a1

`1(u)(t) dt−
∫ b1

a1

`0(u)(t) dt +
∫ b1

a1

h(t) dt.
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Hence by (2.16) we obtain

(1− η00)µ0 6 η10µ1 + w(u, h),(2.20)

(1− η01)µ1 6 η11µ0 + w(u, h),(2.21)

where

ηik =
∫ bk

ak

`i(1)(t) dt (i, k = 0, 1)

and

w(u, h) = |u(a)|+
∫ b

a

h(t) dt.(2.22)

Moreover, on account of (1.7) and (2.17) we have

δ = 1−
∫ b

a

`0(1)(t) dt− 1
4

(∫ b

a

`1(1)(t) dt

)2

> 0,

η00 + η01 6
∫ b

a

`0(1)(t) dt < 1,

(1− η00)(1− η01) > 1− (η00 + η01) > 1−
∫ b

a

`0(1)(t) dt

and

η10η11 6 1
4
(η10 + η11)2 6 1

4

(∫ b

a

`1(1)(t) dt

)2

(2.23)

= 1−
∫ b

a

`0(1)(t) dt− δ 6 (1− η00)(1− η01)− δ.

Put

r = r0 +
1
δ

(
1 +

∫ b

a

`1(1)(t) dt

)
.

Then, according to (2.23) and the fact that 1− η0i (i = 0, 1) are positive numbers,
(2.20) and (2.21) yield

(1− η00)(1− η01)µ0 6 η10(1− η01)µ1 + (1− η01)w(u, h)

6 η10η11µ0 + (η10 + 1)w(u, h)

6 [(1− η00)(1− η01)− δ]µ0 + rδw(u, h)

and

(1− η00)(1− η01)µ1 6 η11(1− η00)µ0 + (1− η00)w(u, h)

6 η10η11µ1 + (η11 + 1)w(u, h)

6
[
(1− η00)(1− η01)− δ

]
µ1 + rδw(u, h).
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Therefore,

µi 6 rw(u, h) (i = 0, 1),

whence, by (2.16) and (2.22), we have the estimate (2.5). In the case when u does
not change sign, the estimate (2.5) follows from (2.15). Therefore, since r depends

neither on u nor on h, the lemma is valid. �

Lema 2.9. Let `i ∈ PI (i = 0, 1) and let there exist an absolutely continu-
ous function γ : I → ]0, +∞[ satisfying the inequalities (1.8) and (1.9). Then the
condition (2.13) holds.

���! 
 #"
. Due to (1.8) and Lemma 2.6 we have `0 ∈ SI and, consequently,

the assumptions of Lemma 2.4 are fulfilled. Let r0 be the number appearing in
Lemma 2.4 and

(2.24) r = r0 + 4(1 + γ(b))
(
4− (γ(b)− γ(a))2

)−1
r0.

Let h ∈ L(I, � ) and let u : I → � be an arbitrary absolutely continuous function
satisfying the inequality (2.14). To prove the lemma it is sufficient to show that

u satisfies the estimate (2.5) as well.

First assume that u does not change sign. Then from (2.14) we find (2.9). Hence
by Lemma 2.5 it follows that (2.10) holds, where u is a solution of the equation (1.4)

satisfying the initial condition (2.11). According to Lemma 2.4, the function u admits
the estimate (2.12). Hence by (2.10) and (2.24) we get the estimate (2.5).

Suppose now that u changes sign. Then the inequalities (2.16) are fulfilled.

Denote by γi (i = 0, 1) the solutions of the problems

γ′0(t) = `0(γ0)(t) +
1
µ0

`1([u]+)(t), γ0(a) = 0,(2.25)

γ′1(t) = `0(γ1)(t) +
1
µ1

`1([u]−)(t), γ1(a) = 0.(2.26)

Then

(µ0γ0(t) + u(t))′ = `0(µ0γ0 + u)(t) + h0(t) a.e. on I,

(µ1γ1(t) + u(t))′ = `0(µ1γ1 + u)(t) + h1(t) a.e. on I,

where

h0(t) = `1([u]+)(t) + h(t), h1(t) = `1([u]−)(t) + h(t).
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On the other hand, from (2.14) we get

[u(t)]′+ 6 `0([u]+)(t) + h1(t) a.e. on I,

[u(t)]′− 6 `0([u]−)(t) + h0(t) a.e. on I.

Moreover,
[u(a)]+ 6 µ1γ1(a) + u(a), [u(a)]− 6 µ0γ0(a) + u(a).

Hence by Lemma 2.5,

[u(t)]+ 6µ1γ1(t) + u(t) for t ∈ I,(2.27)

[u(t)]− 6µ0γ0(t) + u(t) for t ∈ I.(2.28)

Equations (2.25) and (2.26) immediately imply

(γ0(t) + γ1(t))′ 6 `0(γ0 + γ1)(t) + `1(1)(t) a.e. on I,

γ0(a) + γ1(a) = 0 < γ(a),

whence by (1.8) and Lemma 2.5 we find

γ0(t) + γ1(t) 6 γ(t) for t ∈ I.

Due to this inequality and the fact that `0 is a nonnegative operator, we have

(γ0(t) + γ1(t))′ 6 γ′(t).

Now, if we integrate the last inequality from a to b, we get

γ0(b) + γ1(b) 6 γ(b)− γ(a).

Taking into account the monotonicity of γi (i = 0, 1), from (2.16), (2.27) and (2.28)
we obtain

µ0 6 µ1γ1(b) + ‖u‖C , µ1 6 µ0γ0(b) + ‖u‖C ,

µ0 6 γ1(b)γ0(b)µ0 + (1 + γ1(b))‖u‖C 6 (γ(b)− γ(a))2

4
µ0 + (1 + γ(b))‖u‖C

and

µ1 6 (γ(b)− γ(a))2

4
µ1 + (1 + γ(b))‖u‖C .

By (1.9) the last two inequalities result in

µi 6 4(1 + γ(b))
(
4− (γ(b)− γ(a))2

)−1‖u‖C (i = 0, 1).

Hence in view of (2.12) and (2.24) we get the estimate (2.5). �
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3. Proofs of the main results

Theorem 1.1 follows from Lemmas 2.2 and 2.7, Theorem 1.2 follows from Lem-
mas 2.2, 2.8 and 2.9, Theorem 1.3 follows from Lemmas 2.3 and 2.7, and Theorem 1.4

follows from Lemmas 2.3, 2.8 and 2.9.
���! 
 #"

of Corollaries 1.1 and 1.3. Put

f(u) = g
(
t, u(t), u(τ1(t)), . . . , u(τm(t))

)
(3.1)

and

`0(u)(t) =
m∑

i=0

pi(t)u(τi(t)), where τ0(t) ≡ t.

Then the equation (1.1′) and the conditions (1.10) and (1.19) can be written as (1.1),
(1.5) and (1.17). According to Theorems 1.1 and 1.3, to prove Corollaries 1.1 and

1.3 it is sufficient to show that
`0 ∈ SI .

But this inclusion follows from Corollary 1.1 in [4]. �
���! 
 #"

of Corollaries 1.2 and 1.4. Let f be an operator defined by (3.1). Define

operators

(3.2) `1(u)(t) =
m∑

i=0

[pi(t)]+u(τi(t)), `0(u)(t) =
m∑

i=0

[pi(t)]−u(τi(t)),

where τ0(t) ≡ t. Then the condition (1.14) (the condition (1.20)) can be written
as (1.6) (as (1.18)). By virtue of Theorem 1.2 (Theorem 1.4), to prove Corollary 1.2

(Corollary 1.4) it is sufficient to show that the function

γ(t) = ε exp
( m∑

k=0

∫ t

a

[pk(ξ)]− dξ

)
+

m∑

i=0

∫ t

a

[pi(s)]+ exp
( m∑

k=0

∫ t

s

[pk(ξ)]− dξ

)
ds,

where ε > 0 is such that

m∑

i=0

∫ b

a

[pi(s)]+ exp
( m∑

k=0

∫ b

s

[pk(ξ)]− dξ

)
ds 6 2− ε exp

( m∑

k=0

∫ b

a

[pk(ξ)]− dξ

)
,

satisfies the inequalities (1.8) and (1.9).

First note that the function γ is nondecreasing since

(3.3) γ′(t) =
m∑

i=0

[pi(t)]+ +
m∑

k=0

[pk(t)]−γ(t) a.e. on I.
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Therefore (1.15) implies

[pk(t)]−γ(t) > [pk(t)]−γ(τk(t)) a.e. on I (k = 1, . . . , m).

By the last inequalities and (3.2), the inequality (1.8) follows from (3.3). The in-

equality (1.9) follows from (1.16). �
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