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1. Introduction

This paper is concerned with the Darboux problem for hyperbolic differential
inclusions of the form

uxy(x, y) ∈ F
(
x, y, u(x, y), G(x, y, u(x, y))

)
(1.1)

u(x, 0) = λ(x, 0), u(0, y) = λ(0, y)

where F is a multifunction from Q× �
n × �

n to the nonempty subsets of �n , G is
a multifunction from Q× �

n to the nonempty subsets of �n , Q = [0, 1]× [0, 1] and
λ(x, y) = α(x)+β(y)−α(0) with α and β two continuous functions from [0, 1] to �n ,
satisfying α(0) = β(0).

When F does not depend on the last variable, (1.1) reduces to

uxy(x, y) ∈ F (x, y, u(x, y))(1.2)

u(x, 0) = λ(x, 0), u(0, y) = λ(0, y).

In this case, qualitative properties and structure of the set of solutions of the
Darboux problem (1.2) have been studied by many authors ([1], [2], [3], [4], [5], [9],
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[10], etc.). In [4] it is shown that the solution set of (1.2) with F single valued is

an Rδ-set, in [3] it is proved that the solution set is a retract of a convex subset
of a Banach space and in [9] a solution of (1.2) continuous with respect to λ is
constructed.

In all these results the set-valued map F is assumed to be at least closed-valued.

Such an assumption is quite natural in order to obtain good properties of the solution
set, but it is interesting to investigate the problem when the right-hand side of the

multivalued equation may have nonclosed values.

Following the approach in [6], [7] we consider the problem (1.1), where F and
G are closed-valued multifunctions Lipschitzian with respect to the second variable

and F is contractive in the third variable. Obviously, the right-hand side of the
differential inclusion in (1.1) is in general neither convex nor closed. We prove the
arcwise connectedness of the solution set to (1.1). The main tool is a result ([6], [7])

concerning the arcwise connectedness of the fixed point set of a class of nonconvex
nonclosed set-valued contractions.

The paper is organized as follows: in Section 2 we recall some preliminary results

that we use in the sequel and in Section 3 we prove our main result.

2. Preliminaries

Let Z be a metric space with the distance dZ and let 2Z be the family of all
nonempty closed subsets of Z. For a ∈ Z and A,B ∈ 2Z set dZ(a,B) = inf

b∈B
dZ(a, b)

and d∗Z(A,B) = sup
a∈A

dZ(a,B). Denote by DZ the Hausdorff generalized metric on 2Z

defined by

DZ(A,B) = max{d∗Z(A,B), d∗Z(B,A)}, A,B ∈ 2Z .

In what follows, when the product Z = Z1 × Z2 of metric spaces Zi, i = 1, 2, is
considered, it is assumed that Z is equipped with the distance dZ

(
(z1, z2), (z′1, z

′
2)

)
=

2∑
i=1

dZi(zi, z
′
i).

Let X be a nonempty set and let F : X → 2Z be a set-valued map from X to Z.
The range of F is the set F (X) =

⋃
x∈X

F (x). Let (X,F ) be a measurable space.

The multifunction F : X → 2Z is called measurable if F−1(Ω) ∈ F for any open set

Ω ⊂ Z, where F−1(Ω) = {x ∈ X ; F (x) ∩ Ω �= ∅}. Let (X, dX) be a metric space.
The multifunction F is called Hausdorff continuous if for any x0 ∈ X and every ε > 0
there exists δ > 0 such that x ∈ X , dX(x, x0) < δ implies DZ(F (x), F (x0)) < ε.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X, |.|X) be a
Banach space. We denote by L1(T,X) the Banach space of all (equivalence classes
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of) Bochner integrable functions u : T → X endowed with the norm

|u|L1(T,X) =
∫

T

|u(t)|X dµ.

A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈ K and

every A ∈ F , one has
χA · u+ χT\A · v ∈ K

where χB, B ∈ F indicates the characteristic function of B.
A metric space Z is called an absolute retract if, for any metric space X and

any nonempty closed set X0 ⊂ X , every continuous function g : X0 → Z has a

continuous extension g : X → Z over X . It is obvious that every continuous image
of an absolute retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in the
proof of our result.

Let (T,F , µ) be a finite, positive, nonatomic measure space, S a separable Banach
space and let (X, |.|X) be a real Banach space. To simplify the notation we write E
in place of L1(T,X).

Lemma 2.1 ([7]). Assume that ϕ : S × E → 2E and ψ : S × E × E → 2E are
Hausdorff continuous multifunctions with nonempty, closed, decomposable values,

satisfying the following conditions:

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE

(
ϕ(s, u), ϕ(s, u′)

)
� L|u− u′|E .

b) There exists M ∈ [0, 1) such that L +M < 1 and for every s ∈ S and every

(u, v), (u′, v′) ∈ E × E,

DE

(
ψ(s, u, v), ψ(s, u′, v′)

)
� M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E; u ∈ Γ(s, u)}, where

Γ(s, u) = ψ
(
s, u, ϕ(s, u)

)
, (s, u) ∈ S × E.

Then

1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, . . . , p there exists a continuous
function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S and γ(si) = ui,

i = 1, . . . , p.
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Lemma 2.2 ([7]). Let U : T → 2X and V : T × X → 2X be two nonempty

closed-valued multifunctions satisfying the following conditions:

a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) � r(t) for

almost all t ∈ T .
b) The multifunction t→ V (t, x) is measurable for every x ∈ X .
c) The multifunction x→ V (t, x) is Hausdorff continuous for all t ∈ T .
Let v : T → X be a measurable selection from t → V (t, U(t)). Then there exists

a selection u ∈ L1(T,X) such that v(t) ∈ V (t, u(t)), t ∈ T .

Let Q be the square I × I, where I = [0, 1]. We denote by C the Banach space of
all continuous functions u : Q→ �

n endowed with the norm |u|C = sup
(x,y)∈Q

|u(x, y)|.

Given a continuous strictly positive function a : Q→ �, we denote by L1 the Banach
space of all (equivalence classes of) Lebesgue measurable functions σ : Q → �

n ,

endowed with the norm

(2.1) |σ|1 =
∫∫

Q

a(x, y)|σ(x, y)| dxdy.

By Λ we mean the linear subspace of C consisting of all λ ∈ C such that there

exist continuous functions α : I → �
n , β : I → �

n , with α(0) = β(0), satisfying
λ(x, y) = α(x) + β(y) − α(0) for every (x, y) ∈ Q. Observe that Λ, equipped with

the norm of C, is a separable Banach space.

In order to study problem (1.1) we introduce the following

Hypothesis 2.3. Let F : Q × �
n × �

n → 2�n

and G : Q × �
n → 2�n

be two

set-valued maps with nonempty closed values, satisfying the following assumptions:

i) The set-valued maps (x, y) → F (x, y, u, v) and (x, y) → G(x, y, u) are measur-
able for all u, v ∈ �n .

ii) There exist l ∈ L1(Q) such that, for every u, u′ ∈ �n ,

D
(
G(x, y, u), G(x, y, u′)

)
� l(x, y)|u− u′| a.e. (Q).

iii) There exist m ∈ L1(Q) and θ ∈ [0, 1) such that, for every u, v, u′, v′ ∈ �n ,

D
(
F (x, y, u, v), F (x, y, u′, v′)

)
� m(x, y)|u − u′|+ θ|v − v′| a.e. (Q).

iv) There exist f, g ∈ L1(Q) such that

d
(
{0}, F (x, y, {0}, {0})

)
� f(x, y),

d
(
{0}, G(x, y, {0})

)
� g(x, y) a.e. (Q).
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For (x, y) ∈ Q and ε > 0, we put

Q(x, y) = [0, x]× [0, y], R(x, y) = [x, 1]× [y, 1].

For σ ∈ L1(Q) let us consider the following Darboux problem:

uxy(x, y) = σ(x, y)(2.2)

u(x, 0) = λ(x, 0), u(0, y) = λ(0, y).

Definition 2.4. Let λ ∈ Λ. The function u ∈ C given by

u(x, y) = λ(x, y) +
∫∫

Q(x,y)
σ(ξ, η) dξ dη (x, y) ∈ Q

is said to be a solution of (2.2).

Definition 2.5. Let Hypothesis 2.3 be satisfied and let λ ∈ Λ. A function u ∈ C
is said to be a solution of (1.1) if there exists a function σ ∈ L1 such that

σ(x, y) ∈ F
(
x, y, u(x, y), G(x, y, u(x, y))

)
a.e. (Q)

u(x, y) = λ(x, y) +
∫∫

Q(x,y)
σ(ξ, η) dξ dη a.e. (Q)

where F
(
x, y, u,G(x, y, u)

)
=

⋃
v∈G(x,y,u)

F (x, y, u, v).

We denote by S(λ) the solution set of (1.1).

Lemma 2.6 ([3]). Let α ∈ (0, 1) and let N : Q → � be a positive integrable

function. Then there exists a continuous strictly positive function a : Q→ � which,

for every (x, y) ∈ Q, satisfies
∫∫

R(x,y)
N(ξ, η)a(ξ, η) dξ dη = α

(
a(x, y)− 1

)
.

In what follows N(x, y) = max{l(x, y),m(x, y)}, (x, y) ∈ Q, α ∈ (0, 1) will be
taken such that 2α + θ < 1 and a : Q → � in (2.1) is the corresponding mapping

found in Lemma 2.6.
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3. The main result

Even if the multifunction from the right-hand side of (1.1) has, in general, non-

closed nonconvex values, the solution set S(λ) has some meaningful properties, stated
in Theorem 3.1 below.

Theorem 3.1. Suppose F : Q × �
n × �

n → 2�n

and G : Q × �
n → 2�n

satisfy

Hypothesis 2.3. Then:

1) For every λ ∈ Λ, the solution set S(λ) of (1.1) is nonempty and arcwise con-
nected in the space C.

2) For any λi ∈ Λ and any ui ∈ S(λi), i = 1, . . . , p, there exists a continuous
function s : Λ → C such that s(λ) ∈ S(λ) for any λ ∈ Λ and s(λi) = ui,

i = 1, . . . , p.
3) The set S =

⋃
λ∈Λ

S(λ) is arcwise connected in C.

�����. 1) For λ ∈ Λ and u ∈ L1, set

uλ(x, y) = λ(x, y) +
∫∫

Q(x,y)
u(ξ, η) dξ dη, (x, y) ∈ Q.

We prove that the multifunctions ϕ : Λ×L1 → 2L1 and ψ : Λ×L1×L1 → 2L1 given
by

ϕ(λ, u) =
{
v ∈ L1; v(x, y) ∈ G

(
x, y, uλ(x, y)

)
a.e. (Q)

}
,

ψ(λ, u, v) =
{
w ∈ L1; w(x, y) ∈ F

(
x, y, uλ(x, y), v(x, y)

)
a.e. (Q)

}
,

λ ∈ Λ, u, v ∈ L1 satisfy the hypotheses of Lemma 2.1.
Since uλ is measurable and G satisfies Hypothesis 2.3 i) and ii), the multifunction

(x, y) → G
(
x, y, uλ(x, y)

)
is measurable and nonempty closed-valued, it has a mea-

surable selection. Therefore due to Hypothesis 2.3 iv), the set ϕ(λ, u) is nonempty.

The fact that the set ϕ(λ, u) is closed and decomposable follows by simple computa-
tion. In the same way we obtain that ψ(λ, u, v) is a nonempty closed decomposable

set.
Set b :=

∫∫
Q
a(x, y) dxdy.

Pick (λ, u), (λ1, u1) ∈ Λ × L1 and choose v ∈ ϕ(λ, u). For each ε > 0 there exists

v1 ∈ ϕ(λ1, u1) such that, for every (x, y) ∈ Q, one has

|v(x, y) − v1(x, y)| � D
(
G(x, y, uλ(x, y)), G(x, y, uλ1 (x, y))

)
+ ε

� N(x, y)[|λ(x, y) − λ1(x, y)|

+
∫∫

Q(x,y)
|u(ξ, η)− u1(ξ, η)| dξ dη] + ε.
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Hence

|v − v1|1 � |λ− λ1|C
∫∫

Q

a(x, y)N(x, y) dxdy

+
∫∫

Q

a(x, y)N(x, y)

(∫∫

Q(x,y)
|u(ξ, η)− u1(ξ, η) dξ dη

)
dxdy + εb

� α
(
a(1, 1)− 1

)
|λ− λ1|C

+
∫∫

Q

|u(ξ, η)− u1(ξ, η)|
(∫∫

R(ξ,η)
a(x, y)N(x, y) dxdy

)
dξ dη + εb

� α
(
a(1, 1)− 1

)
|λ− λ1|C

+
∫∫

Q

α
(
a(ξ, η) − 1

)
|u(ξ, η)− u1(ξ, η)| dξ dη + εb

� α
(
a(1, 1)− 1

)
|λ− λ1|C + α|u− u1|1 + εb

for any ε > 0.
This implies

dL1
(
v, ϕ(λ1, u1)

)
� α

(
a(1, 1)− 1

)
|λ− λ1|C + α|u− u1|1

for all v ∈ ϕ(λ, u). Therefore,

d∗L1
(
ϕ(λ, u), ϕ(λ1, u1)

)
� α

(
a(1, 1)− 1

)
|λ− λ1|C + α|u− u1|1.

Consequently,

DL1
(
ϕ(λ, u), ϕ(λ1, u1)

)
� α

(
a(1, 1)− 1

)
|λ− λ1|C + α|u − u1|1,

which shows that ϕ is Hausdorff continuous and satisfies the assumptions of
Lemma 2.1.

Pick (λ, u, v), (λ1, u1, v1) ∈ Λ×L1×L1 and choose w ∈ ψ(λ, u, v). Then, as before,
for each ε > 0 there exists w1 ∈ ψ(λ1, u1, v1) such that

|w(x, y)− w1(x, y)|
� D

(
F (x, y, uλ(x, y), v(x, y)

)
, G

(
x, y, uλ1(x, y), v1(x, y))

)
+ ε

� N(x, y)[|λ(x, y) − λ1(x, y)|+
∫∫

Q(x,y)
|u(ξ, η)− u1(ξ, η)| dξ dη]

+ θ|v(x, y)− v1(x, y)|+ ε

for every (x, y) ∈ Q. Hence

|w − w1|1 � α
(
a(1, 1)− 1

)
|λ− λ1|C + α|u − u1|1 + θ|v − v1|1 + εb

� α
(
a(1, 1)− 1

)
|λ− λ1|C + (α+ θ)(|u − u1|1 + |v − v1|1) + εb

= α
(
a(1, 1)− 1

)
|λ− λ1|C + (α+ θ)dL1×L1

(
(u, v), (u1, v1)

)
+ εb.
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As above, we deduce that

DL1
(
ψ(λ, u, v), ψ(λ1, u1, v1)

)
� α

(
a(1, 1)− 1

)
|λ− λ1|C

+ (α+ θ)dL1×L1
(
(u, v), (u1, v1)

)
,

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypothesis of

Lemma 2.1.

Define Γ(λ, u) = ψ
(
λ, u, ϕ(λ, u)

)
, (λ, u) ∈ Λ × L1. According to Lemma 2.1,

the set Fix(Γ(s, .)) = {u ∈ E; u ∈ Γ(s, u)} is nonempty and arcwise connected
in L1. Moreover, for fixed λi ∈ Λ and ui ∈ Fix(Γ(λi, . )), i = 1, . . . , p, there exists a
continuous function γ : Λ→ L1 such that

γ(λ) ∈ Fix(Γ(λ, .)), ∀λ ∈ Λ,(3.1)

γ(λi) = ui, i = 1, . . . , p.(3.2)

We shall prove that

Fix(Γ(λ, ·)) =
{
u ∈ L1; u(x, y) ∈ F

(
x, y, uλ(x, y), G(x, y, uλ(x, y))

)
(3.3)

a.e. (Q)
}
.

Denote by A(λ) the right-hand side of (3.3). If u ∈ Fix(Γ(λ, ·)) then there is
v ∈ ϕ(λ, v) such that u ∈ ψ(λ, u, v). Therefore, v(x, y) ∈ G

(
x, y, uλ(x, y)

)
and

u(x, y) ∈ F
(
x, y, uλ(x, y), v(x, y)

)
⊂ F

(
x, y, uλ(x, y), G(x, y, uλ(x, y))

)

a.e. (Q)

so that Fix(Γ(λ, .)) ⊂ A(λ).

Let now u ∈ A(λ). By Lemma 2.2, there exists a selection v ∈ L1 of the multi-
function (x, y)→ G

(
x, y, uλ(x, y))

)
satisfying

u(x, y) ∈ F
(
x, y, uλ(x, y), v(x, y)

)
a.e. (Q).

Hence, v ∈ ϕ(λ, v), u ∈ ψ(λ, u, v) and thus u ∈ Γ(λ, u), which completes the proof
of (3.3). �

We next note that the function T : L1 → C,

T (u)(x, y) :=
∫∫

Q(x,y)
u(ξ, η) dξ dη (x, y) ∈ Q
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is continuous and one has

S(λ) = λ+ T
(
Fix(Γ(λ, . ))

)
, λ ∈ Λ.

Since Fix(Γ(λ, .)) is nonempty and arcwise connected in L1, the set S(λ) has the
same properties in C.

2) Let λi ∈ Λ and let ui ∈ S(λi), i = 1, . . . , p be fixed. By (3.4) there exists
vi ∈ Fix(Γ(λi, .)) such that

ui = λi + T (vi), i = 1, . . . , p.

If γ : Λ→ L1 is a continuous function satisfying (3.1) and (3.2) we define, for every
λ ∈ Λ,

s(λ) = λ+ T (γ(λ)).

Obviously, the function s : Λ→ C is continuous, s(λ) ∈ S(λ) for all λ ∈ Λ, and

s(λi) = λi + T (γ(λi)) = λi + T (vi) = ui, i = 1, . . . , p.

3) Let u1, u2 ∈ S =
⋃

λ∈Λ
S(λ) and choose λi ∈ Λ, i = 1, 2 such that ui ∈ S(λi),

i = 1, 2. From the conclusion of 2) we deduce the existence of a continuous function
s : Λ → C satisfying s(λi) = ui, i = 1, 2 and s(λ) ∈ S(λ), λ ∈ Λ. Let h : [0, 1] → Λ
be a continuous mapping such that h(0) = λ1 and h(1) = λ2. Then the function
s ◦ h : [0, 1]→ C is continuous and verifies

s ◦ h(0) = u1, s ◦ h(1) = u2,
s ◦ h(λ) ∈ S(h(λ)) ⊂ S, λ ∈ Λ.

Remark 3.2. If the multifunction F does not depend on the last variable, (1.1)
reduces to (1.2) and the first statement of Theorem 3.1 yields known results. More
exactly, it follows from Corollary 1 in [3] that the solution set of (1.2) is arcwise

connected in the space C.
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