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Abstract. We characterize finitely generated abelian semigroups such that every com-
pletely positive definite function (a function all of whose shifts are positive definite) is an
integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
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1. INTRODUCTION

Stieltjes [21] showed that a sequence (sy)5, of reals is the moment sequence of a
measure on Ry, in the sense that

Sn :/ 2" dp(x), neNy
R+

for some measure p on Ry, if and only if

n n
Z cjckSj+r =0 and Z cjcpSjyr+1 = 0
4,k=0 4,k=0

for every choice of n € Ny and ¢y, ...,c, € R.

The moment problem thus solved by Stieltjes can be generalized to arbitrary
abelian semigroups instead of Ny. Suppose (S,4) is an abelian semigroup. For
arbitrary subsets H and K of S, define H+ K = {z+y |z € H, y € K}. A positive
definite function on S is a function ¢: S + S — R such that

n
Z cicrp(s;+sg) =0
jk=1
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for every choice of n € N, s1,...,s, € S, and c1,...,¢, € R. Denote by P(S) the
set of all positive definite functions on S. A character on S is a function o: S — R,
not identically zero, such that o(s +t) = o(s)o(t) for all s,t € S. Denote by S*
the set of all characters on S. Denote by A(S*) the smallest o-ring of subsets of S*
rendering o — o(s): S* — R measurable for each s € S, and by F(S*) the set
of all measures defined on A(S*) and integrating o +— o(s) for all s € S+ S. For
w € Fy(S*), define Lu: S+ S — R by

Lu(s) = / o(s)du(o), s€S+S.

A moment function on S is a function ¢: S + S — R such that ¢ = Ly for some
u € F.(5*), and a moment function ¢ is determinate if there is only one such p.
Denote by H(S) the set of all moment functions on S, and by Hp(S) the subset
of determinate moment functions. We have H(S) C P(S) since if p € Fy(S*),
S$1,.--,8, € S, and ¢1,...,¢, € R then

i cicrlp(s; + sk) = /S <zi:1 ijf(sj))zdu(d) > 0.

jik=1

The semigroup S is semiperfect if H(S) = P(S), and perfect if Hp(S) = P(S).

The semigroup Q is perfect ([4], Section 6.5). The semigroup Ny is semiperfect by
Hamburger’s Theorem (see [1] or [4], 6.2.2). Likewise, the semigroup Z is semiperfect.
This was first shown in [16]; see [4], 6.4.1 for a simple proof. For & > 2 the semigroups
N§ and Z* are not semiperfect. For N§, this was first shown in [3] and independently
in [20]; see [4], 6.3.4. For Z*, see [4], 6.4.8.

These results are subsumed in the following result of Sakakibara [19]: A subsemi-
group of Z¥ containing 0 is semiperfect if and only if it is {0} or isomorphic to 7 or
N .

An even more general result was shown in [11]. The presentation requires some
terminology. An abelian semigroup H is archimedean if for all x,y € H there exist
z € H and n € N such that nz = y + 2. An archimedean component of an abelian
semigroup S is an archimedean subsemigroup of S which is maximal for the inclusion
ordering. Every abelian semigroup is the disjoint union of its archimedean compo-
nents ([14], Section 4.3). An abelian semigroup S is R-separative if S* separates
points in S. If S is an abelian semigroup and V' is a subset of S, let E(V) denote
the set of those v € V such that the conditions s,t € S, 25,2t € V, and s+t = v
imply s = ¢. For every subset U of S, let C'(U) be the union of those finite subsets
V of S such that E(V) C U. A C-finite semigroup is an R-separative semigroup S
such that C(U) is a finite set for every finite subset U of S. Now the main result
of [11] states: A countable C-finite semigroup S satisfying S = S + S is semiperfect
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if and only if each archimedean component of S is isomorphic to the product of a
finite group of exponent 1 or 2 and one of the semigroups {0}, Z, N. (The exponent
of a finite abelian group F is the smallest n € N such that nz =0 for all x € F.)

Semiperfect R-separative finitely generated abelian semigroups can be character-
ized by showing that every semiperfect R-separative finitely generated abelian semi-
group S is C-finite and satisfies S = S + 5, so that the result from [11] applies.

Semiperfect finitely generated abelian semigroups can be characterized by a
slightly complicated criterion. This is so far unpublished.

Suppose S is an abelian semigroup. Define an abelian semigroup S by S=SU {0}
where 0 is some element outside S which is a zero for the union. For r € S and
¢: S — R, define E,¢: S — R by E.p(s) = o(r +s) for s € 5. A function
p: S — R is completely positive definite if E.p € P(g) for all » € S. Denote
by P.(S) the set of all completely positive definite functions on S. Denote by S
the set of all nonnegative characters on S. Denote by A(S%) the smallest o-ring
of subsets of S} rendering o — o(s): ST — Ry measurable for all s € S (so
A(ST) ={AN S} | Ac A(S*)}), and by F(S7) the set of all measures defined on
A(S%) and integrating o +— o(s) for all s € S. For n € F{(S7}), define Lp: S — Ry
by

Lp(s) :/ o(s)du(o), seb.
S%

A Stieltjes moment function on S is a function ¢: S — R such that ¢ = Lu for
some p € I (S7), and a Stieltjes moment function ¢ on S is Stieltjes determinate if
there is only one such u. Denote by Hg(S) the set of all Stieltjes moment functions
on S, and by Hg, p(S) the subset of Stieltjes determinate Stieltjes moment functions.
We have Hg.p C Hs(S) C Pe(S) since if p € Fy(S%), r €S, s1,...,8n € S, and
C1,...,Ccn € R then

ZCjCkETEM(Sj + Sk) = /

j=1 = j=1

(If o € S*, we extend o to a character on S, also denoted by o, by o(0) = 1.)
The semigroup S is Stieltjes semiperfect if Hg(S) = P.(S), and Stieltjes perfect if
Hs.p(S) = P(S).

Every perfect semigroup is Stieltjes perfect ([8], Lemma 3.2). The semigroup Ny
is Stieltjes semiperfect by the result of Stieltjes mentioned initially. Likewise, the
semigroup 7 is Stieltjes semiperfect ([4], 6.4.7). For k > 2, the semigroups N§ and 7*
are not Stieltjes semiperfect. For N5, this was shown in [4]. Indeed, for k > 2 there
exists a function p € P.(NE) \ H(NE) ([4], 6.3.7), as well as a function p: N§ — R
such that E.p € H(N§) for all r € N§, yet » & Hs(N§) ([4], 6.3.12). For 7%, see our
characterization of Stieltjes semiperfect finitely generated abelian semigroups below.
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The purpose of the present paper is to characterize Stieltjes semiperfect finitely
generated abelian semigroups. We shall do this by defining “c-finite” semigroups in
such a way that every R, -separative finitely generated abelian semigroup (that is,
every finitely generated abelian semigroup S such that S% separates points in .5) is
c-finite, characterizing Stieltjes semiperfect countable c-finite semigroups, and reduc-
ing the case of an arbitrary finitely generated abelian semigroup to the R, -separative

case.

In Section 2 we show that in order for an abelian semigroup S to be Stieltjes
semiperfect it is necessary that S = S+ S (Theorem 1). Fortunately, the hypothesis
S = 5§ + S implies the validity of an indeterminate method of moments given in
[10]. This allows one to show that Hg(S) is closed under pointwise convergence
(Lemma 1), and one can then describe Hg(S) as the polar of a certain convex cone
R[S]++ in R with respect to the natural duality between R(¥) and RS. It follows
that S is Stieltjes semiperfect if and only if a certain convex cone, ¥.(S5), is dense
in R[S]; 4 with respect to the finest locally convex topology on R(*) (Theorem 2).
In Section 3 we characterize R, -separative abelian semigroups by three equivalent
conditions (Proposition 1). We then define certain mappings e and ¢ of the set
of subsets of an abelian semigroup S into itself and note some of their properties
(Proposition 2). A sufficient condition for an element v of a subset V of S to belong
to e(V) is given in Proposition 3. Proposition 4 describes, given a subset U of S, a
subset of S containing ¢(U). Proposition 5 establishes the quite important fact that
c(0) = 0 if S is R, -separative. Proposition 6 establishes a formula that permits one
to show that if S is a countable c-finite semigroup then ¥.(S) is closed in the finest
locally convex topology on R(®) | so that if S furthermore satisfies S = S+ S then S
is Stieltjes semiperfect if and only if ¥.(S) = R[S]++ (Theorem 3). In Section 4 we
use the formula from Proposition 6 to prove a sequence of Lemmas that lead up to
the establishment of three necessary conditions for the Stieltjes semiperfectness of a
countable c-finite semigroup (Theorem 4). In Section 5 we describe certain faces of
the convex cone R[S];, for an Ry -separative abelian semigroup .S, in Proposition 7.
This leads to the fact that for a c-finite semigroup S, the convex cone R[S];; is
generated by its extreme rays (Proposition 8). This is an important ingredient in
the proof that the necessary conditions found in Theorem 4 are also sufficient for
the semiperfectness of a c-finite semigroup, even if it is not countable (Theorem 5).
In Section 6 we characterize Stieltjes semiperfect R, -separative finitely generated
abelian semigroups by showing that every R, -separative finitely generated abelian
semigroup is c-finite, so that Theorem 5 applies (Theorem 6). In Section 7 we
characterize arbitrary Stieltjes semiperfect finitely generated abelian semigroups by
reducing the general case to the Ry-separative case (Theorem 7). We then give
examples of a finitely generated abelian semigroup which is Stieltjes semiperfect but
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not semiperfect and a finitely generated abelian semigroup that is semiperfect but
not Stieltjes semiperfect. In Section 8 we turn to Schur-increasing functions. The
main theorem (Theorem 8) states that there is a function ¢: N3 — R such that
E,¢ is a moment function for all r € N2, yet ¢ is not Schur-decreasing of order 3.
In Section 9 we characterize functions ¢: S — R with the property that e *¥ is a
Stieltjes moment function for each ¢ > 0 (Theorem 9).

2. PRELIMINARIES

In this section, we characterize Stieltjes semiperfect abelian semigroups in terms
of the density of a certain convex cone in the semigroup algebra in another convex
cone with respect to the finest locally convex topology.

Theorem 1. In order that an abelian semigroup S be Stieltjes semiperfect, it is
necessary that S = S+ S.

Proof. Suppose S # S+ 5. Choose a € S\ (S + 5). Define ¢ = 14,y (the
indicator function of the subset {a} of S). Then E,¢p = 1{¢;. Indeed, the conditions
seSanda+s=a i~mply s =0since a ¢ S+ S. Now 179y € P(S). To see this,
suppose 51,...,5, € S and ¢1,...,¢, € R. We may assume s; = 0 and s; € S for
j > 1. Since the conditions z,y € S and z + y =0 imply x = y = 0 then

n
D cicrlioy(sj +s6) =i > 0.
k=1

For r € S\ {a} we have E,¢ = 0. Indeed, for s € S we have E,¢(s) = p(r +s) =0
since if s = 0 then r + s = r # a while if s € S then r + s # a because of a ¢ S+ S.
Thus E.p € P(S) for all r € S, that is, ¢ € P.(S). Now ¢ ¢ Hs(S). To see
this, suppose ¢ = Ly for some p € F,(S7). Then 1 = ¢(a) = fsi o(a)du(o), so
u({o € S | o(a) > 0}) > 0, whence 0 < fsfr o(a)?du(o) = ¢(2a), contradicting
the fact that ¢(2a) = 0 because of 2a # a, which is a consequence of the fact that
a¢S+S. O

For an abelian semigroup S and for s € S, define 5: S* — R by 5(0) = o(s) for
o€ S

Suppose U is a countable abelian semigroup. Then U* is a Polish space (when
considered with the topology of pointwise convergence), A(U*) = B(U*) (the Borel
o-field), and every bounded measure p on B(U™) is a Radon measure in the sense that
pu(B) = sup{u(C) | K(U*) > C C B} for each B € B(U*) where K(U*) is the set of
all compact subsets of U*. If u € F (U*) then 4%y (the measure with density 42 with
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respect to p1) is a bounded measure for each u € U (since [u?dp = Lu(2u) < 00),
and we define the L-topology on F; (U*) by the condition that a net (p;) in Fy (U*)
converges to a measure u € Fy(U*) if and only if for each u € U the net (a2u;)
converges weakly to 2 (the weak topology being defined in [4], Section 2.3).

For an arbitrary abelian semigroup S we have

A = | psyu(BWU)

UeD(S)

where D(S) is the set of all countable subsemigroups of S and where pgy: S* —
U* U {0}, for U € D(S), is defined by ps,u(c) = o|U for o € S*. By abuse of
notation, for p € F(S*) and U € D(S) we denote by pPsv the image measure
of u’pE}U(U*) (that is, the restriction of u to the o-ring pg,lU (A(U*))) under the
mapping pS7U|p§71U(U*): pglU(U*) — U*. Then pPsv € F_(U*) and L(uPsv) =
(Lw)|(U+U). We define the L-topology on F(S*) by the condition that a net (u;)
in F (5*) converges to a measure p € F (S*) if and only if for each U € D(S) the
net (u)>") converges, in the L-topology on F, (U*), to uPs-v.

Let Do(S) be the set of those U € D(S) such that ps y maps S* onto U*. Then
each element of D(S) is contained in some element of Dy (.S) ([5], Theorem 3). Hence

A= |J psuBU).

UeDy(S)

If U € Dy(S) then psy maps S onto Ui ([8], Lemma 3.1).

Lemma 1. If S is an abelian semigroup satisfying S = S+ .5 then Hg(S) is closed
in RS under pointwise convergence.

Proof. Suppose ¢ is an element of the closure of Hg(S) under pointwise
convergence. Choose a net (¢;) in Hg(S) which converges pointwise to . For each i
choose p; € Iy (S7) such that ¢; = Lp;. We may assume that (y;) is a universal net.
By the main result in [10], (u;) converges in the £-topology to some p € F (S*) such
that Ly = . For U € D(S) the net (u;>") converges in the L-topology to uPs:v,

so for u € U the net (ﬂZ,ufS‘U) converges weakly to u2uPs:V. Since for each i the

measure a2, is supported by the closed set U}, we have (u?u?s:v)(U*\ Uz ) = 0.
This being so for all u € U, it follows that PV (U*\U¥) = 0. Now p,(S*\S7) = 0.
To see this, we must show that if A € A(S*) and ANS% = () then p(A) = 0. Choose
U € Dy(S) and B € B(U*) such that A = pg1,(B). Since psy maps S% onto U%
then BNU} = (). Hence p(A) = puPsv(B) = 0. This shows that px(S*\ S%) =0. If
we now define A\ € F, (S7%) by the condition that A\(ANSY) = pu(A) for all A € A(S)
then LA = ¢, so ¢ € Hg(S), as desired. O
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Suppose S is an abelian semigroup. Denote by R[S] the space R(S) of finitely
supported real-valued functions on S, equipped with the multiplication * defined by

a*xb(u) = Z a(s)b(t)

s,t€S: s+t=u

for a,b € R[S] and u € S. Then R[S] is a commutative real algebra. For r € 5,
define 0, € R[S] by 6,(s) = d,,s (the Kronecker delta) for s € S. For a € R[S], write
a*? = axa. For a € R[S], denote by supp a the support of a, that is, the set of those
s € S such that a(s) # 0.

Define a bilinear form (-,-): R[S] x RS — R by

(a,0) = als)e(s)

ses

for a € R[S] and ¢ € R¥. Under this bilinear form, the spaces R[S] and R® are in
duality. The finest locally convex topology on R[S], and the topology of pointwise
convergence on RS, are compatible with the duality.

Define a convex cone R[S];+ in R[S] by

R(S]l++ ={a € R[S] | (a,0) >0 Vo € ST }.

Define another convex cone X.(S5) in R[S] by

Yo(S) = {6, xa}*+... 46, xa?|r1,...,7n €8, ai,...,a, € R[S]}.

For r € S, a € R[S], and ¢ € S* we have (6, * a*?,0) = o(r){a,0)? > 0. It follows
that X.(S) C R[S]++.

For every subset A of R[S], define a convex cone A+ in R¥, closed under pointwise
convergence, by

At ={peR® | (a,p) >0 Va € A}.

Theorem 2. Suppose S is an abelian semigroup satisfying S = S + S. Then
Pe(S) = 2c(S)* and Hg(S) = R[S]5, . Hence S is Stieltjes semiperfect if and only
if ¥.(S) is dense in R[S]44 with respect to the finest locally convex topology.

Proof. As the proof of [9], Proposition 3, using Lemma 1. O
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3. C-FINITE SEMIGROUPS

An abelian semigroup S is Ry -separative if S separates points in S.

Suppose S is an abelian semigroup. Let J(S) denote the set of all archimedean
components of S. For H, K € J(S5), the subsemigroup H + K of S is archimed-
ean, hence contained in a unique archimedean component of S, which we denote
by HV K. Then (J(5),V) is a semilattice, that is, an abelian semigroup with all
elements idempotent (HV H = H for H € J(S5)). Define a relation < in J(S) by
the condition that H < K if and only if H V K = K. Then < is a partial ordering in
J(S), and for H, K € J(S) the element H V K is the least upper bound on {H, K'}
in the partially ordered set (J(S5), <).

For every abelian semigroup X, let Gx denote the abelian group having a presenta-
tion with generators gx (x), x € X, and relations gx (z+y) = gx (z)+gx(y) for z,y €
X. The mapping gx: X — Gx is a homomorphism and Gx = gx(X) — gx(X).
For z,y € X we have gx(x) = gx(y) if and only if © + a = y + a for some a € X.

If X and Y are subsemigroups of an abelian semigroup S satisfying X + Y C
Y, there is a unique homomorphism gxy: Gx — Gy such that gy(z +y) =
9x,v(gx(x)) + gv(y) for all z € X and y € Y. The mapping gx, x is the iden-
tity on Gx. If Z is a third subsemigroup of S suchthat X +Z C Zand Y +2Z C Z
then gx,z = gv,z 0 gx,y. Hence, if X and Y are subsemigroups of S such that
X +Y C XNY then gx,y is an isomorphism between Gx and Gy, and gy, x is its
inverse.

A face of an abelian semigroup S is a subsemigroup X of S such that the conditions
z,y € Sand r+y € X imply z,y € X. Every face of S is the union of those
archimedean components of S which it contains. If K is a subset of J(S) then the

set |J K is a face of S if and only if K is a face of the semilattice J(5), that is,
Kek
a subsemigroup of J(S) such that if H € J(5) and H < K € K then H € K. For

K € J(5), the set
Kk ={HeJ(S)|H<K}

is easily seen to be a face of J(S). It follows that the set

XK:UH:UH

HeKx HLK

is a face of S. Note that X is the least face of S containing K. Since the condition
H e Ki implies H+ K C HV K = K, we have X + K C K. As above, it follows
that gx, x, is an isomorphism between Gx and Gx, with gx, x as its inverse.
If K € J(S) then K is the greatest element of J(S) contained in Xx. Hence, if
K,Le J(S)and K # L then Xg # X
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Proposition 1. For an abelian semigroup S the following three conditions are
equivalent:
(i) S is R4 -separative;
(ii) for each H € J(S), the semigroup H is cancellative and the group Gy is
torsion-free;
(iii) the conditions x,y € S, k € N, and kx = ky imply © = y.

Proof. The equivalence (i) < (ii) is Theorem 0.1 on p. 135 in [17]. The
equivalence (i) < (iii) follows from [6], Theorem 1. O

Suppose S is an abelian semigroup. For every subset V' of S, denote by e(V') the
set of those v € V' such that the conditions r € S, s,t € 5, r+2s,r+2t €V, and
r+s+t=wvimply r+s =r+t. For every subset U of S, denote by ¢(U) the union
of all finite subsets V' of S such that e(V) C U.

Let us say that v € S is the S-midpoint of u and w if there exist r € S and s,t € S
such that u =r+2s, w =7+ 2¢t,and v =r + s+ ¢t. If S is R} -separative then e(V)
is precisely the set of those v € V' such that v is not the S-midpoint of two distinct
elements of V. Note that an S-midpoint is not the same as a midpoint in the usual
sense. For example, if S =Ny \ {1}, it is easily seen that 3 is not the S-midpoint of
2 and 4.

Proposition 2. If U and V are subsets of S then

)
) ifU CV then UNe(V) Ce(U);
) U CeU);
(iv) if U C V then c(U) C ¢(V);
) every finite subset of ¢(U) is contained in a finite set W such that e(W) C U;
) e(e(U) = c(U);

) if U is finite then c¢(U) = c(e(U));

) e(c(U)) Ce(U);
(ix) ifr € S and s,t € S thenr + s+t € c({r + 2s,r + 2t}).

Proof. (i) through (viii): Analogous to [11], Theorem 2.

(ix): Define V' = {r+2s,r+s+t,r+2t}. It suffices to show e(V') C {r+2s,r+2t}
since it then follows that r + s+t € V C ¢({r + 2s,r + 2t}). To show e(V) C
{r+2s, r+2t}, it suffices to show that if r+s+t € e(V') then r+s+t € {r+2s,r+2t}.
Suppose r + s+t € e(V). Since r + 2s,r + 2t € V, it follows that r + s = r + ¢.
Hence r + s+t =1+ 2t € {r + 2s,r + 2t}, as desired. O

If S is an Ry -separative abelian semigroup, for every subset U of S we denote by
Conv(U) the set of those u € S such that

(1) (mn+1lu=u+us+...+u, forsomeneN anduy,...,u, €U
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and by Ex(U) the set of those u € U such that (1) implies 4y = ... = u, = u. Note
that if S is a subsemigroup of a torsion-free abelian group G then Conv(U) is the
intersection of S with the convex hull conv(U) of U in the enveloping real vector
space of G while Ex(U) is the set of all extreme points of the convex set conv(U).

Proposition 3. Suppose S is an R, -separative abelian semigroup and V is a
subset of S. Then Ex(V') C e(V).

Proof. Assume v € Ex(V); we have to show v € e(V'). Suppose r € S, s,t € 5,
r+2s,r+2t €V, and r + s+t = v; we have to show r + s = r +t. We have
20=2(r+s+1t) = (r+2s)+ (r+2t). Since r + 2s,7 + 2t € V, by the definition
of Ex(V) it follows that r + 2s = r + 2t. Hence 2(r + s) = 2(r + t), and since S is
R -separative, by Proposition 1 it follows that r 4+ s = r + ¢, as desired. O

Lemma 2. Suppose S is an R-separative abelian semigroup, a,b,x € S, and
neN Ifa+nx=b+nx thena+z=>0+x.

Proof. Suppose o € S*. From a+ nz = b+ nx we get o(a)o(z)™ = o(b)o(x)™.
If o(x) # 0, we may divide by o(z)""! to get o(a)o(z) = o(b)o(z). If o(z) = 0, it
is trivial that o(a)o(z) = o(b)o(x). Thus o(a)o(z) = o(b)o(z) in every case. This
being so for each o € S*, since S is R-separative it follows that a +x = b+ =z. O

Lemma 3. Suppose S is an R-separative abelian semigroup and V is a finite
subset of S. Then Conv(V) = Conv(Ex(V)).

Proof. The inclusion Conv(Ex(V)) C Conv(V) is trivial. For the converse
inclusion, it suffices to show V' C ConvEx(V')). Let U be the set of those subsets U
of V such that for all v € V' \ Ex(V') there exist n € N and w1, ...,u, € U\ {v} such
that (n+ Vv =v4us + ...+ up.

Then V € U. To see this, suppose v € V\Ex(V'). By the definition of Ex(V), there
exist p € N and vy, ...,v, € V such that (p+1)v = v+wv1+...+v, and such that it is
not the case that v1 = ... = v, = v. We may assume that for some n € {1,...,p} we
have v; # v for j < nand v; = v for j > n. Then (p+1)v = (p—n+1)v+vi+...+v,.
By Lemma 2 it follows that (n+1)v = v+wvi+...+v,. Moreover, vy, ...,v, € V\{v},
as desired.

Since V' € U then U is a nonempty set of subsets of the finite set V. We can
therefore choose a set U € U/ which is minimal with respect to the inclusion ordering.
If U C Ex(V), we are done. Thus we may assume U ¢ Ex(V'). Choose u € U\ Ex(V)
and define U’ = U \ {u}. We shall derive a contradiction by showing U’ € U.

To see that U’ € U, suppose v € V\Ex(V). Choose n € N and uy,...,u, € U\{v}
such that (n+1)v = v+wu; +...+u,. We may assume that for some m € {0,...,n}
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we have u; = u if and only if ¢ > m. Then
(%) m+1lv=v+ur+...+ tpy+ (n—m)u.

If m = n, we are done. Suppose m < n. Since u ¢ Ex(V), there exist k € N and
t1,...,ty €U\ {u} =U’ such that (k+ Du=u+t +...+tx. Now

Eln+ v+ n—mu=k(v+ur+...+umn)+ n—m)(k+1u
=k(v+tur+...+um)+m—m)(ut+ts+...+tx).

Hence o(v)* ™ Da(u)*™ = o(v)fo(u)*...o(um) o) ™a(t)"™ . . o(ty)"~™
for each o € S*. The equation (%) shows that if o(u) = 0 then o(v) = 0. Hence
we may infer o(v)*" ) = g(v)Fo(u1)¥ ... o(um)*o(t1)” ™. .. o(tp)” ™. This being
so for all o € S*, since S is R-separative we have k(n + )v =kv+k(ur+...+
Um) + (n —m)(t1 + ...+ tr). We may assume that for some j € {0,...,k} we have
t; =vif and only if i > j. Then k(n+ 1)v = (k+ (n —m)(k —j)v+ k(w1 + ... +
Um) + (R —m)(t1 + ... +¢;). By Lemma 2 it follows that (km + (n —m)j + 1)v =
v+ Ek(ur + ...+ upy) + (n—m)(t1 + ... +t;), which shows that U’ € U, the desired
contradiction. O

Proposition 4. Suppose S is an R-separative abelian semigroup and U is a subset
of S. Then ¢(U) C Conv(U).

Proof. Suppose V is a finite subset of S such that e(V) C U; we have to
show V' C Conv(U). By Proposition 3 we have Ex(V) C e(V) C U, so by Lemma 3,
V C Conv(V) = Conv(Ex(V)) C Conv(U). O

Proposition 5. If S is an R-separative abelian semigroup then c(f)) = 0.

Proof. By Proposition 4, ¢() C Conv(d) = 0. O

A pair (r,U), where r € S and where U is a subset of S , is proper if the conditions
s,t €U and r+s=r-+timply s =t. A pair (r,a) € S x R[g] is proper if the pair
(r,suppa) is proper. For every subset T of S, define 2T = {2t |t € T'}. For r € S,
write r + 2T ={r+2t |t € T}.

Lemma 4. If (r1,a1), ..., (rn,an) € S x R[S] are proper and if
n
v E 6<U(rj +2suppaj))
j=1

then Y 6, *a;*(v) > 0.
j=1
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Proof. We have
n
> 6, xar*(v)
j=1

If j € {1,...,n}, s,t € suppa;, and ; + s +¢ = v then, since r; + 2s,7; + 2t €

3

> a;(s)a;(t).

j=1s,t€suppa: rj+s+t=v

n n
U (r; +2suppa;) and since v € e( U (r; + 2 supp ai)), we have r; +s = r; +t. Since
i=1 i=1

(rj,a;) is proper, it follows that s = ¢. Thus

Z&»j xai?(v) = Z Z a;j(s)? > 0.

j=1s€suppa,: rj+2s=v

n
(At least one term is positive since v € |J (r; + 2suppa;).) O
j=1

Proposition 6. If (r1,a1),...,(rn,an) € S X R[g] are proper then

c<supp26rj*a > <U rj+2suppaj))
7j=1

j=1

Proof. We have supp Z Op; * a;z C U (rj + suppa; + suppa;). If j €
=

{1,...,n} and s,t € suppa; then r; +s+t € c({r] +2s,7;+2t}) C ¢(r; +2suppa;)
(Propos1t10n 2 (ix) and (iv)). Hence

n n
suppZ(Srj * a U r] + ZSuppa] Ce U ri+ 2suppaj))
j=1 j=1

(Proposition 2 (iv)), so

C(Suppifsm *a"fQ) { (0 (r; +28uppaj)>] c<£)1(rj +2suppaj))

j=1
(Proposition 2 (iv) and (vi)). Conversely, by Lemma 4 we have

n

n
e(U T+ 2suppaj)> C suppZérj * a;Z,

=1 j=1
SO
n n n
c(U (rj +2supp aj)) = c{e(U (rj +2supp aj))] - c(suppz&nj * a;fQ)
J=1 j=1 j=1
(Proposition 2 (vii) and (iv)). O
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Corollary 1. If S is Ry -separative and if (rj,a;) € S x R[g] is proper and a; # 0
n
for j =1,...,n then ) 6, *a;.‘Z £ 0.
j=1

Proof. By Proposition 6, c(supp Z Op, * a*Z) = c( U (rj + 2suppaj)) The

latter set contains the nonempty set U (rj + 2suppa;) (Proposition 2 (iii)) and
j=1

so is nonempty. By Proposition 5 it follows that supp Z Op; * a*2 # (), that is,
J_

n
>, 0p; xaj 2 2£0, as desired. O
Jj=1

Lemma 5. If (r,a) € S x R[S] then there is some b € R[S] such that suppb C
supp a, the pair (r,b) is proper, and §, * a*? = §, * b*2.

Proof. Define an equivalence relation ~ in supp a by the condition that s ~ ¢
if and only if r + s = r 4+ t. For s € suppa, denote by [s] the equivalence class
containing s. Let X be a set that contains exactly one element from each equivalence

b=>" (Z a(s))éx.

zeX “s€(x]

class. Define

Clearly suppb C supp a and the pair (r,b) is proper. Now

G b2 = 3" NN a()at)orrary = D, D Y als)a(t)driept

z,y€X s€lz] tely] z,y€X s€lz] tely]

since for x,y € X, s € [z], and t € [yl wehaver+x+y = (r+z)+y=(r+s)+y=
s+(r+y)=s+(r+t)=r+ s+t The last sum reduces to §, x a*2. O

Theorem 3. Suppose S is a countable c-finite semigroup. Then the convex cone
X.(S) is closed in R[S] with respect to the finest locally convex topology. Hence,
if S furthermore satisfies S = S + S then S is Stieltjes semiperfect if and only if
Ze(S) = R[S]4+

Proof. Since R[S] is countable-dimensional, by [4], 6.3.3 it suffices to show
that X.(S)NRY) is closed, in the canonical topology on the finite-dimensional space
RY) = {a € R[S] | suppa C U}, for every finite subset U of S.

It even suffices to show that ¥.(S)NR(V) is closed in R(Y) for every finite subset V/
of S satisfying V' = ¢(V). Indeed, every finite subset U of S is contained in such a
set V, namely, the set V = ¢(U). (Use Proposition 2 (iii) and (vi).)

Let Q be the set of all pairs (r,U) such that r € S, U is a finite subset of 5, the
pair (r,U) is proper, and r + 2U C V. For every subset ' of Q, let ¥.(2") be the
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subcone of £,(S) generated by elements of the form 8, * a*2 where (r,a) € S x R[S]
is such that supp a is contained in a set U such that (r,U) € . Then

(2) 2(8) NRY) = 5,(Q).

To see this, first suppose (r,U) € Q, a € R[g], and suppa C U; we have to show
6.+ a*? € RYV) that is, supp(d, * a*2) C V. We have supp(d, * a*?) C c(supp(ér *
a*?)) = c(r+2suppa) C c¢(r+2U) C ¢(V) = V by Proposition 2 (iii), Proposition 6,
and Proposition 2 (iv). This shows X.(02) C EC(S)O R(). For the converse inclusion,
suppose b€ c(S) N RY). Choose (r1,a1),...,(rn,an) € S x R[S] such that b =
Z dr; * a;?. By Lemma 5 we may suppose that (r;,a;) is proper for j = 1,...,n.

Deﬁne U; =suppa; for j =1,...,n. By Proposition 6,
U r; +2U;) (U rj + 2U; ) = c(suppb) C (V) =V.

(We used Proposition 2 (iii) and (iv).) Thus (r;,U;) € Q for j =1,...,n,s0 b €
¥.(Q). This shows ¥.(S) N RY) c $.(Q), and completes the proof of (2).

For each (r,U) € €, the set r + 2U is a subset of the finite set V. Since V
has only finitely many subsets, we may choose a finite subset £’ of Q such that
{r'+20" | (v, U) e U} ={r+2U | (r,U) € Q}. Now

(3) 2.(8) NRY) = 2. ().

The inclusion ¥.(€) € ¥.(S) N RY) follows from (2) since X.(€) is obviously a

subset of ¥.(Q). For the converse inclusion, suppose b € £.(S) N R(Y). By (2) we

have b € X.(Q2). Thus there exist (r1,U1),..., (1, Us) € @ and ay,...,a, € R[S]
n

such that suppa; C Uj for each j and b = )~ 4, * a;Z. Suppose j € {1,...,n}.
j=1

Choose (77, U}) € Q' such that 7 + 2U} = r; + 2U;. For each u € U; choose u’ € U’

such that 77 + 2u’ = r;j + 2u. Define

Then

7 %2
Spwal™ = 3" aj(w)a; () i = > a5 (W)a;(0)5n sut

u,veU; u,veU;

since for u, v € U; we have 2(r+u'+v") = (r+2u')+(r; +2v") = (rj+2u)+(r;+2v) =
2(rj + u +v), hence r; +u’' +v" = r; + u + v by Proposition 1 (iii). The last sum
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reduces to o, *a}*. Thus b= ) Oy a;*Q, which shows b € X.(€'). This completes
j=1
the proof of (3).

It now suffices to show that X.(') is closed. For each (r,U) € ', choose a
compact subset B, of RW) \ {0} which intersects every ray from the origin. The
set

C = conv{d, xa*? | (r,U) € Q, a € By}

is again compact ([13], 2.8). Moreover,
() ={Xc]ceC, X>0}.

It therefore suffices to show that 0 ¢ C. Suppose b € C. Then there exist
(r,U1),. o, (rnyUn) € s a5 € By, (j = 1,...,n), and ai,...,a, > 0 such

n
that >> a; =1 and
j=1

b—Za] ra*a Z(Sra (Vaja;)*

By Corollary 1 it follows that b # 0, as desired. O

We have shown that ¥.(S) is closed in R[S] with respect to the finest locally
convex topology. The remaining claim follows from Theorem 2.

4. NECESSITY

In this section, we derive some conditions that are necessary in order for a count-
able c-finite semigroup to be Stieltjes semiperfect. In the next section, these condi-
tions will turn out to be sufficient, even if the semigroup is not countable.

Lemma 6. Suppose S is a Stieltjes semiperfect countable c-finite semigroup and
K is an archimedean component of S. Then ¢(U) N K = Conv(U) N K for every
finite subset U of K.

Proof. Suppose U is a finite subset of K. By Proposition 4, ¢(U) C Conv(U).
Hence ¢(U)NK C Conv(U)NK. For the converse inclusion, suppose v € Conv(U)NK.
Choose n € N and uq,...,u, € U such that (n + 1)v =v 4+ uys + ...+ uy. Define

b=3u, +...+ 064, —ndy.

169



For o0 € S%, either o(v) =0 or

o) = o)™ . o)/ < Llo(u) + .. + olun)],

3

that is, (b,0) > 0. This being so for all ¢ € S7, we have b € R[S], . By Theorem 3
it follows that b € 3.(S). Thus we may choose (r1,a1),...,(rn,an) € S x R[S]

such that b = 3 6, * a;2. By Lemma 5 we may assume that (rj,a;) is proper
j=1
n
for j = 1,...,n. By Lemma 4, if w € e( U (r; + 2suppaj)) then b(w) > 0, so
j=1

w € {u1,...,up} CU. Thus e( U (r; + ZSuppaj)) C U. Tt follows that
j=1

v € suppb C ¢(suppb) = (U r;+2suppa; ) —C|:€<U r]—i—ZSuppaj))] C ¢(U).

(We used Proposition 2 (iii), Proposition 6, and Proposition 2 (vii) and (iv).) This
shows Conv(U) N K C ¢(U) N K and completes the proof. O

For every cancellative abelian semigroup K such that the group G is torsion-free,
let Q x be the enveloping rational vector space of G . If A is a subset of Qx, say that
A consists of equidistant points if there exist u,w € Qy and p,q € {—c0} U Z U {0}
such that A={u+jwl|jeZ, p<j<q}

Lemma 7. Suppose S is a Stieltjes semiperfect countable c-finite semigroup and
K is an archimedean component of S. If P is a 1-dimensional affine subspace of Q i
then P N K consists of equidistant points.

Proof. As the proof of [11], Lemma 3. O

Lemma 8. If X is a face of an abelian semigroup S then 3.(S) N R[X] = X.(X).

Proof. The inclusion ¥.(X) C E.(5) N R[X] is trivial. For the converse

inclusion, suppose b € ¥.(S) N R[X]. Choose r1,...,r, € S and aq,...,a, € R[S]
n

such that b = ) 4, *a}‘Z. By a permutation of {1,...,n}, we may assume that there

j=1
is some m € {0,...,n} such that r; € X if and only if j < m. Now the mapping

¢ ¢|X: R[S] — R[X] is an algebra homomorphism ([11], Lemma 10). Hence b =
m

b|X = 6, *(a;|X)*?, which shows b € £c(X). This shows S.(S)NR[X] C Tc(X)
j=1

and completes the proof. O
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Lemma 9. Suppose S is an R, -separative abelian semigroup and U is a subset
of S. Then
Conv(U) C U conv< U gH’K(UOH)>
KeJ(s) H<K

where conv denotes convex hull in the enveloping real vector space of K.

Proof. Suppose v € Conv(U). Choose n € N and uy,...,u, € U such that
(n+1)v=v+u+...+u,. Let K, Hy,..., H, be the archimedean components of S
containing v, u1,...,u, respectively. The preceding equation shows that K = K V
HyV...VH,,so Hi < K for j =1,...,n. Moreover, (n+1)v = v+gp, x(u1)+...+
g1, .k (un). Since G is cancellative, we may subtract v from both sides. Dividing
the resulting equation by n, we get an expression of v as a convex combination of
g1(u1),...,gn(uy,). Since the latter elements belong to |J (U N H), this shows

<

vE conv( U @n H)), as desired. O
H<K
Lemma 10. Suppose S is an R, -separative abelian semigroup and K is an
archimedean component of S. Let P be a 1-dimensional linear subspace of Qg
and suppose h € Gg is such that PN K C {nh | n € N}. Assume k € N and
kh,(k+1)h,(k+2)h € K. Define

b= 0kh + O(kt2)h — 20(kt1)h

Then b € R[S];4. Now assume b € %.(S). Then there exist r,s,t € S such that
r+2s =kh and r + 2t = (k + 2)h.

Proof. TFor o € Si we have o((k + 1)h)* = o(k(k + 1)h) = o(kh)**!, so
o((k +1)h) = o(kh)*+tD/k  Similarly, o((k + 1)h) = o((k + 2)h)F+D/E+2) 14
follows that

((k +1)h) = Vo(kh)o((k +2)h) < %[a(kh) + o((k + 2)h))].

This being so for all o € S7, we have shown b € R[S] .

Now suppose b € X.(5). Recall that X denotes the least face of S containing K,
which is equal to the union of those H € J(S) such that H < K. Since b €
%.(S) N R[Xk], by Lemma 8 it follows that b € X (XK) Thus we may choose
r1,...,7n € X and ay,...,a, € R[XK] such that b = Z O, *aj2. By Lemma 5 we

j=1
may assume that (r;,a;) is proper for j = 1,...,n. Since b((k + 1)h) < 0, we may
choose j such that 4,  a?((k 4+ 1)h) < 0. Now

0> 6, xa((k+1)h) = > a;(s)a;(t).

s,tesuppa;: r;j+s+t=(k+1)h
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Thus we may choose s,t € suppa; such that 7; + s +t = (k + 1)h and such that
a;(s) and a;(t) are of opposite signs. In particular, s # ¢. Now

n n
ri+2s,1; +2t € LJ(TZ +2suppa;) C Xg N C(U(Ti + ZSuppai)>
=1 i=1
=Xk Ne(suppd) C Xk N U conv(gk,r(supp b)) = K N conv(supp b)
L>K
= {kh,(k+ 1)h, (k + 2)h},

by Proposition 2 (iii), Proposition 6, Proposition 4, and Lemma 9. We cannot have
rj +2s = r; + 2t, which would imply 2(r; + s) = 2(r; +1t), hence r; + s = r; +t since
S is Ry -separative (Proposition 1), hence s = ¢ since (7, a;) is proper. Thus r; + 2s
and r;+2t are two distinct elements of {kh, (k+1)h, (k+2)h} with midpoint (k+1)h.
It follows that, interchanging s and ¢, if necessary, we may assume r; +2s = kh and
r; + 2t = (k 4+ 2)h, as desired. O

Lemma 11. Suppose S is a c-finite semigroup and J, K € J(S) are such that
J < K. Supposet € J and k € N. Let M be the set of those L € J(S) such that
J < L < K and such that {gjx(nt) [ n=1,...,k} N L # 0. Then M is finite.

Proof. For L € M we have g (kt) € L. Indeed, we can choose n € {1, ..., k}
such that gyr(nt) € L. If n = k, we have the desired conclusion. Otherwise,
L > gyr(nt)+ (k—n)t = grr(nt) + (E —n)gsr(t) = gsr(kt). This proves that
gsL(kt) € L for L € M. Given L € M, define V = {3kt,g;(3kt)}. With r =
x =kt and y = gsr(kt) we have r +2x = 3kt € V, r + 2y = g;(3kt) € V,
and r+x+y = gy (3kt). If L # J then r + 2 # r + y, so the preceding shows
97..(3kt) ¢ e(V). Thus e(V) C {3kt}. On the other hand, if L = J then it is
trivial that e(V) C {3kt}. Thus e(V) C {3kt} in every case. Since V is a finite
set, it follows that V C c¢({3kt}). In particular, g; 1 (3kt) € c({3kt}). This proves
{95,0(8kt) | L € M} C c¢({3kt}). The latter set is finite since S is c-finite. Thus the
set {gs 1 (3kt) | L € M} is finite. Since gj 1 (3kt) € L for each L € M, the mapping
L — g¢7,1(3kt) is one-to-one, so M is finite. O

Lemma 12. Suppose S is an R, -separative abelian semigroup and J, K € J(S)
are such that the conditions H € J(S) and J < H < K imply H=J or H = K.
Suppose u € J, v =gy x(u) € K, and define

c =0y — 0yp-

Then ¢ € R[S]+4. Now suppose ¢ € %(S). Then there exist r € S and z,y € S
such that r 4+ 2z = u and r 4+ 2y = v.
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Proof. Suppose o € S%. By the analogue of [5], Proposition 3, for nonnegative
characters instead of arbitrary characters there exist a face Y of S and a character
v € (Gy)? such that

Yogy(y) ifyey
o(y) = :
0 ify¢Y.

First suppose K C Y. Then also J C Y, and we have (¢,0) = vo gy (u) — v o gy (v).
But gy (v) = gy o gsx(u) = gv(u), so {¢,0) = 0. Now suppose K ¢ Y. Then
KNY =0,s0 {¢,0) =c(u) > 0. Thus (c¢,o) > 0 in every case. This being so for all
o € 87, we have shown c € R[S], .

Now suppose ¢ € %.(5). Recall that X denotes the least face of S containing K,
which is the union of those H € J(5) such that H < K. Since ¢ € ¥.(5) N R[X k],
by Lemma 8 we have ¢ € ¥£.(Xk). Choose r1,...,m, € Xk and ay,...,a, € R[XVK]

such that ¢ = Z dr; x a3, By Lemma 5 we may assume that (r;,a;) is proper for

j=1,...,n. Slnce ¢(v) < 0, we may choose j such that d,; * a3?(v) < 0. Now

0> 0, * a;2(v) = Z a;(z)a;(y).

T,y€Esuppa;: rjt+rt+y=v

Thus we may choose x,y € supp a; such that r; +z +y = v and such that a;(z) and
a;(y) are of opposite signs. In particular, x # y. Now

n
r;+2x,7; + 2y € Un+2suppaz CXgnNe (U n+2suppai)>
i=1 i=1

= Xg Nc(suppc)

C Xk N < U conv(gyr(u))U U conv(gK’L(v))>

L>J LSK
= {u,v}.

(We used Proposition 2 (iii), Proposition 6, Proposition 4, and Lemma 9.) We cannot
have r; 4+ 2z = r; + 2y, which would imply 2(r; +x) = 2(r;+vy), hence r;+x =r;+y
since S is Ry -separative (Proposition 1), hence = = y since (r},a;) is proper. Thus
rj + 2z and r; + 2y are two distinct elements of {u, v}, so by interchanging x and y,
if necessary, we may assume r; + 2z = u and r; + 2y = v, as desired. (]

Lemma 13. Suppose S is a Stieltjes semiperfect countable c-finite semigroup and
K is an archimedean component of S. If P is a 1-dimensional linear subspace of Q) i
which intersects K then the semigroup P N K is isomorphic to {0}, Z, or N.

Proof. The semigroup P N K consists of equidistant points by Lemma 7. It
follows that PN K is isomorphic to a subsemigroup of Z. If this semigroup intersects
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both N and —N, it is a group, hence isomorphic to 7. Thus we may assume that
P N K is isomorphic to a subsemigroup of Ng. Now P N K is archimedean. To see
this, suppose z,y € PN K. Since K is archimedean, we can choose z € K and n € N
such that nx = y+ 2. Since nz € P and y € P, it follows that z € PN K. This shows
that PN K is archimedean. Since PN K is isomorphic to a subsemigroup of Ny, that
semigroup must be contained in one of the archimedean components of Ny, which
are {0} and N. Thus we may assume that P N K is isomorphic to a subsemigroup
of N. Since PN K consists of equidistant points, it follows that P N K is isomorphic
to {n € N | n > k} for some k € N. It remains to be shown that k¥ = 1. Suppose
k > 2. Choose h € g (K) such that PN K = {nh |n €N, n > k}. Define

b= 0kn + O(kt2)h — 20(kt-1)h-

By Lemma 10, b € R[S]4++. By Theorem 3 it follows that b € 3.(S). By Lemma 10
there exist 7 € S and s,¢ € S such that r + 2s = kh and r + 2t = (k + 2)h. Let G,
I, and J be the archimedean components of S containing r, s, and t, respectively.
If He J(S) and H < K then gy x(H)+ K = H+ K C K, so gy x(H) C {nh |
n € No}. Now gg k(r) = ph, 91,k(s) = ¢h, and g; k(t) = uh for some p, q,u € Ny.
Since r + 2s,7+ 2t € K then GVI = GV J = K. If we had ¢ > 0, it would
follow that » + s = (p+ q)h and kh = r 4+ 2s = (p + 2¢)h, so (p + ¢)h € K and
P+ q < p+ 2q = k, contradicting the fact that K = {nh | n > k}. Hence ¢ = 0, so
p = k. Since (k+2)h = r+2t = (p+2u)h, it follows that v = 1, that is, g5 x () = h.

Let M be the set of those L € J(5) such that J < L < K and {g;1(nt) |
n=1,...,k}NL # 0. By Lemma 11, M is finite. Suppose L € M. Let P be
the linear subspace of Q, spanned by g; (). By the argument applied to K, the
semigroup Pr, N L is isomorphic to {0}, Z, or {n € N | n > [} for some | € N.
Since g1, k(L) + K = L+ K C K, we have gr x(L) C {nh | n € No}. If L were a
group, it would follow that gr x = 0, hence g;x = gr,x © gs, = 0, contradicting
the fact that gy (t) = h # 0. Thus PL N L = {ner | n > i1} for a unique er, € G,
and a unique I, € N. Since ¢;1(t) € G, we have g 1.(t) = per, for some p € Z.
Necessarily, p > 1. Since g1 x(er) € Gk, we have g1, x(er) = gh for some ¢ € Z.
Now h = g5k (t) = 91, x(95..(t)) = pgh, so p = ¢ = 1, that is, g5 (t) = er and
gr,kx(er) = h. Since {gsr(nt) |n=1,...,k} N L # 0, it follows that I;, < k. Thus
ke € L.

Define My ={L e M |l =1} and My = {L € M |l > 2}. Then M is the
disjoint union M7 U M. Since J € M; and K € M, it is easily seen that there
exist L1 € My and Ly € Ms such that L; < Lo and such that the conditions L € M
and L1 < L < Lo imply L € {Ly,Ly}. There is no essential loss of generality in
assuming L1 = J and Lo = K. Now define

Cc = 5kt — 5kh~
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By Lemma 12 we have ¢ € R[S]4+4+. By Theorem 3 it follows that ¢ € 3.(5).
By Lemma 12 again there exist » € S and z,y € S such that r + 2z = kt and
r 4+ 2y = kh. Let A, B, and C be the archimedean components of S containing r,
x, and y, respectively. Since r + 2z = kt € (AV B)NJ then AV B = J (since
distinct archimedean components are disjoint). Similarly, AV C = K. For H < K
we have gy x(H) + K = H+ K C K. It follows that gy x(H) C {nh | n € Ny }.
Now ga.k(r) = ph, g,k () = ¢h, and gc k (y) = uh for some p, ¢, u € Ny. If we had
u > 0, it would follow that K > r+y = (p +w)h and p + u < p+ 2u = k (because
of kh = r + 2y = (p + 2u)h), a contradiction. Thus u = 0, that is, go x(y) = 0.
Now K >t +y = ¢g5kx(t) + gc,x(y) = h, contradicting the fact that k£ > 2. This
contradiction completes the proof. O

The dimension of a cancellative abelian semigroup K such that the group G is
torsion-free is the dimension of the rational vector space Q-

Lemma 14. If S is a Stieltjes semiperfect countable c-finite semigroup and K is
an archimedean component of S then the dimension of K is at most 1.

Proof. As the proof of [11], Lemma 6. O

Theorem 4. In order that a countable c-finite semigroup S be Stieltjes semiper-
fect, it is necessary that the following three conditions be satisfied:

(i) Each archimedean component of S is isomorphic to {0}, Z, or N;

(ii) if K and L are archimedean components of S, isomorphic to N, such that K < L
and gk, # 0, there is an archimedean component H of S such that H < L,
g, =0, and H £ K.

(iii) if K is an archimedean component of S isomorphic to N, there is an archimedean
component H of S such that H < K and gy x = 0.

Proof. (i): Suppose K is an archimedean component of S. By Lemma 14,
the dimension of K is at most 1. If the dimension is 0 then K is isomorphic to {0}.
Thus we may assume that the dimension is 1. By Lemma 13 applied to P = Qx, K
is isomorphic to Z or N.

(ii): Let e and f be the generators of K and L, respectively. Since g 1.(K) C G,
then gi r(e) = pf for some p € Z. Since pf+f =e+ f € L ={nf|neN}
then p > 0. We cannot have p = 0, which would imply gk, = 0, contradicting the
hypothesis. Thus p € N.

Let M be the set of those archimedean components M of S such that K < M < L.
Suppose M € M. By (i), M is isomorphic to {0}, Z, or N. Since gar,.(M) C G =
{nf|neZ}and gyr(M)+f=M+fC M+LCL={nf]|neN} then
gm,. (M) C {nf |neNy}. If M were a group, it would follow that gas 1, = 0, hence
9k, L = guM,L © gk,m = 0, contradicting the hypothesis. Thus M must be isomorphic
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to N. Let hps be the generator of M. Then gr am(e) € Gy = {nhay | n € 7}, so
gi,m(€) = pmhy for some pyy € Z. Since parhy, + by = e+ hy € K+ M C
M = {nhy | n € N}, we must have pp; > 0. We cannot have py; = 0, which would
imply gk m = 0, hence gk 1. = gur, 1 © gk, i = 0, contradicting the hypothesis. Thus
pm €N

The set M is finite by Lemma 11. Since M is finite, we may choose a maximal
element M of {N € M | N < L}. If we find some H € J(S) such that H < L,
gu,r. =0, and H £ L, it follows that H £ K. Thus we may as well assume M = K,
i.e., that the conditions N € J(S) and K < N < L imply N € {K,L}.

Define

Cc = 53 — 5pf.

Then ¢ € R[S]4++ by Lemma 12. By Theorem 3 it follows that ¢ € X.(5). By
Lemma 12 it follows that there exist » € S and s,t € S such that r + 2s = e and
r+2t =pf. Let F, G, and H be the archimedean components of S containing r, s,
and ¢, respectively. Then gp x(r) = ge and gg,kx(s) = ue for some g,u € Ny. Now
(g+2u)e=r+2s=c¢e, so ¢+ 2u=1 and therefore ¢ = 1 and u = 0. It follows that
pf =r+2t=pf+2gmu,1(t), so gu,r(t) =0. If H is isomorphic to N, it easily follows
that gg,, = 0. Otherwise, H is isomorphic to {0} or Z, and (as we have seen) it
follows that gr .1, = 0. Thus gy 1 = 0 in every case. We cannot have H < K, which
would imply r+2t € FV H and F V H < K, contradicting the fact that » + 2t € L.
Thus H £ K. This completes the proof of the necessity of condition (ii).

(iii): Let e be the generator of K. By Theorem 1, in order that S be Stieltjes
semiperfect, it is necessary that S = S 4+ 5. Thus it is necessary that there exist
s,t € S such that e = s +t. Let H and I be the archimedean components of S
containing s and ¢, respectively. Then gu x(s) € Gx = {ne | n € Z}, so gu k(s) =
pe for some p € Z. Since K > e+ s =e+gu x(s) = (p+ 1)e then p € Ny. Similarly,
g1,k (t) = ge for some ¢ € Ny. Now e = s+t = gu k(s) + gr,.x(t) = (p + ¢)e, so0
p+ q = 1 and therefore either p = 0 and ¢ = 1 or vice versa. By symmetry, we may
assume p = 0. Thus gg x(s) = 0. Since H is isomorphic to {0}, Z, or N, it follows
that gm k is identically zero. O

5. SUFFICIENCY

In this section, we show that the necessary conditions from Theorem 4 for the
Stieltjes semiperfectness of a countable c-finite semigroup S are also sufficient, even
if S is not countable.

Lemma 15. Suppose S is an R -separative abelian semigroup and b € R[S]4 .
Suppose v € Ex(suppb). Then b(v) > 0.
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Proof. Let K be the archimedean component of S containing v. From
the fact that v € Ex(suppb) it follows that v is a vertex of the convex polytope

conv( U gH7K(suppbﬂH)). To see this, assume Hy, ..., H, € J(S) with H; < K
H<K

n
for each j, u; € suppbn H; for each j, a; > 0 for each j, > a; = 1, and
j=1

n
v = Y ajgm; k(uj). Since QHinearly independent families in Qx are R-linearly
j=1

independent in the enveloping real vector space then we may assume that the o;

are rational. Multiplying by a common denominator, we get a relation of the form
n

kv = 3 gm; x(kjuj) where the k; are in N and k = ) k;. Now (k + 1)v =
j=1 j=1
n
v+ Y gu, k(kju;) = v+ kiuy + ... + kpuy. Since v € Ex(suppb), it follows that
j=1
U1 = ... = u, =v. This shows that v is a vertex of conv( U gm,x(suppbn H))
HSK
Moreover, the conditions H € J(S), H < K, w € suppbN H, and gy x(w) = v
imply H = K. To see this, note that these conditions imply 2v = v + gg x(w) =
v+ w, so v = w follows from the fact that v € Ex(suppbd). Since v is a ver-
tex of the convex polytope COIIV( U gm.x(suppdb N H)), by [13], 7.5, there is
HLK
a homomorphism ¢ of Gx into the group (R,+) such that {(w) < &(v) for all
we U gux(uppbn H)\ {v}. Fort > 0, define oy € S% by oy|H = 9%
HLK

for H < K and 0t|H:0forH§éK. Then

. (byoy)
< = .
0< lim o (v) b(v)

Since v € supp b, it follows that b(v) > 0. O

Corollary 2. R[S]++ N (—R[S]++) = {0}.

Proof. Suppose b € R[S]4++ N (=R[S]4++) but b # 0. Then 0 # suppdb C
Conv(suppb) = Conv(Ex(suppb)) (Lemma 3), so Ex(suppb) # . Choose v €
Ex(suppb). Then b(v) > 0 by Lemma 15. But Lemma 15 also applies to —b instead
of b, so —b(v) > 0, a contradiction. O

Proposition 7. Suppose S is an R; -separative abelian semigroup and W is a
subset of S satisfying W = Conv(W). Then R[S];+ N RW) is a face of R[S, .
That is, if b,c € R[S]44 and b+c € R™) then b,c € RW).

Proof. Suppose b,c € R[S and b+ c € RW) | that is, supp(b + c) C W; we
have to show supp b U supp ¢ C W. Since supp b U supp ¢ C Conv(supp b U supp ¢) =

177



Conv(Ex(supp b Usupp¢)) (Lemma 3), and since W = Conv (W), it suffices to show
Ex(suppb U suppc) C W. Suppose v € Ex(suppb U suppec). In particular, v €
supp bUsupp ¢, so by interchanging b and c, if necessary, we may assume v € supp b.
From v € supp b N Ex(supp b U supp ¢) it follows that v € Ex(supp b). By Lemma 15
it follows that b(v) > 0. Now either v € suppec, in which case ¢(v) > 0 (similarly),
or v ¢ suppe, that is, ¢(v) = 0. In either case, c(v) > 0. Thus b(v) + ¢(v) > 0, so
v € supp(b+ ¢) C W, as desired. O

Proposition 8. Suppose S is a c-finite semigroup, each of whose archimedean
components is isomorphic to {0}, Z, or N. If U is a finite subset of S then the set
W = Conv(U) in is finite and satisfies W = Conv(W). It follows that the convex
cone R[S]++ NRMW) is generated by its extreme rays, and that these are even extreme
rays in R[S];+4. Thus R[S]14+ is generated by its extreme rays, so in order to show
R[S]4++ C X(S) it suffices to show that each element which generates an extreme

ray in R[S], has the form §, * a*? for some r € S and some a € R[S].

Proof. By Lemma 9, W cC | conv( U gH,K(UﬂH)). For K € J(S)
KeJ(S) HLK

the set |J gm x(U N H) is finite since the finite set U intersects only finitely many
HLK
H € J(S) and has a finite intersection with each of them. It therefore suffices to show

that there are only finitely many K € J(S) such that ( U gH’K(UOH)) NK # (.
HLK

For this, it suffices to show that for each H € J(S) there are only finitely many

K € J(S) such that H < K and gu,x(H) N K # 0.

Suppose H € J(S) and let K be the set of those K € J(S) such that H < K and
g,k (H)NK # (). Choose an element e of H which generates H either as a semigroup
or as a group. If K € K then g x(e) € K. To see this, first suppose H is a group. If
K is isomorphic to N, let f be the generator of K. Then gy x(H) C Gx = {nf|n €
Z}and gyx(H)+ f CH+ K CK ={nf|neN}, sogux(H)C{nf|neNo}
Since gu,k (H) is a group, it follows that gy x(H) = {0}, hence gy xk (H)NK =0, a
contradiction. Thus K is also a group. Now gy k(e) € Gx = K, as claimed. Next,
suppose H is isomorphic to N. Since gy x(H) N K # (), there is some p € N such
that gu ik (pe) € K. Now gu i(e) € Gk and pgu k(e) € K. It easily follows that
g i(e) € K.

Thus g,k (e) € K for each K € K. By Lemma 11 it follows that K is finite.

We have shown that for every finite subset U of S the set W = Conv(U) is finite.
We leave it as an exercise to show that W = Conv(WW). Now the convex cone
'y = R[S]; 4+ N RM) is finite-dimensional, closed, and satisfies I'yy N (—I'y) = {0}
(Corollary 2). As is well known, it follows that 'y is generated by its extreme rays.
These are also extreme in R[S]+4 since I'y is a face of R[S];+4+ (Proposition 7).
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If b € R[S]++, define U = suppb and W = Conv(U). Then U C W, s0o b € 'y
Hence b is the sum of certain generators of extreme rays in I'yy. These also generate
extreme rays in R[S]4+. Thus R[S];+ is generated by its extreme rays. O

Theorem 5. Suppose S is a c-finite semigroup. Then S is Stieltjes semiperfect if
the following three conditions are satisfied:

(i) Each archimedean component of S is isomorphic to {0}, Z, or N;

(ii) if K and L are archimedean components of S, both isomorphic to N, such that
K < L and gk, # 0 then there is an archimedean component H of S such that
H<L, gur=0,and H £ K.

(iii) if K is an archimedean component of S isomorphic to N, there is an archimedean
component H of S such that H < K and gy x = 0.

If S is countable, the above three conditions are also necessary for the Stieltjes
semiperfectness of S.

Proof. To show the sufficiency of the conditions, note that (iii) implies that
S =545, so by Theorem 2 it suffices to show that ¥.(S) is dense in R[S]44.
(Perhaps we ought to indicate why (iii) implies S = S+ S. Suppose u € S; we have
to show that there exist s,¢ € S such that s + ¢ = u. Let K be the archimedean
component of S containing u. If K is a group then, denoting by 0 the zero of K,
we have u = u + 0, as desired. This takes care of the cases K = {0} and K = Z.
By (i), the case K = N remains. By (iii) there is an archimedean component H
of S such that H < K and gy,x = 0. Choosing any x € H, we have u = u+0 =
u+ g, k() = u+x, as desired.) We can even show 3.(S5) = R[S]++. The inclusion
Y.(S) C R[S]++ being automatical, by Proposition 8 it suffices to show that if b
is an element that generates an extreme ray in R[S]; 4 then b = §, * a*? for some
r € S and some a € R[S]. Choose K € J(S) minimal with the property that
b|K #0.

First suppose K is a group. In this case, let H be the subsemilattice of J(S)
generated by those H € J(S) such that b|H # 0.

Next, suppose K is isomorphic to N. In this case, let G be the set of those
L € J(S) such that K < L and gx . # 0. Then G is finite. Indeed, let e be the
generator of K. As in the proof of Proposition 8, one can show that gx r(e) € L
for all L € G. By Lemma 11 it follows that G is finite. For each L € G which is
isomorphic to N, choose Hy, € J(S) such that Hy, < L, gy, 1 =0, and Hy, € K,
which is possible by (ii). Now let H be the subsemilattice of J(S) generated by the
union of {Hy, | L € G}, the set of those H € J(S) such that b|H # 0, and a set of
the form {H} where H € J(S) is so chosen that H < K and gy x = 0 (which is
possible by (iii)).
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In both cases, H is a finitely generated semilattice, hence finite, and b € R[Sy
where Sy is the subsemigroup of S defined by

Sw=J H

HeH

Define an abelian semigroup G4, containing S3; as a subsemigroup, by

Gy = U Gpg (disjoint union)
HeH

and the addition law

r+y=grrvs(®) +g5rvs(y) (sum in the group Grvy)

forI,J € H,x € I, and y € J. Define a subsemigroup T3 of Gy, containing S, by

Ty = U Ty
HeH

where

H it H={0}or H=17,
Ty =
No if H =N,

For I, J € H such that I < J, define an algebra homomorphism ®; ;: R[T7] — R[T]
by
Orgalt)= > als)

s€g; b (t)

for a € R[T7] and ¢ € Ty (cf. the proof of [9], Proposition 6). Define a linear mapping

A: R[TH] - Hl;[H R[TH} by

Aa(J) =" ;(all)

I<J
for a € R[Ty] and J € H. If ] R[Tw] is considered with the multiplication x
HeH
defined by
fxg(H) = f(H)*g(H)

for f,g € ][] R[Tu] and H € H then A is an algebra isomorphism ([9], Propo-
HeH
sition 6). Moreover, AR[Tx]|++ = [[ R[Tu]++ (cf. the proof of the analogous
HeH
equality in [9], Proposition 6).
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Define H* = {H € H | Ty # H}. Let Hj be the set of those L € H* for
which there is some H € H such that H < L and gy,; = 0, and let H{ be the
complementary subset of H*. For L € ‘H7, let H, be the set of those H € H such that
H < Land gg,z = 0. Then H, is a semilattice (cf. [9], proof of Proposition 10) which,

being finite, has a greatest element, which we denote by L'. Now for f € [[ R[TH]
HeH
we have f € AR[Sy] if and only if f(L)(0) = @1/ (f(L'))(0) for all L € H; and

f(L)(0) = 0 for all L € H{ (cf. [9], Proposition 10, and [11], proof of Theorem 4).
Note that for L € H} we have @1 1 (f(L))(0) = > f(L)(s).
seL’

Define f = Ab. From the fact that K is minimal in J(5) with the property that
b|K # 0, it follows that K is minimal in H with the property that f(K) # 0. Since
b generates an extreme ray in R[S]; 4, b also generates an extreme ray in R[Sx]++,
so f generates an extreme ray in AR[Sy]+.

Let ~ be the smallest equivalence relation in H such that if L € H} then L ~ L'.
Let K be the equivalence class containing K. Then f|(H\ ) = 0. To see this, define

fi,f2 € HHH R[TH] by f1]K = fIK, fi](H\K) = 0, fo|€ = 0, and fo|(H\ K) =
S

f|(H\K). Then f = f1+ f. From the facts that f € AR[Sy]+ and that each of the
sets IC and H \ K is a union of equivalence classes with respect to ~, it easily follows
that fi, fo € AR[Sx]++. Since f generates an extreme ray in AR[Sx |4+, it follows
that there exist ay, g > 0 such that f; = o, f for e =1,2. Now 0 = fg’]C = Olgf’]C.
Since f’IC # 0 (because of K € K), it follows that ag = 0, so fo = 0 and therefore
f = f1. This proves f|('H \K)=0.

Define D = {(L,L') | L € Hi} and € = {(L’,L) | L € Hi}. A path is a
sequence (Lo, ..., L,) of pairwise distinct elements L; € H such that (L;_1,L;) €
DU for j = 1,...,n. We admit the case n = 0. Such a path is a path from
Ly to L. The signature of this path is the sequence (Fi,...,F,) where F; = D
(resp. €) if (Lj_1,L;) € D (resp. £). The signature of a path cannot have the form
(...,&€,D,...). Indeed, this would imply that for some j we had (L;_1,L;) € £ and
(Lj;Lj+1) € D, so Lj—1 = L} = Lj1, contradicting the hypothesis that the L;
are pairwise distinct. From the definition of the equivalence relation ~ it follows
that two elements of H are equivalent if and only if there is a path from one to the
other. In particular, K is the set of those H € H such that there is a path from K
to H.

For each L € K there is a unique path from K to L. Indeed, if there were
two distinct paths, there would be a cycle, that is, a sequence (Lo, ..., L,), with
n > 1, which has all the properties of a path except that Ly = L,. The signature
of the cycle cannot contain only D’s, which would imply Lo > L1 > ... > L, =
Lo, a contradiction. Similarly, it cannot contain only £’s. Hence, after a cyclic
permutation, if necessary, it contains (...,&,D,...), which is impossible.
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For L € K, let K1 be the set of those M € K for which there is a path from L
to M with signature (£,...,€). If L € K is isomorphic to N and f(L)(0) = 0
then either f|ICL =0or f|(IC \ K£r) = 0. To see this, suppose f|ICL # 0. Define
i, f2 € Hl;[H R[TH] by f1|KL = f|KL, f1|(H\KL) =0, f2|KL =0, and fo|(H\KL) =

f|(H \ Kr). It is easily seen that fi, fo € AR[Sx]|++. Since f = f1 + f2 and since
f generates an extreme ray in AR[Sx |44, there exist ay, e > 0 such that f; = a; f
for i = 1,2. In particular, 0 = fg’]CL = a2f|lCL. Since f|ICL # 0, it follows that
ag =0, s0 fo =0, that is, f|(H \ K.) =0 and in particular f|(K \ K.) = 0.

For each L € K the element f(L) either is zero or generates an extreme ray in
R[TL]++. To see this, suppose f(L) # 0. Assume a,b € R[TL]++ and f(L) = a + b;
we have to show that a and b are nonnegative multiples of f(L). Choose an ordering
(Lo, ..., Ly) of K such that if j € {0,...,p} and if (Mo, ..., M,) is the unique path
from L to L; then {Mo,...,Myn—1} C {Lo,...,Lj—1}. We define fi, fo € AR[Sx]++,
with f = f1 + fo. We do this by defining f1(L;) and fo(L;) by induction on j. First
suppose j = 0. Then Ly = L. Define fi(L) = a and fo(L) = b. Now suppose j > 1
and that f1(L;) and f2(L;) have been chosen for i < j. Let (My,...,M,) be the
unique path from L to L;. Then f1(M,_1) and fo(M,,_1) have already been chosen.
Now either (M,,—1,L;) € D or (M,,—1,L;) € €. First suppose (M,_1,L;) € D. This
means that M,_1 € H and L; = M) _;. We have to choose fi(L;) and f2(L;) in
such a way that f1(L;) + f2(L;) = f(L;) and such that

Y AT)(s) = A(Ma-1)(0) and Y fa(Ly)(s) = fo(My-1)(0).

s€L; s€L;

By the induction hypothesis we have f1(M,—1) + fo(Mn—1) = f(M,—1) and in
particular f1(Mp,—1)(0) + fo(Mp—-1)(0) = f(M,—1)(0). If f(M,_1)(0) > 0, there is
the unique solution

_ f1(M,—1)(0)

B = 50, 0)

(L), f2(Ly) =
If f(M,—1)(0) = 0, there are in general many solutions. This covers all cases since
f(M,—1)(0) > 0 because of f(M,_1) € R[Tn,_,]++- Similar reasoning covers the
case (Mp—1,L;) € £. Now from f = f; + fo and from the fact that f generates an
extreme ray in AR[Sy |44+ it follows that f; and fo are nonnegative multiples of f.
In particular, a and b are nonnegative multiples of f(L), as desired.

For L € K, since f(L) is zero or generates an extreme ray in R[77 ], there exist
sp, € Tt and ay, € R[Ty] such that

(4) f(L) = 551, * aj(j,2~
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We are going to show that there exist r € Sy and ¢ € R[Sy] such that b = §, * c¢*2,
which is equivalent to showing that there exist r € Sy and g € AR[S3] such that

f=Ad xgxag.
Note that
5, oy K<L,
AS,(L) =4 "oer®)
0 if K £ L.

First suppose K is a group. We then put » = sx and g(K) = ax. Then f(K) =
8, * g(K)*?, as desired. Next, suppose K is isomorphic to N. By the definition of
‘H there is some H € H such that H < K and gy x = 0. Thus K € H}. Now
K’ < K, so by the minimality of K we have f(K’) = 0, hence (using the fact that

f e AR[SK]) 0= > f(K')(s) = f(K)(0). It follows that in (4) we may assume
seK’
sk = 1. We then take r = si and g(K) = ak.

We have now defined r and g(K) in every case. The next step is to define g(L) for
L € Kx \{K}, and we do this by induction on the length of the unique path from K
to L. Suppose L € K \ {K} and that g(M) has been defined for every M for which
the path from K to M is shorter than the path from K to L. From the fact that
L € Kx\{K} it follows that L € Hj. Now L’ is on the path from K to L, so the path
from K to L’ is shorter than the path from K to L. By the induction hypothesis it
follows that g(L’) has already been chosen. First suppose f(L)(0) = 0. As we have
seen, it follows that either f’ICL =0or f’(lC\ICL) = 0. Since K ¢ K and f(K) # 0,
it follows that f|K, = 0. In particular, f(L) = 0. In this case, we may take g(L) = 0.
Now suppose f(L)(0) # 0. Then in (4) we must have s = 0. Now (since f is in

AR[Sx]) we have ar,(0)? = a32(0) = f(L)(0) = ’EX:L/f(L’)(s) = (IEZ:L/g(L’)(s)f7 )

we may take g(L) = tay with the sign so chosen that g(L)(0) = >  ¢(L')(s). This
seL’

completes the definition of g’IC K-

To define g’(lC \ Kk), we again proceed by induction on the length of the path
from K to the element of K \ Kx in question. Suppose L € K\ Kx and that g(M)
has been defined for all M € K\ Kk such that the length of the path from K to M
is less than the length of the path from K to L. First assume that the length of
the path from K to L is 1. Since L ¢ Kk, the signature of the path must be (D),

i.e., we must have L = K’. Choose g(K’) such that > g¢(K’)(s) = g(K)(0) and
seK’
furthermore such that if K’ is isomorphic to N then g(K’)(0) = 0. Now assume

that the length of the path from K to L is 2. If the signature of the path begins
with £ then, as we have seen, it consists entirely of £’s, so L € Kk, a contradiction.
Thus the signature begins with D and therefore is either (D, D) or (D,€). First
assume that the signature is (D, D). Then L = (K’)’, so K’ is isomorphic to N.
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Therefore, we have chosen g(K'’) in such a way that g(K’)(0) = 0. It follows that
the requirement g(K’)(0) = Y g(L)(s) is satisfied if we take g(L) = 0 (which we
seL

do). Now suppose the signature is (D, &). Then L' = K’'. We then take g(L) to be

any element of R[T}] satisfying g(L)(0) = > g¢(K')(s) and ) g(L)(¢) = 0. This
sEK’ teL
completes the definition of g(L) for those L € K \ Kk such that the length of the

path from K to L is at most 2. Note that for all L € IC\ K, we have chosen ¢g(L) in
such a way that > g(L)(s) = 0. Now suppose the length of the path from K to L is
seL

at least 3. We then define g(L) = 0. If the signature of the path from K to L ends
with D, we have L = M’ for some M such that the length of the path from K to M
is 1 less than the length of the path from K to L. We then have to verify

() g(M)(0) = g(L)(s).

seL

This is trivial if the length of the path from K to M is at least 3, since in that case
we have defined g(M) = 0. So suppose the length of the path from K to M is 2. As
before, since M ¢ K, the signature of the path from K to M cannot begin with £.
Thus it begins with D and therefore has one of the forms (D,D) or (D,£). First
consider the case (D, D). Then M = (K')’, so we have taken g(M) = 0, whence (5)
is satisfied. Now consider the case (D,€). Then the signature of the path from K
to L is (D, &, D), which contains £ and D immediately after each other in that order,
which is impossible, as we have seen. Thus we may assume that the signature of the
path from K to L ends with £. Then we have to verify

(6) g(LD)0) =Y 9(L')(s).

seL’

This is trivial if the length of the path from K to L’ is at least 3 since in that case
we have taken g(L’) = 0. So suppose the length of the path from K to L’ is 2. The
signature of that path must be (D, D) or (D, £). In the first case, we have L' = (K'),
so we have taken g((K')") = 0, whence (6) is satisfied. In the latter case, we have

chosen ¢g(L’) so as to satisfy > g(L')(s) = 0, so that (6) is again satisfied. This
seL’
completes the definition of g’IC. Finally, put g|('H \K)=0.
We have defined an element g of [[ R[Tx], and we claim that this g is in AR[S3].
HeH
To see this, we have to verify that

2 9(LN)(s)  if L ey,
9(L)(0) = {
0 if L € Hj.
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The requirement in the case L € H is automatically satisfied if L ¢ IC since in that
case we took g(L) = 0. The requirement in the case L € Hj is also automatically
satisfied if L ¢ K since in that case L’ belongs to the equivalence class with respect to
~ containing L, which class is disjoint with X, so that g(L) and g(L’) are both zero.
Thus, in both cases it suffices to consider the case L € K. If L € H} then we took
care of the requirement either when we chose g(L) or when we chose g(L'), depending
on which of the points L and L’ is connected to K via the shortest path. It remains
to consider the case L € H§i N K. The path from K to L must have a signature
ending with D since the assumption that it ended with £ would imply L € Hj, a
contradiction. Now, since the signature of a path cannot contain (...,&,D,...), it
follows that the signature of the path from K to L consists of D’s alone. If the length
of the path is at least 3 then we took g(L) = 0, so the requirement is met. Suppose
the length of the path is 2, so the signature is (D, D), that is, L = (K’)’. Then we
took g(L) = 0, so the requirement is met. Now suppose the length of the path is 1,
so the signature is (D), that is, L = K’. Then, since L is isomorphic to N (being
an element of H*), we took g(L) such that g(L)(0) = 0, so the requirement is met.
Finally, suppose the length of the path is zero, i.e., L = K. Note that by definition
of H, since K = L is isomorphic to N, there is some H € H such that H < K and
gm,x = 0. This, however, means that K € HJ, contradicting the hypothesis L € Hj.
This completes the proof that g € AR[Sy].
We now have to verify

(7) F(L) = A6:(L) * g(L)"™

for L € H. First suppose L € Kx. If L = K, we took r = sg and ¢g(K) = ag,
so (7) is satisfied because of (4). Suppose L # K. If f(L)(0) = 0 then, as we saw,
f(L) = 0, and we took g(L) = 0, so (7) is satisfied. Suppose f(L)(0) # 0. Then
we took g(L) = tag, so (7) is satisfed if Ad, = do, which is true since (as we have
noted) Ad, = &g, , (ry and g, 1(r) = 0 because of gk, 1. = gr/.L 09K,z = 0. (We used
the fact that by definition, L’ is in the set Hy of those H € H such that H < L and
gr,r = 0.) Next, we must verify (7) for L € H\ Kx. If L ¢ K then f(L) and g(L)
are both zero, so (7) is trivially satisfied. Thus we may assume L € K\ Kx. Then
f(L) =0, so we have to show

(8) AS,-(L) % g(L)** = 0.

This is trivial if the length of the path from K to L is at least 3 since in that case
we took g(L) = 0. Suppose the length of that path is 1 or 2. The signature of the
path begins with D. If it consists entirely of D’s then L < K, whence Ad,(L) = 0, so
(8) is satisfied. Thus we may assume that the signature is (D, ), that is, L' = K'.
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If K £ L then Ad,(L) = 0, so (8) is satisfied. Thus we may assume K < L. Since
L ¢ Kk then K # L, so K < L. Since L', which is the greatest element of Hy, is
less than K then K ¢ Hj, that is, gx, 1 # 0. It follows that L € G. Now for such L
(isomorphic to N, which the present L is) we chose Hy, € J(S) such that Hy, < L,
gu,,L =0, and Hy £ K. Moreover, Hy, was one of the generators of the semilattice
H, so Hp € H. It follows that Hy € Hr, so H < L' = K' < K, contradicting the
fact that H € K. This completes the proof of the sufficiency of the conditions. If S
is countable, the necessity follows from Theorem 4. This completes the proof. O

6. STIELTJES SEMIPERFECT R+—SEPARATIVE FINITELY GENERATED SEMIGROUPS

In this section, we characterize Stieltjes semiperfect R, -separative finitely gener-
ated abelian semigroups by an application of Theorem 5. In the next section, we
shall do the same without the hypothesis of R, -separativity.

A minimal face of an abelian semigroup S is a face of S which is minimal with
respect to the inclusion ordering. A minimal face of S is the same as a minimal
element of J7(S).

Theorem 6. Suppose S is an Ry -separative finitely generated abelian semigroup.
Then J(S) is finite, and for H € J(S) the group Gy is a free abelian group of finite
rank. It follows that S is c-finite. Hence S is Stieltjes semiperfect if and only if the
following three conditions are satisfied:

(i) Each archimedean component of S is isomorphic to {0}, Z, or N;

(ii) if K and L are archimedean components of S, isomorphic to N, such that
K < L and gk, # 0 then there is some archimedean component H of S such
that H < L, gy, #0, and H £ K;

(iii) every minimal face of S is a group.

Proof. The semilattice J(S)isfinite. If H € J(S) then X is a face of S, hence
finitely generated. It follows that Gx,, is finitely generated. Now G is isomorphic
to Gx,,, hence finitely generated. Being also torsion-free (Proposition 1 (ii)), Gy is
a free abelian group of finite rank.

To see that S is c-finite, since S is R, -separative by hypothesis it suffices to show
that if U is a finite subset of S then the set ¢(U) is finite. By Proposition 4 and
Lemma 9 the set ¢(U) is contained in the set

w={J Kﬂconv(UgHK(UﬂH)).

KeJ(s) H<K

Thus it suffices to show that W is finite. Since U is finite, U intersects only finitely
many H € J(S5) and intersects each of these in a finite set. Thus for each K € J(S)
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theset W = U gm,x(UNH) is finite. Since Gk is a free abelian group, it follows
H<K

that K N conv(Wk) is finite. Finally, since J(S) is finite then W is finite. This

shows that S is c-finite.

In order that S be Stieltjes semiperfect, by Theorem 1 it is necessary that S =
S+ S. Hence Theorem 5 applies, so the conditions (i) through (iii) of that Theorem
are together necessary and sufficient for the Stieltjes semiperfectness of S. Condi-
tions (i) and (ii) of Theorem 5 are the same as conditions (i) and (ii) of the present
Theorem. To see that condition (iii) of Theorem 5 is equivalent to condition (iii)
of the present Theorem when the other two conditions are satisfied, first suppose
condition (iii) of Theorem 5 is satisfied. Suppose K is a minimal face of S. Then
K is a minimal element of J(S). If K is not a group then by (i), K is isomorphic
to N. By condition (iii) of Theorem 5 it follows that there is some H € J(S) such
that H < K and gy x = 0. Since K is a minimal element of [7(S) it follows that
H = K. But then gg x is gk, k, which is the identity on G'k, hence nonzero, a con-
tradiction. This shows that condition (iii) of Theorem 5 implies condition (iii) of the
present Theorem, provided that the other two conditions are satisfied. Conversely,
suppose condition (iii) of the present Theorem is satisfied. Assume that K € J(5)
is isomorphic to N. Since J(5) is finite, there is a minimal element H of J(S) such
that H < K. By hypothesis, H is a group. Let e be the generator of K. Then
guk(H)+K=H+K CK ={ne|neN}, sogux(H)C {ne|neNy}. Since
gu.x (H) is a group, it follows that gy x = 0. Thus condition (iii) of Theorem 5 is
satisfied. This completes the proof. O

7. STIELTJES SEMIPERFECT FINITELY GENERATED SEMIGROUPS

In this section we characterize Stieltjes semiperfect finitely generated abelian semi-
groups by an application of Theorem 6.

The greatest Ry -separative homomorphic image of an abelian semigroup S is the
quotient semigroup Us = S/~ where ~ is the congruence relation in S defined by the
condition that s ~ ¢ if and only if o(s) = o(t) for all o € S%. Denote by hs: S — Us
the quotient mapping.

Proposition 9. Suppose S is an abelian semigroup. Then S is Stieltjes semiper-
fect if and only if the following two conditions are satisfied:
(i) Us is Stieltjes semiperfect;
(ii) every completely positive definite function on S factors via hg.

Proof. Firstsuppose S is Stieltjes semiperfect. Since every homomorphic image
of a Stieltjes semiperfect semigroup is Stieltjes semiperfect (cf. [12], Proposition 1 or
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[8], Lemma 3.5), it follows that (i) holds. If ¢ € P.(S) then ¢ € Hg(S), and by the
definition of Hg(S) it is obvious that (ii) holds.

Conversely, suppose (i) and (ii) hold. Let ¢ € P.(S) be given. By (ii) there is a
function ®: Us — R such that ¢ = ® o hg. Since hg(S) = Ug, one easily sees that
® € P.(Us). Since Ug is Stieltjes semiperfect, it follows that ® € Hg(Us). Choose
i € Fy((Us)%) such that ® = Lpu. If s is the image of y under the mapping
hg: (Us)iy — Si given by hg(w) = wo hg for w € (Us)i, it is easily seen that
phs € Fy(S%) and L(u"s) = ¢, which shows ¢ € Hs(S), as desired. O

We see that in order to characterize Stieltjes semiperfect finitely generated abelian
semigroups, it suffices to answer the following question: If S is a finitely generated
abelian semigroup such that Ug is Stieltjes semiperfect, under what conditions does
every completely positive definite function on S factor via hg?

Suppose Ug is Stieltjes semiperfect. Since Ug is finitely generated (being a homo-
morphic image of the finitely generated semigroup S) and R, -separative, by Theo-
rem 6 it follows, in particular, that every minimal face of Ug is a group. It follows
that for each K € J(S5) there is an idempotent w (an element satisfying w + w = w)
such that w + K C K. Define a semigroup G by

G = U Gy (disjoint union)
HeJ(S)

and

z+y=9mnvK(T) + 9rx,mvE (Y) (sum in the group Gpyi)

for HHK € J(S), « € Gg, and y € Gk. Define g: S — G by g|H = gu for
H € J(S). Every completely positive definite function on S factors via hg if and
only if every completely positive definite function on S factors via g. For K € J(S5),
for each ¢ € P.(S) the function ¢|K factors via g if and only if for each a € K there
is an idempotent w such that w + K C K and such that ¢(a) = ¢(w + a) for each
» € P.(S). For K € J(S) we denote by Qf the set of those z € K such that there
is an idempotent w such that w + K C K and such that ¢(x) = p(w + ) for each

@ € P(S). Define Q= |J Qk.
KeJ(sS)

Proposition 10. 2 is an ideal of S, that is, Q + .S C S.

Proof. Suppose a € Q and b € S; we have to show a +b € Q. Let A and
B be the archimedean components of .S containing a and b, respectively; then a + b
belongs to the archimedean component K = AV B. Choose an idempotent w such
that w + A C A and such that ¢(a) = ¢p(w + a) for each ¢ € P.(S). If H, is
the archimedean component of S containing w then w + A C AN (H, V A), so
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H,V A= A (since distinct archimedean components are disjoint), that is, H, < A.
Since AV B = K, we have A < K,so H, < K, hencew+ K Cc H, VK = K.
Moreover, for ¢ € P.(S) we have by positive definiteness of E,¢

lp(a+b) — p(w +a+b)|* < la+ 2b)[p(a) + (2w + A) — 2p(w + a)]
= p(a+2b)[p(a) — p(w +a)] =0,

hence p(a + b) = p(w + a + b), as desired. O
Define 1Q = {z € S| 22 € Q}.

Proposition 11. %Q +S5Cq.

Proof. Suppose a € %Q and b € S; we have to show a + b € Q. Choose an
idempotent w such that w + A C A where A is the archimedean component of S
containing a (or equivalently, 2a). As in the proof of Proposition 10, if K is the
archimedean component of S containing a + b then w + K C K. Moreover, for
¢ € P.(S) we have by positive definiteness of Epe

lp(a +b) — p(w +a+b)|*> < p(b)[p(2a + b) + p(2w + 2a + b) — 2p(w + 2a + b))
= p(b)[p(2a 4+ b) — p(w+2a+0)] =0

since 2a +b € Q4+ S C Q (Proposition 10). Thus ¢(a +b) = ¢(w + a + b), as
desired. g

We have S+ S + 5 C 2. By Theorem 1, in order that S be Stieltjes semiperfect
it is necessary that S = S + .5, which implies S =S + 5+ S, hence S C (2, that is,
S = Q. Thus, under this hypothesis, every completely positive definite function on
S factors via g, hence via hg.

Theorem 7. Suppose S is a finitely generated abelian semigroup. Then S is

Stieltjes semiperfect if and only if the following three conditions are satisfied:

(i) Each archimedean component of Ug is isomorphic to {0}, Z, or N;

(ii) if K and L are archimedean components of Ug, isomorphic to N, such that
K < L and gk, # 0 then there is an archimedean component H of Ug such
that H < L, guy,r, =0, and H £ K;

(i) S=S+S.

Proof. By Proposition 9 it is necessary that Ug be Stieltjes semiperfect. Since
Us is finitely generated and R; -separative, the necessity of (i) and (ii) follows by
Theorem 6. Condition (iii) is necessary by Theorem 1.

Conversely, suppose the conditions are satisfied. From (iii) it follows that Ug =
Us + Ug, and as in the proof of Theorem 6 it follows that every minimal face of Ug
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is a group. Thus the conditions of Theorem 6 are satisfied (for Usg instead of 5), so
Ug is Stieltjes semiperfect. By Proposition 9 it only remains to be shown that every
completely positive definite function on S factors via hg. But we have seen that this
follows from S = S + S. This completes the proof. O

Example 1. There is a finitely generated abelian semigroup which is Stieltjes
semiperfect but not semiperfect. To see this, let A = {0,a} be the 2-element group,
let A x Ny be the product semigroup, and let S be the subsemigroup (A4 x Np) \
{(a,0),(a,1)}. Then S has a zero, so S = S + S and therefore S is Stieltjes semi-
perfect if and only if the greatest R, -separative homomorphic image of S is Stieltjes
semiperfect. That image is Ny, the quotient mapping being the composite of the
inclusion mapping of S into A x Ny and the projection of A x Ny onto the second
factor. Since Ny is Stieltjes semiperfect, so is S. However, S is not semiperfect.
Indeed, S has the archimedean component (A x N) \ {a, 1}, which is not isomorphic
to the product of a finite group of exponent 1 or 2 and one of the semigroups {0},
Z,N. Since S is R-separative, by the main theorem in [9] it follows that S is not
semiperfect.

Example 2. There is a finitely generated abelian semigroup which is semiperfect
but not Stieltjes semiperfect. To see this, let £ = {0, e} be the 2-element semigroup
with zero 0 and e + e = ¢, and let S be the subsemigroup (E x Np) \ {(e,0)} of
the product semigroup E X Ng. Then S has the archimedean components O, K,
and L where O = {(0,0)}, K = {0} x N, and L = {e} x N. Since each of these is
isomorphic to {0} or N, by the main theorem in [9] it follows that S is semiperfect.
However, the archimedean components K and L are isomorphic to N and satisfy
K < L and gk, # 0, and there is no archimedean component H of S such that
H <L, gy =0,and H £ K. Hence S is not Stieltjes semiperfect.

8. SCHUR-INCREASING FUNCTIONS

Suppose E is a real vector space. If p = (p1,...,pn) and ¢ = (q1,...,¢n) are
elements of E™, one says that p is majorized by g, written p < ¢, if there is a doubly
stochastic n x n matrix €2 such that p = ¢€2. Information on the majorization ordering
can be found in [18].

Now suppose S is an abelian semigroup. Define

II(S) ={a e R[S] | (a,1) =1, a(s) >0 Vse S}

where 1 is the constant character. A function ¢: S — R is Schur-increasing of order
n € N if the conditions p, ¢ € II(S) and p < ¢ imply
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The set of functions on S that are Schur-increasing of order n is denoted by S, (5).
A function is Schur-increasing if it is Schur-increasing of every order n € N. The set
of all Schur-increasing functions on S is denoted by S(S). A function ¢: S — R is
Schur-decreasing (of order n) if —¢ is Schur-increasing (of order n).

Proposition 12. For every abelian semigroup S, Hs(S) C —8(S).
Proof. See [4], proof of 7.3.7. O

Again, suppose S is an abelian semigroup. A function ¢: S+ S — R is negative
definite if

n
Z cicrp(s;+sp) <0
jik=1

for every choice of n € N, s1,...,8, € S, and ¢1,...,¢, € R such that i c; = 0.
=1

Denote by N(S) the set of all negative definite functions on S. For ari arbitrary
function ¢: S — R we have ¢ € N(S) if and only if e~*¥ € P(S) for all ¢ > 0,
by a theorem that goes back to Schoenberg, cf. [4], 3.2.2. A function ¢¥: S — R
is completely negative definite if E.1¢ € /\/’(5) for all r € S. Denote by N.(S) the
set of all completely negative definite functions on S. Then S3(S) = N(S) and
S(S) € N.(S) ([4], p. 243 and 7.1.7). For an abelian semigroup S, the following two
conditions are equivalent:

(i) Every completely positive definite function on S is Schur-decreasing;

(ii) every completely negative definite function on S is Schur-increasing
(see [4], 7.3.9).

Proposition 13. If S is a Stieltjes semiperfect semigroup then S(S) = N.(S5).

Proof. If p € P.(S) then ¢ € Hg(S), so ¢ € —S(S) by Proposition 12. Thus
P.(S) € —=8(S). By the above equivalent conditions, N.(S) C S(S). The converse
inclusion being automatical, we have N.(S) = S(9). O

Berg ([2], p. 274) states: “For S = Ny or S = Z with the identity involution we
have S(S) = CN(S), cf. Theorem 7.3.9 in B-C-R, which can be extended from Radon
perfect semigroups to semigroups, and probably to all semiperfect semigroups.”
(“CN(S)” denotes N.(S).)

So consider the following question: In Proposition 13, can “Stieltjes semiperfect”
be replaced with “semiperfect”? Suppose S is a semiperfect semigroup with zero
and ¢ € P.(S). For r € S we have E,p € P(S) = H(S). For an arbitrary abelian
semigroup S, let H.(S) denote the set of those functions ¢: S — R such that
E.p € H(S) for all r € S. We have just seen that if S is a semiperfect semigroup
with zero then P.(S) C H.(S). The converse inclusion being automatical, we have
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P.(S) = H.(S). So the question is: Is it true that H.(S) C —S(S5)? We shall see
that if this question is to be answered in the affirmative, the semiperfectness of S

must be employed in some more subtle way. Indeed, the inclusion H.(S) C —8(S)
is false for S = N3.

Theorem 8. There is a function ¢: N3 — R such that E.p € H(N3) for all
r € N2, yet o is not Schur-decreasing of order 3.

Proof. Identify R[NZ] with the algebra R[z,y] of polynomials in two variables
by identifying 0, ) with the monomial z"y" for (m,n) € NZ. Denote by R[z,y]+
the convex cone of nonnegative polynomials. Define a convex cone D in R[z,y] by

D={a+ab+yc+ayd|a,bcde Rz, yl+}.
(In [4], 6.3.12, D is denoted by D(?).) Then
H.(N§) = D+,

cf. the proof of [4], 6.3.12. As in [4], 7.3.13, denote by B the set of polynomials
p € R[z,y] with nonnegative coefficients and p(1,1) = 1, and let B be the set of all
polynomials of the form q1g2q3 — p1paps where p = (p1,p2,p3) and ¢ = (q1,q2,q3)
are triples of polynomials in B such that ¢ < p (that is, ¢ = p2 for some doubly
stochastic matrix €2). Then

~S(N\2) = B,
cf. the proof of [4], 7.3.13. Suppose it were true that H.(N2) Cc —S3(N2). By

the Bipolar Theorem (or the Hahn-Banach Theorem) it would follow that B were
contained in the closure of D with respect to the finest locally convex topology on
R[z,y]. But D is already closed ([4], 6.3.12), so B would be contained in D. In

particular, taking p = (1,z,y),

0 1/3 2/3
a=1[2/3 0o 1/3],
1/3 2/3 0
and g = pQ2, we would have
9) T = q192q3 — p1p2p3 = a + xb + yc + xyd

for some a,b,c,d € Rlz,yl+. It is easy to see that if f = > f; 2’y € D and if
1,5€Ng

(m,n) is a vertex of the convex polytope conv({(i,j) | fi; # 0}) in R? then f,, ,, > 0.

It follows that if f(*) = Zfi(f;)a:iyj € D for k=1,...,n then conv({(%,J) | fi(f;) +
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0}) C conv({(i,j) ‘ > fi(’T) * 0}) for k =1,...,n. Since the polynomial r is of
m=1
degree 3, from (9) it would therefore follow that a, b, ¢, and d were of degree at most 2

(since their degrees must be even, these polynomials being nonnegative). As shown
by Hilbert [15] it would follow that these four polynomials were sums of squares of
polynomials. But that is impossible, as shown in the proof of [4], 7.3.14. O

Note that Theorem 8 is simultaneously stronger than [4], 6.3.12, and [4], 7.3.13.

9. SEMIGROUPS OF STIELTJES MOMENT FUNCTIONS

Suppose S is an abelian semigroup with zero. Denote by m: S} x ST — 571
pointwise multiplication, i.e., m(o,7) = -7 where -7 € S% is defined by o-7(s) =
o(s)7(s) for s € S. Then m is measurable with respect to the o-rings A(S% ) ®.A(S7})
and A(S7), so if p and v are measures defined on A(S%), we may define their
convolution p*v by p+v = (u ® )™, the image measure of y ® v under the
mapping m. If p,v € F{(S%) then pxv € F (S}) and L(pxv) = Lp- Lv. We
see from this that Hg(S) is stable under pointwise multiplication. It is natural
to ask for a characterization of semigroups of Stieltjes moment functions, that is,
families (¢t)t>o such that ¢ € Hg(S) for all t and @1+ = @5 - ¢ for all s,t > 0.
Restricting the problem a little bit, we ask: What functions 1: S — R are such that
e " € Hg(S) for allt > 07

A convolution semigroup in F1(S%) is a family (u;)s>0 such that p; € F(S7)
for all t and psye = ps * g for all s,t > 0. We ask: Which convolution semigroups
in F(S%) are continuous in the L-topology? From [7], Proposition 3.4, it follows
that a convolution semigroup (i) in F'y (S7% ) is continuous in the L-topology if and
only if there is some ¢ € N.(S) such that Lu; = e~ for all t > 0. So the question
is: For what functions ¢: S — R does there exist a convolution semigroup (pt) in
F.(S%) such that Lpy = e~ for all t?

Define an ideal R[S]y of R[S] by

R[S]o = {a € R[S] | (a,1) =0}

where 1 is the constant character. The square R[S]2 of this ideal is, by definition, the
real linear span of the set of all elements of the form a x b with a,b € R[S]y. Define

(RST3)++ = RISTG N R[S]4+-

An additive function on S is a homomorphism of S into the group (R,+). A
quadratic form on S is a function ¢: S — R satisfying ¢(2s) = 4q(s) for all s € S
and (axbx*c,q) =0 for all a,b,c € R[S]o.
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Proposition 14. Real constants, additive functions, and negative definite
quadratic forms are completely negative definite.

Proof. For constants and additive functions, this is easy to see. Suppose

q is a negative definite quadratic form on S. By [7], Proposition 4.1, there exist

an inner product space (X, (-,-)) and an additive mapping 7: S — X such that

q(s) = —(n(s),n(s)) for s€ S. Now if r € S, s1,...,8, € S, and ¢1,...,¢, € R are
n

such that > ¢; = 0 then an easy computation shows
j=1

Z cickErq(s; + si) = 2<ch m(s;) ch m(s;) >\

J,k=1

Thus ¢ is completely negative definite. O

Define A(S* \ {1}) = {A € A(S*) | 1 &€ A} and A(ST \ {1}) = {4 € A(S}) |
1¢ A}. A complex Lévy function for S is a function H: S x S* — R satisfying the
following three conditions:

(i) H(-,0) is additive for each o € S*;
(ii) H(s,-) is A(S*)-measurable for each s € S;
(iii) if 4 is a measure on A(S* \ {1}) such that [(1—0(s))?du(o) < oo for all s € S
then [ |1 —o(s)+ H(s,0)|du(c) < oo for all s € S.
For every abelian semigroup there is a complex Lévy function ([7], Proposition 5.1).

Theorem 9. Suppose S is an abelian semigroup with a complex Lévy function H.
For a function ¢: S — R, the following four conditions are equivalent:
(i) There is a convolution semigroup (p)¢>o in Fy(S%) such that Ly, = e~ for
allt > 0;
(ii) e™™ € Hg(9) for all t > 0;
(i) — € (RISI5)T4s
(iv) there exist a € R, an additive function h on S, a negative definite quadratic
form q on S, and a measure p on A(S% \ {1}), integrating o — (1 — o(s))? for
all s € S, such that

W(s) = a+h(s) + q(s) + /S i (1= o(s) + H(s,0)) (o)

for all s € S.
The convolution semigroups occurring in (i) are all continuous in the L-topology.
There is a natural one-to-one correspondence between the convolution semigroups
occurring in (i) and the measures u occurring in (iv), each set being in a one-to-one
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correspondence with the set of those ¥ € N.(U) such that v = Vo f, where U and
f are as in [7], Proposition 7.1.

Proof. As the proof of [7], Theorem 7.1. O

We denote by Ng(S) the set of all functions ©: S — R satisfying the equivalent
conditions of Theorem 9.

Proposition 15. For every abelian semigroup S, Ng(S) C S(S).

Proof. As (i) = (ii) in [4], 7.3.9, using condition (ii) of Theorem 9 and
Proposition 12. O
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