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BETWEEN SPACES OF SEQUENCES THAT ARE (N, q)
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Abstract. In this paper we investigate linear operators between arbitrary BK spaces
X and spaces Y of sequences that are (N, q) summable or bounded. We give necessary
and sufficient conditions for infinite matrices A to map X into Y . Further, the Hausdorff
measure of noncompactness is applied to give necessary and sufficient conditions for A to
be a compact operator.
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1. Introduction and well-known results

We write ω for the set of all complex sequences x = (xk)∞k=0 and ϕ, l∞, c and c0
for the sets of all finite, bounded, convergent sequences and sequences convergent to
naught, respectively, and finally, for 1 � p < ∞,

lp =

{
x ∈ ω :

∞∑

k=0

|xk|p < ∞
}

.

By e and e(n) (n = 0, 1, . . .), we denote the sequences such that ek = 1 for k =
0, 1, . . ., and e

(n)
n = 1 and e

(n)
k = 0 for k �= n.
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Service), and the University of Niš for their financial support.
The work of the second author is supported by the Science Fund of Serbia, grant number
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A BK space is a Banach sequence space with continuous coordinates.
A sequence (bn)∞n=0 in a linear metric space X is called a (Schauder) basis if for

each x ∈ X there exists a unique sequence (λn)∞n=0 of scalars such that x =
∞∑

n=0
λnbn.

A BK space X ⊃ ϕ is said to have AK if every sequence x = (xk)∞k=0 ∈ X has a

unique representation x =
∞∑

n=0
xne(n).

Let A = (ank)∞n,k=0 be an infinite matrix of complex numbers and x ∈ ω. Then
we write

An(x) =
∞∑

k=0

ankxk, (n = 0, 1, . . .) and A(x) = (An(x))∞n=0.

For any subset X of ω, the set

XA = {x ∈ ω : A(x) ∈ X}

is called the matrix domain of A in X . For instance, if E is the matrix defined by
enk = 1 (0 � k � n) and enk = 0 (k > n) for all n = 0, 1, . . ., then cs = cE and
bs = (l∞)E are the sets of convergent and bounded series.

2. Sets of sequences that are (N, q)-summable
or bounded and their β-duals

Let (qk)∞k=0 be a positive sequence and Q the sequence with Qn =
n∑

k=0
qk (n =

0, 1, . . .).
Further, let the matrix N q be defined by

(N q)n,k =





qk

Qn
(0 � k � n)

0 (k > n)
(n = 0, 1, . . .).

Then we define sets

(N, q)0 = (c0)Nq
, (N, q) = (c)Nq

and (N, q)∞ = (l∞)Nq

of sequences that are (N, q) summable to naught, summable and bounded, respec-
tively.

Proposition 2.1. (cf. [2, Corollary 1]) Each of the sets (N, q)0, (N, q) and
(N, q)∞ is a BK space with respect to the norm ‖ · ‖Nq

defined by

‖x‖Nq
= sup

n

∣∣∣∣
1

Qn

n∑

k=0

qkxk

∣∣∣∣.
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Further, if Qn → ∞ (n → ∞), then (N, q)0 has AK, and every sequence x =
(xk)∞k=0 ∈ (N, q) has a unique representation

x = le+
∞∑

k=0

(xk − l)e(k) where l ∈ � is such that x− le ∈ (N, q)0.

We need the following notations:

For any two sequences x and y, let xy = (xkyk)∞k=0.

If X and Y are arbitrary subsets of ω and z is any sequence, then we write

z−1 ∗X = {x ∈ ω : xz ∈ X} and M(X, Y ) =
⋂

x∈X

x−1 ∗ Y.

In the special case, when Y = cs, the set

Xβ =M(X, cs) =

{
a ∈ ω :

∞∑

k=0

akxk converges for all x ∈ X

}

is called the β-dual of X . By U we denote the set of all sequences u such that uk �= 0
(k = 0, 1, . . .). For u ∈ U , let 1/u = (1/uk)∞k=0. Finally, let the operator ∆

+ : ω → ω

be defined by

∆+x =
(
(∆+x)k

)∞
k=0
= (xk − xk+1)

∞
k=0 .

Proposition 2.2. (cf. [2, Theorem 6]) We put

N0 = (1/q)−1 ∗
((

Q−1 ∗ l1
)
∆+

∩
(
Q−1 ∗ l∞

))

=

{
a ∈ ω :

∞∑

k=0

Qk

∣∣∣∣
ak

qk
− ak+1

qk+1

∣∣∣∣ < ∞ and Qa/q ∈ l∞

}
,

N = (1/q)−1 ∗
((

Q−1 ∗ l1
)
∆+

∩
(
Q−1 ∗ c

))

and

N∞ = (1/q)−1 ∗
((

Q−1 ∗ l1
)
∆+

∩
(
Q−1 ∗ c0

))
.

Then (N, q)β0 = N0, (N, q)β = N and (N, q)β∞ = N∞.
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3. Matrix transformations

Let X and Y be two Banach spaces. By B(X, Y ), we denote the set of all contin-
uous linear operators from X into Y , and we write

‖L‖ = sup{‖L(x)‖ : ‖x‖ = 1}

for the operator norm of L. In the special case when Y = � , the complex numbers,
we write X∗ = B(X, � ) for the set of all continuous linear functionals on X , and

‖f‖ = sup{|f(x)| : ‖x‖ = 1} (f ∈ X∗)

for the norm of the continuous linear functional f .
If X is a BK space and a ∈ ω, then we put

‖a‖∗ = sup
{∣∣∣∣

∞∑

k=0

akxk

∣∣∣∣ : ‖x‖ = 1
}

provided the term on the right exists and is finite. This is the case whenever a ∈ Xβ

(cf. [10, Theorem 7.2.9, p. 107]).

Proposition 3.1. On any of the spaces (N, q)β0 , (N, q)β and (N, q)β∞, we have

‖a‖∗ = sup
n

(
n−1∑

k=0

Qk

∣∣∣∣
ak

qk
− ak+1

qk+1

∣∣∣∣+
∣∣∣∣
anQn

qn

∣∣∣∣

)
.

�����. Given any sequence x we write

x[n] =
n∑

k=0

xke(k) and τ
[n]
k = τk(x

[n]) =
1

Qk

k∑

j=0

qjx
[n]
j (k, n = 0, 1, . . .).

Let a ∈ N0 and let n be a nonnegative integer. We define the sequence b[n] by

b
[n]
k =





Qk∆+(a/q)k (0 � k � n)

anQn

qn
(k = n)

0 (k > n)

and put

‖a‖N = sup
n
‖b[n]‖1 = sup

n

( ∞∑

k=0

|b[n]k |
)

.
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Then
∣∣∣∣
∞∑

k=0

akx
[n]
k

∣∣∣∣ =
∣∣∣∣

n∑

k=0

ak

qk
∆(Qτ [n])k

∣∣∣∣ �
n−1∑

k=0

∣∣∣Qkτ
[n]
k ∆

+(a/q)k
∣∣∣+
∣∣∣∣
anQn

qn

∣∣∣∣ |τ [n]n |

� sup
k
|τ [n]k | ·

(n−1∑

k=0

∣∣Qk∆+(a/q)k
∣∣+
∣∣∣∣
anQn

qn

∣∣∣∣
)

= ‖x[n]‖Nq
‖b[n]‖1 = ‖a‖N‖x[n]‖Nq

.

Thus

(3.1) ‖a‖∗ � ‖a‖N .

To prove the converse inequality let n be an arbitrary integer. We define the sequence
x(n) by

τk(x
(n)) = sign(b[n]k ) (k = 0, 1, . . .).

Then

τk(x(n)) = 0 for k > n, i. e. x(n) ∈ (N, q)0, ‖x(n)‖Nn
= ‖τ(x(n))‖∞ � 1

and ∣∣∣∣
∞∑

k=0

akx
(n)
k

∣∣∣∣ =
∣∣∣∣

n∑

k=0

b
[n]
k x

(n)
k

∣∣∣∣ =
n∑

k=0

|b[n]k | � ‖a‖∗.

Since n was arbitrary, we have

(3.2) ‖a‖N � ‖a‖∗.

Now inequalities (3.1) and (3.2) yield the conclusion. �
If A is an infinite matrix of complex numbers, then we write An for the sequence

in the nth row of A. For any two subsets X and Y of ω, (X, Y ) denotes the class of
all infinite matrices that map X into Y . Thus A ∈ (X, Y ) if and only if An ∈ Xβ

for all n, and A(x) ∈ Y for all x ∈ X .
The following results are well known.

Proposition 3.2. (cf. [7, Theorem 1]) LetX and Y be BK spaces. Then (X, Y ) ⊂
B(X, Y ), i. e. every A ∈ (X, Y ) defines an element LA ∈ B(X, Y ) where

LA(x) = A(x) (x ∈ X).

Further, A ∈ (X, l∞) if and only if

‖A‖∗ = sup
n
‖An‖∗ = ‖LA‖ < ∞.

Finally, if (b(k))∞k=0 is a basis of X , Y and Y1 are FK spaces with Y1 a closed subspace
of Y , then A ∈ (X, Y1) if and only if A ∈ (X, Y ) and A(b(k)) ∈ Y1 for all k = 0, 1, . . ..

509



Proposition 3.3. (cf. [8, Proposition 3.4]) Let T be a triangle.

(a) Then, for arbitrary subsets X and Y of ω, A ∈ (X, YT ) if and only if B = TA ∈
(X, Y ).

(b) Further, if X and Y are BK spaces and A ∈ (X, YT ), then

(3.3) ‖LA‖ = ‖LB‖.

As a corollary of Propositions 3.1 and 3.2, we obtain

Corollary 3.4. Let q = (qk)∞k=0 be a positive sequence and Qn =
n∑

k=0
qk → ∞

(n →∞).
(a) Then A ∈ ((N, q)∞, l∞) if and only if

M((N, q)∞, l∞) = sup
m,n

(m−1∑

k=0

Qk

∣∣∣∣
ank

qk
− an,k+1

qk+1

∣∣∣∣+ |Qmanm/qm|
)

< ∞(3.4)

and

AnQ/q ∈ c0 for all n = 0, 1, . . . .(3.5)

(b) Then A ∈ ((N, q), l∞) if and only if condition (3.4) holds and

(3.6) AnQ/q ∈ c for all n = 0, 1, . . . .

(c) Then A ∈ ((N, q)0, l∞) if and only if condition (3.4) holds.
(d) Then A ∈ ((N, q)0, c0) if and only if condition (3.4) holds and

(3.7) lim
n→∞

ank = 0 for all k = 0, 1, . . . .

(e) Then A ∈ ((N, q)0, c) if and only if condition (3.4) holds and

(3.8) lim
n→∞

ank = lk for all k = 0, 1, . . . .

(f) Then A ∈ ((N, q), c0) if and only if conditions (3.4), (3.6) and (3.7) hold and

(3.9) lim
n→∞

∞∑

k=0

ank = 0.

(g) Then A ∈ ((N, q), c) if and only if conditions (3.4), (3.5) and (3.8) hold and

(3.10) lim
n→∞

∞∑

k=0

ank = l.
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As a corollary of Propositions 2.1 and 3.3, we obtain

Corollary 3.5. LetX be a BK space, (pk)∞k=0 a positive sequence and Pn =
n∑

k=0
pk

(n = 0, 1, . . .). Then A ∈ (X, (N, p)∞) if and only if

(3.11) M(X, (N, p)∞) = sup
m

∥∥∥∥
1

Pm

m∑

n=0

pnAn

∥∥∥∥
∗

< ∞.

Further, if (b(k))∞k=0 is a basis of X , then A ∈ (X, (N, p)0) if and only if condition
(3.11) holds and

lim
m→∞

(
1

Pm

m∑

n=0

pnAn(b
(k))

)
= 0 for all k = 0, 1, . . . ,(3.12)

and A ∈ (X, (N, p)) if and only if condition (3.12) holds and

lim
m→∞

(
1

Pm

m∑

n=0

pnAn(b(k))

)
= lk for all k = 0, 1, . . . .(3.13)

Remark 1. (a) If X = lr (1 � r < ∞) and Y is any one of the spaces (N, p)∞,
(N, p) and (N, p)0, then the conditions for A ∈ (X, Y ) follow from the respective
ones in Corollary 3.5 by replacing the norm ‖ · ‖∗ in condition (3.11) by the natural
norm on ls where s =∞ for r = 1 and s = r/(r − 1) for 1 < r < ∞, i.e.

M(lr, (N, p)∞) =





sup
m,k

∣∣∣∣
1

Pm

m∑
n=0

pnank

∣∣∣∣ (r = 1)

sup
m

( ∞∑
k=0

∣∣∣∣
1

Pm

m∑
n=0

pnank

∣∣∣∣
s)1/s

(1 < r < ∞),

and by replacing the terms An(b(k)) in conditions (3.12) and (3.13) by the terms ank.

(b) We consider the conditions

M((N, q)∞, (N, p)∞)(3.14)

= sup
m,n

(n−1∑

k=0

Qk

∣∣∣∣
1

Pm

m∑

l=0

pl

(
∆+Al/q

)
k

∣∣∣∣+
∣∣∣∣

Qn

qnPm

m∑

l=0

plaln

∣∣∣∣
)

< ∞,
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(
ankQk

qk

)∞

k=0

∈ c0 (n = 0, 1, . . .),(3.15)

(
ankQk

qk

)∞

k=0

∈ c (n = 0, 1, . . .),(3.16)

lim
m→∞

(
1

Pm

m∑

n=0

pnank

)
= 0 (k = 0, 1, . . .),(3.17)

lim
m→∞

(
1

Pm

m∑

n=0

pnank

)
= lk (k = 0, 1, . . .),(3.18)

lim
m→∞

(
1

Pm

m∑

n=0

pn

( ∞∑

k=0

ank

))
= 0 (k = 0, 1, . . .),(3.19)

lim
m→∞

(
1

Pm

m∑

n=0

pn

( ∞∑

k=0

ank

))
= lk (k = 0, 1, . . .).(3.20)

Then

A ∈ ((N, q)∞, (N, p)∞) if and only if (3.14) and (3.15);
A ∈ ((N, q), (N, p)∞) if and only if (3.14) and (3.16);
A ∈ ((N, q)0, (N, q)∞) if and only if (3.14);
A ∈ ((N, q)0, (N, p)0) if and only if (3.14) and (3.17);
A ∈ ((N, q)0, (N, p)) if and only if (3.14) and (3.18);
A ∈ ((N, q), (N, p)0) if and only if (3.14), (3.16), (3.17) and (3.19);
A ∈ ((N, q), (N, p)) if and only if (3.14), (3.16), (3.18) and (3.20).

4. Measure of noncompactness and transformations

If X and Y are metric spaces, then f : X 
→ Y is a compact map if f(Q) is
relatively compact (i.e., if the closure of f(Q) is a compact subset of Y ) subset of Y
for each bounded subset Q of X . In this section we investigate, among other things,
when in some special cases (see Corollary 4.3), an operator LA is compact. Our
investigations use the measure of noncompactness. Recall that if Q is a bounded
subset of a metric space X , then the Hausdorff measure of noncompactness of Q is
denoted by χ(Q), and

χ(Q) = inf{ε > 0: Q has a finite ε-net in X}.

The function χ is called the Hausdorff measure of noncompactness, and for its prop-
erties see [1], [3] or [9]. Denote by Q the closure of Q. For the convenience of the
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reader, let us mention the following facts: If Q, Q1 and Q2 are bounded subsets of
a metric space (X, d), then

χ(Q) = 0⇐⇒ Q is a totally bounded set,

χ(Q) = χ(Q),

Q1 ⊂ Q2 =⇒ χ(Q1) � χ(Q2),

χ(Q1 ∪Q2) = max{χ(Q1), χ(Q2)},
χ(Q1 ∩Q2) � min{χ(Q1), χ(Q2)}.

If our space X is a normed space, then the function χ(Q) has some additional
properties connected with the linear structure. We have e.g.

χ(Q1 +Q2) � χ(Q1) + χ(Q2),

χ(λQ) = |λ|χ(Q) for each λ ∈ � .

If X and Y are normed spaces, then for A ∈ B(X, Y ) the Hausdorff measure of
noncompactness of A, denoted by ‖A‖χ, is defined by ‖A‖χ = χ(AK), where K =
{x ∈ X : ‖x‖ � 1} is the unit ball in X . Further, A is compact if and only if
‖A‖χ = 0, and ‖A‖χ � ‖A‖. Recall the following well known result (see e.g. [3,
Theorem 6.1.1] or [1, 1.8.1]).

Proposition 4.1. Let X be a Banach space with a Schauder basis {e1, e2, . . .},
Q a bounded subset of X , and Pn : X 
→ X the projector onto the linear span of

{e1, e2, . . . , en}. Then

1
a
lim sup

n→∞

(
sup
x∈Q

‖(I − Pn)x‖
)

� χ(Q)(4.1)

� inf
n
sup
x∈Q

‖(I − Pn)x‖ � lim sup
n→∞

(
sup
x∈Q

‖(I − Pn)x‖
)
,

where a = lim sup
n→∞

‖I − Pn‖.

Let us mention that concerning the number a in Proposition 4.1, if X = c0, then
a = 1, but if X = c, then a = 2 (see e.g. [3, p. 22]).
Concerning Corollary 3.4 and the measures of noncompactness we have

Theorem 4.2. Let A be as in Corollary 3.4, and for any integer n, r, n > r, set

(4.2) ‖A‖(r) = sup
n>r
sup
m

(m−1∑

k=0

Qk

∣∣∣∣
ank

qk
− an,k+1

qk+1

∣∣∣∣+ |Qmanm/qm|
)

.
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Let X be either (N, q)0 or X = (N, q), and let A ∈ (X, c0). Then we have

(4.3) ‖LA‖χ = lim
r→∞

‖A‖(r).

Let X be either (N, q)0 or X = (N, q), and let A ∈ (X, c). Then we have

(4.4)
1
2
· lim

r→∞
‖A‖(r) � ‖LA‖χ � lim

r→∞
‖A‖(r).

Let X be either (N, q)0, (N, q) or X = (N, q)∞, and let A ∈ (X, l∞). Then we have

(4.5) 0 � ‖LA‖χ � lim
r→∞

‖A‖(r).

�����. Let us remark that the limits in (4.3), (4.4) and (4.5) exist. Set K =
{x ∈ X : ‖x‖ � 1}. In the case A ∈ (X, c0) for X = (N, q)0 or X = (N, q), by
Proposition 4.1 we have

(4.6) ‖LA‖χ = χ(AK) = lim
r→∞

[
sup
x∈K

‖(I − Pr)Ax‖
]
,

where Pr : c0 
→ c0, r = 1, 2, . . ., is the projector on the first r + 1 coordinates, i.e.,
Pr(x) = (x0, x1, x2, . . . , xr, 0, 0, . . .), x = (xk) ∈ c0 (let us remark that ‖I − Pr‖ = 1,
r = 0, 1, 2, . . .). Further, by Proposition 3.2 and Corollary 3.4 we have

(4.7) ‖A‖(r) = sup
x∈K

‖(I − Pr)Ax‖,

and by (4.6) we get (4.3). To prove (4.4) let us remark that every sequence x =
(xk)∞k=0 ∈ c has a unique representation

x = le+
∞∑

k=0

(xk − l)e(k) where l ∈ � is such that x− le ∈ c.

Let us define Pr : c 
→ c by Pr(x) = le +
r∑

k=0
(xk − l)e(k), r = 0, 1, 2, . . .. It is

easy to prove that ‖I − Pr‖ = 2, r = 0, 1, 2, . . .. Now the proof of (4.4) is similar
to the case (4.3), and we omit it. Let us prove (4.5). Define Pr : l∞ 
→ l∞ by
Pr(x) = (x0, x1, x2, . . . , xr, 0, 0, . . .), x = (xk) ∈ l∞, r = 0, 1, 2, . . .. It is clear that

AK ⊂ Pr(AK) + (I − Pr)(AK).

Now, by the elementary properties of the function χ we have

χ(AK) � χ(Pr(AK)) + χ((I − Pr)(AK)) = χ(I − Pr)(AK)

� sup
x∈K

‖(I − Pr)Ax‖.

Finally, by Proposition 3.2 and Corollary 3.4 we get (4.5). �
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As a corollary of the above theorem, we have

Corollary 4.3. Let A be as in Theorem 4.2. Then if A ∈ (X, c0) for X = (N, q)0
or X = (N, q), or if A ∈ (X, c) for X = (N, q)0 or X = (N, q), then in all cases we
have

(4.8) LA is compact if and only if lim
r→∞

‖A‖(r) = 0.

Further, if A ∈ (X, l∞) for X = (N, q)0, X = (N, q) or X = (N, q)∞, then we have

(4.9) LA is compact if lim
r→∞

‖A‖(r) = 0.

The following example shows that it is possible for LA in (4.9) to be compact in
the case lim

r→∞
‖A‖(r) > 0, and hence in general in (4.9) we have just “if”.

Example 4.4. Let the matrix A be defined by An = e(0) (n = 0, 1, . . .) and
qn = 2n, n = 0, 1, 2, . . .. Then M((N, q)∞, l∞) = sup

n
[1 + (2 − 2−n)] < 3, and by

Corollary 3.4 we know that A ∈ ((N, q)∞, l∞). Further,

‖A‖(r) = sup
n>r

[
1 +

(
2− 1
2n

)]
= 3− 1

2r+1
for all r,

whence

lim
r→∞

‖A‖(r) = 3 > 0.

Since A(x) = x0e0 for all x ∈ (N, q)∞, LA is a compact operator.

Now we continue with the following auxiliary result.

Lemma 4.5. Let qk > 0 (k = 0, 1, . . .) and Qn =
n∑

k=0
qk →∞ (n →∞). We put

τn(x) =
1

Qn

n∑

k=0

qkxk for all x ∈ ω.

Let r � 0 and let the operators B(r,0) : (N, q)0 → (N, q)0 and B(r) : (N, q)→ (N, q)
be defined by

B(r,0)(x) =
∞∑

k=r+1

xke(k) (x ∈ (N, q)0),(4.10)
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B(r)(x) =
∞∑

k=r+1

(xk − l)e(k) (x ∈ (N, q))(4.11)

where l = lim
n→∞

τn(x). Then

‖B(r,0)‖ = 1 + Qr

Qr+1
(4.12)

and

‖B(r)‖ = 2.(4.13)

�����. First we show identity (4.12). Let x ∈ (N, q)0. Since

τn(B(r,0)(x)) = 0 for 0 � n � r

and, for n � r + 1,

∣∣τn(B
(r,0)(x))

∣∣ =
∣∣∣∣
1

Qn

n∑

k=r+1

qkxk

∣∣∣∣ =
∣∣∣∣τn(x) −

Qr

Qn
τr(x)

∣∣∣∣

�
(
1 +

Qr

Qr+1

)
‖x‖(N,q)∞ ,

it follows that
∥∥B(r,0)(x)

∥∥
(N,q)∞

�
(
1 +

Qr

Qr+1

)
‖x‖(N,q)∞ ,

and consequently

(4.14) ‖B(r,0)‖ � 1 + Qr

Qr+1
.

Defining the sequence x by

xk =





−1 (0 � k � r)

Qr +Qr+1

qr+1
(k = r + 1)

−Qr +Qr+1

qr+2
(k = r + 2)

0 (k � r + 3),
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we conclude

τn(x) = −1 (0 � n � r),

τr+1(x) = −
Qr

Qr+1
+

Qr

Qr+1
+ 1 = 1

and

τn(x) =
1

Qn
(−Qr +Qr +Qr+1 − (Qr +Qr+1))

= −Qr

Qn
(n � r + 2).

Since Qn →∞ (n →∞), we have

x ∈ (N, q)0 and ‖x‖(N,q)∞ = 1.

Further,

τr+1(B(r,0)(x)) =
1

Qr+1
(Qr +Qr+1) = 1 +

Qr

Qr+1

and

τn(B(r,0)(x)) = 0 for n �= r + 1.

Therefore

∥∥B(r,0)(x)
∥∥
(N,q)∞

= 1 +
Qr

Qr+1
=

(
1 +

Qr

Qr+1

)
‖x‖(N,q)∞

and

‖B(r,0)‖ � 1 + Qr

Qr+1
.(4.15)

Now (4.14) and (4.15) together yield identity (4.12). Now we prove identity (4.13).
Let x ∈ (N, q). We have

τn(B(r)(x)) = 0 for 0 � n � r

and, for n � r + 1,

∣∣τn(B
(r)(x))

∣∣ =
∣∣∣∣
1

Qn

n∑

k=r+1

qk(xk − l)

∣∣∣∣ =
∣∣∣∣τn(x)−

Qr

Qn
τr(x)− l +

Qr

Qn
l

∣∣∣∣

�
∣∣∣∣1 +

Qr

Qn

∣∣∣∣ ‖x‖(N,q)∞ +

∣∣∣∣1−
Qr

Qn

∣∣∣∣ |l|.
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Since |l| = lim
n→∞

|τn(x)| � ‖x‖(N,q)∞ , we have

∣∣τn(B(r)(x))
∣∣ � 2‖x‖(N,q)∞ for n � r + 1,

and consequently

‖B(r)‖ � 2.(4.16)

Defining the sequence x by

xk =





−1 (0 � k � r)

2
Qr+1

qr+1
− 1 (k = r + 1)

−1 (k � r + 2),

we conclude

τn(x) = −1 (0 � n � r),

τr+1(x) =
1

Qr+1
(−Qr + 2Qr − qr+1) = 1

and

τn(x) =
1

Qn

(
−Qr + 2Qr+1 −

n∑

k=r+1

qk

)
=
1

Qn
(−Qn + 2Qr+1)

= −1 + 2Qr+1

Qn
� 1 (n � r + 2).

Hence

‖x‖(N,q)∞ = 1 and lim
n→∞

τn(x) = −1, i. e. x ∈ (N, q).

Finally,

τn(B
(r)(x)) = 0 (0 � n � r)

τr+1(B(r)(x)) =
qr+1

Qr+1
(xr+1 + 1) = 2

and

τn(B(r)(x)) = 2
Qr+1

Qn
� 2 (n � r + 2).

This implies

(4.17) ‖B(r)‖ � 2.

Now (4.16) and (4.17) together yield (4.13). �
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Concerning Corollary 3.5 and the measures of noncompactness we have

Theorem 4.6. Let X be a BK space, let A be as in Corollary 3.5, and let
Pm →∞, (m →∞). Then for any integer m, r, m > r, set

(4.18) ‖A‖(r)
(N,p)∞

= sup
m>r

∥∥∥∥
1

Pm

m∑

n=0

pnAn

∥∥∥∥
∗
.

Further, if X has a Schauder basis and A ∈ (X, (N, p)0), then we have

(4.19)
1
b
· lim

r→∞
‖A‖(r)

(N,p)∞
� ‖LA‖χ � lim

r→∞
‖A‖(r)

(N,p)∞
,

where b = lim sup
n→∞

(2 − pn/Pn). If X has a Schauder basis and A ∈ (X, (N, p)) then

we have

(4.20)
1
2
· lim

r→∞
‖A‖(r)

(N,p)∞
� ‖LA‖χ � lim

r→∞
‖A‖(r)

(N,p)∞
.

Finally, if A ∈ (X, (N, p)∞), then we have

(4.21) 0 � ‖LA‖χ � lim
r→∞

‖A‖(r)
(N,p)∞

.

�����. Let us remark that the limits in (4.19), (4.20) and (4.21) exist. Set K =
{x ∈ X : ‖x‖ � 1}. Suppose that A ∈ (X, (N, p)0). Let B(r,0) : (N, p)0 
→ (N, p)0
be the projector defined in Lemma 4.5. Then by (4.12) we have that ‖B(r,0)‖ =
2− pr/Pr. Now, to prove (4.19), by Propositions 2.1 and 4.1 we have

(4.22)
1
b
lim sup

r→∞

(
sup
x∈K

‖B(r,0)Ax‖
)

� χ(AK) � lim sup
r→∞

(
sup
x∈K

‖B(r,0)Ax‖
)
,

where b = lim sup
r→∞

‖B(r,0)‖. Thus, since

sup
x∈K

‖B(r,0)Ax‖ = ‖A‖(r)
(N,p)∞

,

we prove (4.19). To prove (4.20) let us remark (see Proposition 2.1) that (N, p) has
the Schauder basis e, e(k), k = 0, 1, . . ., and every (xk)∞k=0 ∈ (N, q) has a unique
representation

x = le+
∞∑

k=0

(xk − l)e(k),
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where l ∈ � is such that x − le ∈ (N, p)0. Let B(r) : (N, p)0 
→ (N, p)0 be the
projector defined by (see Lemma 4.5)

B(r)(x) =
∞∑

k=r+1

(xk − l)e(k).

Then by (4.13) we have that ‖B(r)‖ = 2. Now the proof of (4.20) is similar to the
case (4.19), and we omit it. Let us prove (4.21). Define Pr : (N, p)∞ 
→ (N, p)∞ by
Pr(x) = (x0, x1, . . . , xr , 0, 0, . . .), x = (xi) ∈ (N, p)∞, r = 1, 2, . . .. It is clear that

AK ⊂ Pr(AK) + (I − Pr)(AK).

By Remark 1 (b) it follows that Pr is a bounded operator, and since it has obviously
finite-rank, it is a compact one. Now, by the elementary properties of the function
χ we have

χ(AK) � χ(Pr(AK)) + χ((I − Pr)(AK)) = χ((I − Pr)(AK)(4.23)

� sup
x∈K

‖(I − Pr)Ax‖ = ‖A‖(r)
(N,p)∞

.

�

As a corollary of the above theorem we have

Corollary 4.7. Let X be a BK space and let A and ‖A‖(r)
(N,p)

be as in Theo-

rem 4.6. If X has a Schauder basis, and either A ∈ (X, (N, p)0) or A ∈ (X, (N, p)),
then

(4.24) LA is compact if and only if lim
r→∞

‖A‖(r)
(N,p)

= 0.

Further, if A ∈ (X, (N, p)∞), then we have

(4.25) LA is compact if lim
r→∞

‖A‖(r)
(N,p)

= 0.

Now, concerning Remark 1, we get several corollaries.

Corollary 4.8. If either A ∈ (lu, (N, p)0) (1 < u < ∞), or A ∈ (lu, (N, p))
(1 < u < ∞), then

LA is compact if and only if

lim
r→∞

[
sup
m>r

( ∞∑

k=0

∣∣∣∣
1

Pm

m∑

n=0

pnank

∣∣∣∣
v)1/v]

= 0, v = u/(u− 1).(4.26)

520



Further, if either A ∈ (l1, (N, p)0)) or A ∈ (l1, (N, p)), then

LA is compact if and only if

lim
r→∞

(
sup

n>r,k

∣∣∣∣
1

Pm

m∑

n=0

pnank

∣∣∣∣
)
= 0.(4.27)

If A ∈ (lu, (N, p)) (1 < u < ∞), then

LA is compact if

lim
r→∞

[
sup
m>r

( ∞∑

k=0

∣∣∣∣
1

Pm

m∑

n=0

pnank

∣∣∣∣
v)1/v]

= 0, v = u/(u− 1).(4.28)

Finally, if A ∈ (l1, (N, p)), then

LA is compact if

lim
r→∞

(
sup

n>r,k

∣∣∣∣
1

Pm

m∑

n=0

pnank

∣∣∣∣
)
= 0.(4.29)

From Corollary 4.7, Proposition 3.3 and Remark 1 (b), we have

Corollary 4.9. If A ∈ (X, (N, p)0) for X = (N, q)0 or X = (N, q), or if A ∈
(X, (N, p)) for X = (N, q)0 or X = (N, q), then in all cases we have

LA is compact if an only if

lim
r→∞

[
sup

m>r,n

(n−1∑

k=0

Qk

∣∣∣∣
1

Pm

m∑

l=0

pl(∆
+Al/q)k

∣∣∣∣+
∣∣∣∣

Qn

qnPm

m∑

l=0

plaln

∣∣∣∣
)]
= 0.(4.30)

Further, if A ∈ (X, (N, p)∞) for X = (N, q)∞, X = (N, q)0 or X = (N, q), then we
have

LA is compact if

lim
r→∞

[
sup

m>r,n

(n−1∑

k=0

Qk

∣∣∣∣
1

Pm

m∑

l=0

pl(∆+Al/q)k

∣∣∣∣+
∣∣∣∣

Qn

qnPm

m∑

l=0

plaln

∣∣
)]
= 0.(4.31)
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