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EXAMPLES OF BIFURCATION OF PERIODIC SOLUTIONS TO

VARIATIONAL INEQUALITIES IN �
κ
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Abstract. A bifurcation problem for variational inequalities

U(t) ∈ K,

(U̇(t)−BλU(t)−G(λ, U(t)), Z − U(t)) � 0 for all Z ∈ K, a.a. t � 0

is studied, where K is a closed convex cone in �κ , κ � 3, Bλ is a κ×κ matrix, G is a small
perturbation, λ a real parameter. The main goal of the paper is to simplify the assump-
tions of the abstract results concerning the existence of a bifurcation of periodic solutions
developed in the previous paper and to give examples in more than three dimensional case.

Keywords: bifurcation, periodic solutions, variational inequality, differential inequality,
finite dimensional space

MSC 2000 : 37G15, 34C23, 34A40

Introduction

Consider a smooth mapping F : I × �κ → �κ (κ � 3, I an open interval) such
that F (λ, 0) = 0 for all λ ∈ I. Let K be a closed convex cone with its vertex at the

origin in �κ . Consider a bifurcation problem for the inequality

(I)

{
U(t) ∈ K,

(U̇(t)− F (λ, U(t)), Z−U(t)) � 0 for all Z ∈ K, a.a. t � 0.

By a solution we mean an absolutely continuous function satisfying (I). This paper

is closely related to [7] where it is proved that if a Hopf bifurcation for the equation

(E) U̇(t) = F (λ, U(t))

The author was supported by the grant No. 201/95/0630 of the Grant Agency of the
Czech Republic.

225



occurs at some λ0 then under certain additional assumptions, there exists also a

bifurcation point λI of (I) at which periodic solutions bifurcate from the branch of
trivial solutions. Cf. also [6], [5] for former results of this type. The method used was
based on the proof of existence of branches of periodic solutions of the corresponding

penalty system. The global bifurcation results given (for equations) in [10] and [1]
(see also [4]) form a background for this proof in [5], [6] and [7], respectively. For

obtaining bifurcating solutions, certain information about the branches mentioned
were necessary. Unfortunately, it is not easy to get this information in concrete sit-

uations. In [7], a simple model example in �3 was discussed. In fact, this example
could be solved by a simpler approach developed for the particular case of �3 in [3],

[8]. The aim of the present paper is to simplify the assumptions from [7] and to give
examples in �κ , κ > 3 where the theory from [3], [8] cannot be used. We will modify

for a general situation the basic ideas of the verification of the assumptions of the
abstract theory applied in [7] only to Model Example. In this way we will obtain a

bifurcation Theorem 1.1. While the abstract assumptions in [7] are concerned with
general properties of a branch of solutions to a penalty system (see also the assump-

tion (GA) in Section 3 below), now we will deal only with assumptions concerning
the “linearized penalty equation” and the “linearized inequality”. (Note that these

problems are only positively homogeneous but nonlinear again.)

In the examples discussed, the first two equations seem to be independent of the

remaining ones but they are coupled by the obstacle given by the cone. Direct use
of Theorem 1.2 from [7] would be possible for these examples but the verification of

the assumptions in our present setting is easier.

1. Bifurcation Theorem

We denote (U, V ) =
κ∑

i=1
uivi, |U |2 = (U, U) for U = [u1, . . ., uκ], V = [v1, . . ., vκ].

Further, we will write F (λ, U) = BλU + G(λ, U), where Bλ is a real matrix of the
type κ× κ depending continuously on a real parameter λ ∈ I, I is an open interval

in �, G : I × �κ → �κ satisfies the conditions

|G(λ, U)| = O(|U |2) uniformly on compact λ intervals,(G) {
for any Λ1,Λ2 ∈ I, R > 0 there exists C > 0 such that

|G(λ, U1)−G(λ, U2)| � C|U1 − U2| for all λ ∈ [Λ1,Λ2], |U1|, |U2| � R.
(L)

Let W1(λ), . . ., Wκ(λ) be a basis of � κ composed of the elements of the chains
corresponding to the eigenvalues of Bλ (i.e. of the corresponding eigenvectors if Bλ
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has κ eigenvalues for some λ). Suppose that there are λ0 ∈ I, ωm, ωM > 0 such that

(µ)





there is a couple of simple eigenvalues µ1,2(λ) = α(λ) ± iω(λ),
α, ω are continuous real functions, ωm � ω(λ) � ωM for all λ ∈ I,

α(λ) < 0 for λ < λ0, α(λ0) = 0, α(λ) > 0 for λ > λ0,

the other eigenvalues have negative real parts for all λ ∈ I,

Wj(λ) depend continuously on λ.

Particularly, the chains corresponding to µ1(λ) and µ2(λ) contain only an eigenvector
W1(λ) andW2(λ), respectively. We can write Wj(λ) = Uj(λ)+iUj+1(λ), Wj+1(λ) =

Uj(λ)− iUj+1(λ) if Wj(λ), Wj+1(λ) is a pair of complex conjugate elements of some
chain,Wj(λ) = Uj(λ) ifWj(λ) is real, where U1(λ), . . ., Uκ(λ) is a basis of �κ . Notice

that U1(λ), . . ., Uκ(λ) are continuously dependent on λ.

Notation 1.1.
ω0 = ω(λ0),

�λ = Lin{U1(λ), U2(λ)},
�λ = Lin{U3(λ), . . . , Uκ(λ)},
PLλ

V = y1U1(λ) + y2U2(λ) for V =
κ∑

j=1
yjUj(λ) (projection onto �λ along �λ).

Denote by PK the projection onto K, i.e. PKU for U ∈ �κ is the unique point

from K satisfying
|PKU − U | = min

V ∈K
|V − U |.

The penalty operator β corresponding to K is defined by

β = I − PK .

For the proof of the bifurcation theorem, branches of periodic solutions of the fol-
lowing penalty system are studied in [7]:

(PS)





U̇(t)= F (λ, U(t)) − ε(t)βU(t),

ε̇(t) = −�2
ε(t)

1 + |ε(t)| + |U(t)|
2.

However, under our present assumptions, only properties of the corresponding “lin-

earized” penalty equation

(LPE) U̇(t) = BλU(t)− τβU(t)

and the “linearized” inequality

(LI)

{
U(t) ∈ K,

(U̇(t)−BλU(t), Z−U(t)) � 0 for all Z ∈ K, a.a. t � 0
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will play a role. Let us recall that the problems (LPE), (LI) are in fact nonlinear

again, neither our variational inequality nor the penalty system can be linearized.

Remark 1.1. Under the assumption (µ), any solution of the linearized equation

(LE) U̇(t) = BλU(t)

tends to the plane �λ for t → +∞ and if it does not start in �λ then its projection

into �λ circulates around the origin. A solution of (LPE) is simultaneously a solution
of (LE) as far as it lies in K and it is attracted to K by the penalty term when it

lies outside of K. Particularly, there is no periodic solution of (LPE) lying in K for
all t in the examples below because (LE) has no such solution.

Remark 1.2. For U ∈ K we will denote by KU =
⋃

h>0

⋃
V ∈K

h(V − U) the contin-

gent cone to K at the point U , and by PU the projection to the cone KU . Let us

recall that (LI) is equivalent to the (strongly nonlinear) equation

(LI’) U̇(t) = PU(t)BλU(t)

(see [2]). It follows that any solution of (LI) is simultaneously a solution of (LE) as
far as it lies in K0 (the interior of K). Analogously for (I). Particularly, it follows

that there is no periodic solution of (LI) lying in K0 for all t in the examples below.
Of course, any solution of (LE) is simultaneously a solution of (LI) on any interval

in which it lies in K.

Notation 1.2.
U τ
0,λ(·, V ), U∞

0,λ(·, V ) and U∞
λ (·, V )—the solutions of (LPE), (LI) and (I), respec-

tively, with the initial condition V at t = 0,

rτ
0,λ(t, V ), ϕτ

0,λ(t, V ) (also for τ = +∞)—polar coordinates of PLλ
PKU τ

0,λ(t, V )
with the angle ϕ measured from PLλ

PKV , i.e. continuous functions defined by

ϕτ
0,λ(0, V ) = 0,

PLλ
PKU τ

0,λ(t, V ) = rτ
0,λ(t, V )[cos(ϕ

τ
0,λ(t, V ) + ϕV ) · U1(λ)

+ sin(ϕτ
0,λ(t, V ) + ϕV ) · U2(λ)]

for t ∈ [0, t0) if |PLλ
PKU τ

0,λ(t, V )| > 0 on [0, t0), where ϕV satisfies

PLλ
PKV = rτ

0,λ(0, V )[cosϕV · U1(λ) + sinϕV · U2(λ)],

tτ0,λ(V ) = inf{t0 ; rτ
0,λ(t, V ) > 0 for t ∈ [0, t0], ϕτ

0,λ(t0, V ) = −2�} if V /∈ �λ—the

time of one circuit of PLλ
PKU τ

0,λ(·, V ) around the origin.
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Remark 1.3. We have (PKU, βU) = 0, PKβU = 0 for all U ∈ �κ . This is why

we consider the function PKU τ
0,λ(t, V ) instead of U τ

0,λ(t, V ) in the definition of the
functions rτ

0,λ(t, V ), ϕτ
0,λ(t, V ). In this case, the estimate of ϕ̇τ

0,λ(t, V ) in examples
becomes simpler because the expression with the penalty term vanishes.

Remark 1.4. Any solution U τ
0,λ(t, V ) of (LPE) (τ finite) is continuosusly differ-

entiable. The projection PK is a lipschitzian mapping (see e.g. [11]) and it follows
that PKU τ

0,λ(t, V ) is absolutely continuous on any compact interval. Particularly,

PKU τ
0,λ(t, V ) is differentiable a.e.

Further, suppose that there are Λm, ΛM ∈ I, ξ > 0, η ∈ (0, 1), Γ > 0 such that

λ0 ∈ [Λm,ΛM ] and the following conditions are fulfilled:




if W ∈ �
κ , |W | > 0, τ ∈ [0,+∞], λ ∈ (Λm − ξ,ΛM + ξ),

U τ
0,λ(T, W ) =W with some T > 0 then

(a) U τ
0,λ(t, W ) /∈ �λ for all t � 0,

(b) ϕ̇τ
0,λ(t, W ) < −η for a.a. t � 0,

(c) tτ0,λ(W ) > Γ,

(1.1)

{
if W ∈ �

κ , |W | > 0, τ ∈ (0,+∞],
U τ
0,λ(T, W ) =W, T > 0 then λ ∈ (Λm,ΛM ).

(1.2)

Particularly, the condition (1.1b) means that PLλ
PKU τ

0,λ(t, W ) circulates around the

origin with a velocity greater than η under the assumptions considered. We will
choose a fixed η ∈ (0, ωm) such that (1.1) holds, η �= ω0

k , k = 1, 2, . . ., and set

TM =
2�
η

(
TM >

2�
ωm

)
.

Observation 1.1. The assumption (1.1) implies that

tτ0,λ(t, W ) < TM for the parameters from (1.1).

We have t00,λ(W ) =
2�

ω(λ) if W /∈ �λ. Particularly, (1.1b), (1.1c) imply Γ < 2�
ω0

< TM .

Theorem 1.1. Let (µ), (G), (L) and (1.1), (1.2) be fulfilled. Then there exists a
bifurcation point λI ∈ (Λm,ΛM ) of (I) at which periodic (nonstationary) solutions of

(I) bifurcate from the branch of trivial solutions. Precisely, there exist Tn ∈ (Γ, TM ),
λn ∈ (Λm,ΛM ), Vn ∈ �κ such that |Vn| → 0, λn → λI and U∞

λn
(·, Vn) are Tn-periodic

(nonstationary) solutions of (I). If Tn → T , Vn

|Vn| → W then the solution U∞
0,λI
(·, W )

of (LI) is (nonstationary) T -periodic.

Remark 1.5. The assertion of Theorem 1.1 remains valid if we replace (Λm,ΛM )

by the closed interval [Λm,ΛM ] in the statement and in the assumption (1.2) (see
the proof of Theorem 1.1 in Section 3).
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2. Examples

Remark 2.1. Let us consider the following variational inequality in �3 :

(2.1)

{
V (t) ∈ K̃,

(V̇ (t)− B̃λV (t)− G̃(λ, V (t), Z−V (t)) � 0 for all Z ∈ K̃, a.a. t � 0

with K̃ = {V = [v1, v2, v3] ∈ �3 ; v3 � 0, v3 � v1},

B̃λ =




λ, 1, 0

−1, λ, 0
0, 0, ν1


 ,

G̃ : �4 → �
3 a mapping satisfying the assumptions (G), (L), ν1 ∈ [−1, 0). This

problem was discussed as Model Example in [7] and the existence of a bifurcation
point λI ∈ (0, 1) was shown. (In fact, the case ν1 = −1 was considered but all
considerations can be repeated for any fixed ν1 ∈ [−1, 0)). In [7], some general as-
sumptions concerning the branch of solutions of the penalty system (PS) are verified

for this example to apply the abstract theory. Main ideas of this verification (used
in [7] only on Model Example) are generalized in the present paper and used for the

proof of our Theorem 1.1 by using abstract Theorem 1.2 from [7] (see Section 3). For
the use of our present Theorem 1.1, only verification of the conditions (1.1), (1.2)

(with Λm = 0, ΛM = 1) concerning only the linearized inequality (LI) and linearized
penalty equation (LPE) is sufficient. Instead of (1.1a), (1.1c), analogous conditions
concerning solutions of (PS) lying on the branch C0� are verified in [7] (conditions
(1.14), (1.17)). The assumption (1.1b) is a part of the condition (1.11) in [7] where
also analogues for (PS) and (I) are necessary. Our condition (1.2) coincides with

(1.12) verified in [7]. All assumptions (1.1), (1.2) can be verified directly in the same
way as in Example 2.1 below for the fourth dimensional case.

Note that in addition, in [7] we supposed for simplicity that g3(λ, U) � 0 while in
the present approach this condition has no justification.

Let us recall that the problem (2.1) was investigated by another approach (ap-
plicable only in the three dimensional space) in [8] where a stability of bifurcating

solutions was studied.

Example 2.1. Set I = �, κ = 4, K = {U ∈ �4 ; u3 � 0, u4 � 0, u3 � u1, u4 �
u2},

Bλ =




λ, 1, 0, 0

−1, λ, 0, 0
0, 0, ν1, 0

0, 0, 0, ν2



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where ν1 ∈ [− 12 , 0), ν2 ∈ [− 12 , 0) are given. Let G : �5 → �4 be a mapping satisfying

(G), (L), G(λ, U) = [g1(λ, U), g2(λ, U), g3(λ, U), g4(λ, U)]. We will show that Theo-
rem 1.1 guarantees the existence of a bifurcation point λI ∈ (0, 1) of our inequality
(I) at which periodic solutions bifurcate from the branch of the trivial solutions.

Verification of the assumptions of Theorem 1.1 with Λm = 0, ΛM = 1,
ξ, η > 0 small enough: The eigenvalues of Bλ are µ1,2(λ) = λ ± i, µ3(λ) = ν1,

µ4(λ) = ν2, the real and imaginary parts of the corresponding eigenvectors form the
basis U1(λ) = U1 = [1, 0, 0, 0], U2(λ) = U2 = [0, 1, 0, 0], U3(λ) = U3 = [0, 0, 1, 0],

U4(λ) = U4 = [0, 0, 0, 1]. We have �λ = � = {U ∈ �4 ; u3 = u4 = 0}, �λ =
� = {U ∈ �4 ; u1 = u2 = 0}. The assumption (µ) (with ω(λ) ≡ 1) holds. For
U = [u1, u2, u3, u4], u3 � 0, u4 � 0 we have

(2.2)





PKU = [u1, u2, u3, u4] if u3 � u1, u4 � u2,

PKU =
[

u1+u3
2 , u2,

u1+u3
2 , u4

]
if u3 < u1, u4 � u2,

PKU =
[
u1,

u2+u4
2 , u3,

u2+u4
2

]
if u3 � u1, u4 < u2,

PKU =
[

u1+u3
2 , u2+u4

2 , u1+u3
2 , u2+u4

2

]
if u3 < u1, u4 < u2,

βU =
[ (u3−u1)

−

2 , (u4−u2)
−

2 ,− (u3−u1)
−

2 ,− (u4−u2)
−

2

]

for all u3 � 0, u4 � 0.

Hence, in the set {U ∈ �4 ; u3, u4 � 0}, the penalty equation (LPE) has the form

(2.3)





u̇1 = λu1 + u2 − τ (u3−u1)
−

2 ,

u̇2 = −u1 + λu2 − τ (u4−u2)
−

2 ,

u̇3 = ν1u3 + τ (u3−u1)
−

2 ,

u̇4 = ν2u4 + τ (u4−u2)
−

2 .

The third and the fourth coordinate of PKW is nonnegative for anyW . This together
with the form of Bλ and β implies that if U = BλW − τβW , τ � 0 and w3 < 0 or

w4 < 0 then u3 > 0 or u4 > 0, respectively. It follows that

(2.4)

{
the set {U ; u3 � 0, u4 � 0} is invariant for (LPE) with any λ ∈ �, τ � 0,
any periodic solution of (LPE) lies in this set and fulfils (2.3) for all t � 0.

We will show that

(2.5)





if W ∈ �
4 , |W | > 0, τ ∈ (0,+∞], λ � 1, U(t) = U τ

0,λ(t, W )

= [u1(t), u2(t), u3(t), u4(t)], U(T ) =W with some T > 0

then u3(t) > 0, u4(t) > 0 for all t � 0.
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We already know from (2.4) and from the definition of K (for τ ∈ [0,+∞) and
τ = +∞, respectively) that u3(t) � 0, u4(t) � 0. Let us realize that

(2.6) u̇3(t) � ν1u3(t), u̇4(t) � ν2u4(t) for a.a. t � 0.

Indeed, this follows directly from (2.3) if τ ∈ [0,+∞). If τ = +∞ then (2.6) follows
from (LI) by setting (for any t fixed) z1 = u1(t), z2 = u2(t) and z4 = u4(t), z3 � u3(t)

arbitrary or z3 = u3(t), z4 � u4(t) arbitrary, respectively. As a consequence, we
obtain from (2.6) that if u3(t0) > 0 or u4(t0) > 0 for some t0 then u3(t) > 0 or

u4(t) > 0 for all t � t0. Hence, for the proof of (2.5) it is sufficient to show that
for τ ∈ (0,+∞], u3 and u4 cannot vanish identically. Suppose for instance that

u4(t) = 0 for all t � 0.
First, let τ = +∞. Then V (t) = [u1(t), u2(t), u3(t)] is a solution of the variational

inequality (2.1) with K̃, B̃λ from Remark 2.1, G̃ ≡ 0. The conditions (1.1b), (1.2)
with Λm = 0, ΛM = 1 hold for this problem (see Remark 2.1) and it follows that

the projection of V (t) (and also of U(t)) into � should circulate around the origin.
Particularly, u2(t) should change its sign during any circuit. Simultaneously we

should have u2(t) � u4(t) = 0 for all t � 0 (because of U(t) ∈ K), which is a
contradiction.

Further, let τ ∈ (0,+∞). We suppose that u4(t) = 0 and it follows from the
last line in (2.3) that u2(t) � 0 for all t � 0. Hence, the second equation in (2.3)
reads u̇2 = −u1+λu2 and therefore V (t) = [u1(t), u2(t), u3(t)] satisfies the linearized
penalty equation corresponding to (2.1) which is studied in [7], Model Example.
According to the conditions (1.1b), (1.2) holding for this problem (see Remark 2.1),

the projection of V (t) (i.e also of U(t)) to � should circulate around the origin.
Particularly, u2(t) should change the sign, which is a contradiction and the proof of

(2.5) is complete. (Notice that we could verify (1.1b), (1.2) for the linearized problem
to (2.1) directly as for a more complicated situation below.)

In the verification of the assumptions (1.1), (1.2), we will always consider an
arbitrary fixed T -periodic solution U(t) = U τ

0,λ(t, W ) (with fixed τ , λ, W under con-

sideration) and set rK(t) = rτ
0,λ(t, V ), ϕK(t) = ϕτ

0,λ(t, V ). Computing derivatives,
we will always suppose that our function PKU(t) or ϕK(t) is differentiable in t under

consideration—see Remark 1.4. (In fact, in our example, all solutions discussed are
differentiable for all t with the exception of some isolated points t where U(t) inter-

sects the hyperplanes u3 = u1, u4 = u2, and we could compute the right derivative
at these exceptional points, but it is not necessary.)

Proof of (1.1a): Let U(t0) = Z ∈ � for some t0. Then Z = [0, 0, z3, z4], z3 > 0,
z4 > 0 by (2.5) and U(t) must coincide with the solution U00,λ(t, Z) = [0, 0, e

ν1(t−t0)z3,

eν1(t−t0)z4] of (LE) (i.e. (2.3) with τ = 0) for t � t0 (see Remarks 1.1, 1.2), which is
not possible under the assumption U(0) = U(T ) =W , |W | > 0, T > 0.

232



Further, let us set

P ∗
LV = −y2U1 + y1U2 for V =

4∑

j=1

yjUj.

We have

P ∗
LPKU(t) = rK(t)

(
− sinϕK(t) · [1, 0, 0, 0] + cosϕK(t) · [0, 1, 0, 0]

)
.

This together with the definiton of rK(t), ϕK(t) implies

(2.8) ϕ̇K(t) =

(
d
dtPLPKU(t), P ∗

LPKU(t)
)

|PLPKU(t)|2 for a.a. t � 0.

The formulas (2.2) give |PLPKU(t)|2 � u21(t) + u22(t) in all cases of our interest and

according to (2.8), for the proof of (1.1b) it is sufficient to show that there are ξ,
η > 0 such that if λ ∈ (−ξ, 1 + ξ) then

ϕ̇K(t) · |PLPKU(t)|2 =
( d
dt

PLPKU(t), P ∗
LU(t)

)
� −η(u21(t) + u22(t)) for a.a. t � 0.

Proof of (1.1b) for τ ∈ [0,+∞):
(i) The case u3(t) � u1(t), u4(t) � u2(t): PKU(t) = U(t) and we get (even for
all λ)

ϕ̇K(t)|PLPKU(t)|2 = − u̇1u2 + u̇2u1 = −
(
λu1 + u2

)
u2 +

(
− u1 + λu2

)
u1

= − (u21 + u22).

(ii) The case u3(t) � u1(t), u4(t) < u2(t): Using the inequalities u2u4 � 0, |u1u4| �
|u1|u2 (see (2.4)) we obtain (see also Remark 1.3)

ϕ̇K(t) · |PLPKU(t)|2 = −u̇1 ·
u2 + u4
2

+
u̇2 + u̇4
2

· u1

= −
(
λu1 + u2

)u2 + u4
2

+
(−u1 + λu2 + ν2u4)

2
· u1

� 1
2

[
u21

(
−1 + λ− ν2

2

)
+ u22

(
−1 + λ− ν2

2

)]
� −η

(
u21 + u22

)

for all λ � 5
4 , ν2 ∈ [− 12 , 0), η = 1

16 , which means we can choose ξ = 1
4 in this

case.
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(iii) The case u3(t) < u1(t), u4(t) � u2(t): We have u1u3 � 0, |u3u2| � u1|u2| (see
(2.4)) and we obtain

ϕ̇K(t) · |PLPKU(t)|2 = − u̇1 + u̇3
2

· u2 + u̇2 ·
u1 + u3
2

= − λu1 + u2 + ν1u3
2

· u2 +
(
− u1 + λu2

)u1 + u3
2

� 1
2

[
u21

(
−1 + λ− ν1

2

)
+ u22

(
−1 + λ− ν1

2

)]
� −η

(
u21 + u22

)

for all λ � 5
4 , ν1 ∈ [− 12 , 0), η = 1

16 and we can take ξ = 1
4 again.

(iv) The case u3(t) < u1(t), u4(t) < u2(t): According to (2.4) we have (λ −
ν1)u2u3 � (1+ξ−ν1)u1u2, (λ−ν2)u1u4 � 0, u3u4 < u1u2, u1u3 � 0, u2u4 � 0,
|ν1 − ν2| < 1

2 and we get

ϕ̇K(t) · |PLPKU(t)|2

= −λu1 + u2 + ν1u3
2

· u2 + u4
2

+
−u1 + λu2 + ν2u4

2
· u1 + u3
2

= −1
4
[+u21 + u22 − (λ− ν1)u2u3 + (λ− ν2)u1u4 + (ν1 − ν2)u3u4 + u1u3 + u2u4]

� −1
4

(
1− 1 + ξ − ν1

2
− |ν1 − ν2|

2

)
(u21 + u22) = −η(u21 + u22)

for all λ � 1 + ξ where η > 0 if we choose ξ ∈ (0, 12 − |ν1 − ν2|).
Proof of (1.1b) for τ = +∞: First, notice that PKU(t) = U(t) because U(t) ∈ K

for all t. Hence, (2.8) and Remark 1.2 give

ϕ̇K(t) =

(
d
dtPLU(t), P ∗

LU(t)
)

|PLPKU(t)|2 =

(
PU(t)BλU(t), P ∗

LU(t)
)

|PLPKU(t)|2 for all t � 0.

(i) The case u3(t) > u1(t), u4(t) > u2(t): KU(t) = �
4 , PU(t)BλU(t) = BλU(t),

ϕ̇K(t) =
−

(
λu1 + u2

)
u2 +

(
− u1 + λu2

)
u1

u21 + u22
= −1.

(ii) The case u3(t) = u1(t), u4(t) > u2(t): KU(t) = {V ; v3 � v1}. If simultaneously
BλU(t) ∈ KU(t), i.e. ν1u3(t) � λu1(t)+u2(t) then PUBλU = BλU and we obtain

the same formula as in (i). If BλU(t) /∈ KU(t), i.e. ν1u1(t) < λu1(t)+u2(t) then

PUBλU =
[λu1 + u2 + ν1u3

2
,−u1 + λu2,

λu1 + u2 + ν1u3
2

, ν2u4

]
,

ϕ̇K(t) · |PLU(t)|2 = −λu1 + u2 + ν1u3
2

· u2 + (−u1 + λu2)u1

�
(
−1 + λ+ |ν1|

4

)
u21 +

(
−1
2
+

λ+ |ν1|
4

)
u22 � −η(u21 + u22)
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for all λ � 1 + ξ where η > 0 if ξ ∈ (0, 12 ) (and ν1 ∈ [− 12 , 0)).
(iii) The case u3(t) > u1(t), u4(t) = u2(t): KU(t) = {V ; v4 � v2}. If simultaneously

BλU(t) ∈ KU(t), i.e. ν2u4(t) � −u1(t) + λu2(t) then PUBλU = BλU and we
obtain the same formula as in (i). If BλU /∈ KU then

PUBλU =
[
λu1 + u2,

1
2
(−u1 + λu2 + ν2u4), ν1u3,

1
2
(−u1 + λu2 + ν2u4)

]
,

ϕ̇K(t) · |PLU(t)|2 = −(λu1 + u2)u2 +
−u1 + λu2 + ν2u4

2
· u1 �

�
(
−1
2
+

λ+ |ν2|
4

)
u21 +

(
−1 + λ+ |ν2|

4

)
u22 � −η(u21 + u22)

for all λ � 1 + ξ where η > 0 if ξ ∈ (0, 12 ).
(iv) The case u3(t) = u1(t), u4(t) = u2(t): KU(t) = {V ; v3 � v1, v4 � v2}. If

simultaneously ν1u3(t) � λu1(t) + u2(t), ν2u4(t) � −u1(t) + λu2(t)
or ν1u3(t) < λu1(t) + u2(t), ν2u4(t) � −u1(t) + λu2(t)

or ν1u3(t) � λu1(t) + u2(t), ν2u4(t) < −u1(t) + λu2(t)
then we obtain the same formulas as in the case (i) or (ii) or (iii), respectively.

If ν1u3(t) < λu1(t) + u2(t), ν2u4(t) < −u1(t) + λu2(t) then
PUBλU = [λu1+u2+ν1u3

2 , −u1+λu2+ν2u4
2 , λu1+u2+ν1u3

2 , −u1+λu2+ν2u4
2 ], ν2u1u4 �

0, −ν1u2u3 � 1
4 (u

2
1 + u22) and we get

ϕ̇K(t) · |PLU(t)|2 = − λu1 + u2 + ν1u3
2

· u2 +
−u1 + λu2 + ν2u4

2
· u1

� − 1
4
(u21 + u22).

Proof of (1.1c): It follows from (1.1b) that there are t1 < t2 such that ϕK(t2) −
ϕK(t1) = − �

2 , u1(t) < 0, u2(t) < 0 for t ∈ (t1, t2). We get U(t) ∈ K on (t1, t2)
and U(t) coincides with the solution of (LE) (i.e. (2.3) with τ = 0) in (t1, t2) (see

Remarks 1.1, 1.2). It follows by using the assumption (µ) that t2 − t1 > �

2ωM
and

(1.1c) is fulfilled with Γ = �

2ωM
.

Proof of (1.2): We shall show that

if τ ∈ (0,+∞], λ � 1 then d
dt

(
|PLPKU(t)|2

)
> 0 for a.a. t � 0,(2.9)

if τ ∈ (0,+∞], λ � 0 then d
dt

(
|U(t)|2

)
< 0 for a.a. t � 0.(2.10)

The conditions in (2.9) and (2.10) contradict the periodicity and therefore it follows

that a periodic solution of (LPE) can exist only if λ ∈ (0, 1).
Proof of (2.9) for τ ∈ (0,+∞): Similarly as in the proof of (1.1b) we will dis-

tinguish several cases. Let us recall that always u3(t) � 0, u4(t) � 0 by (2.4) and
u21 + u22 > 0 by (1.1a).
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(i) The case u3(t) � u1(t), u4(t) � u2(t): PKU(t) = U(t),

1
2
d
dt

(
|PLPKU(t)|2

)
=

(
PLU̇(t), PLU(t)

)
= λ

(
u21(t) + u22(t)

)
> 0 if λ > 0.

(ii) The case u3(t) < u1(t), u4(t) � u2(t):

1
2
d
dt

(
|PLPKU(t)|2

)
=

( d
dt

PLPKU(t), PLPKU(t)
)
=

u̇1 + u̇3
2

· u1 + u3
2

+ u̇2u2

=
λu1(t) + u2(t) + ν1u3(t)

2
· u1 + u3
2

+ (−u1 + λu2) · u2

=
λ

4
u21 + λu22 +

(
−3
4
u1u2 +

1
4
u2u3

)
+

(λ+ ν1
4

u1u3 +
ν1
4

u23

)
.

Using (2.4) and considering separately u2 � 0 and u2 < 0 we see that always
− 34u1u2 + 1

4u2u3 � − 34u1|u2| and for λ � 1, ν1 ∈ [−1, 0) we have λ+ν1
4 u1u3 +

ν1
4 u23 � λ+2ν1

4 u1u3 � 0. Hence, using the inequality ab � − δ
2a
2 − 1

2δ b2 with
δ = 1

2 we obtain

1
2
d
dt

(
|PLPKU(t)|2

)
� λ

4
u21 + λu22 −

3
4
u1|u2| �

(λ

4
− 3
16

)
u21 +

(
λ− 3
4

)
u22 > 0.

(iii) The case u3(t) � u1(t), u4(t) < u2(t):

1
2
d
dt

(
|PLPKU(t)|2

)
=

( d
dt

PLPKU(t), PLPKU(t)
)
= u̇1u1 +

u̇2 + u̇4
2

· u2 + u4
2

= (λu1 + u2)u1 +
−u1 + λu2 + ν2u4

2
· u2 + u4

2

= λu21 +
λ

4
u22 +

(3
4
u1u2 −

1
4
u1u4

)
+

(λ+ ν2
4

u2u4 + ν2u
2
4

)
.

Similarly as in (ii), the last two brackets together are not less than − 34 |u1|u2
and we obtain (choosing δ = 2) that

1
2
d
dt

(
|PLPKU(t)|2

)
� λu21 +

λ

4
u22 −

3
4
|u1|u2 �

(
λ− 3
4

)
u21 +

(λ

4
− 3
16

)
u22 > 0.

(iv) The case u3(t) < u1(t), u4(t) < u2(t):

1
2
d
dt

(
|PLPKU(t)|2

)
=

u̇1 + u̇3
2

· u1 + u3
2

+
u̇2 + u̇4
2

· u2 + u4
2

=
λu1 + u2 + ν1u3

2
· u1 + u3

2
+
−u1 + λu2 + ν2u4

2
· u2 + u4
2

=
1
4

[
λu21 + λu22 − u1u4 + (u2u3) + (λu1u3 + ν1u1u3 + ν1u

2
3)

+ (λu2u4 + ν2u2u4 + ν2u
2
4)

]
.
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The expressions closed in brackets are nonnegative for λ � 1 and we obtain

1
2
d
dt

(
|PLPKU(t)|2

)
� 1
4
(λu21 + λu22 − u1u2) � 1

4

(
λ− 1
2

)
(u21 + u22) > 0.

Proof of (2.9) for τ = +∞: We have U(t) ∈ K, PKU(t) = U(t).

(i) The case u3(t) > u1(t), u4(t) > u2(t): KU = �4 , PUBλU = BλU ,

1
2
d
dt

(
|PLPKU(t)|2

)
=

(
PLU̇(t), PLU(t)

)
= λ

(
u21(t)+u22(t)

)
> 0 even if λ > 0.

(ii) The case u3(t) = u1(t), u4(t) > u2(t): KU(t) = {V ; v3 � v1}. If simultaneously
ν1u3(t) � λu1(t) + u2(t) then PUBλU = BλU and we obtain the same formula
as in the case (i). If ν1u1(t) < λu1(t) + u2(t) then using the formula

PUBλU =
[λu1 + u2 + ν1u3

2
,−u1 + λu2,

λu1 + u2 + ν1u3
2

, ν2u4

]

and the inequality ab � − δ
2a
2 − 1

2δ b2 with δ = 1
2 ) we get

1
2
d
dt

(
|PLPKU(t)|2

)
=

(
PLU̇(t), PLU(t)

)
=

(
PU(t)BλU(t), PLU(t)

)

=
λu1 + u2 + ν1u3

2
· u1 + (−u1 + λu2)u2

=
λ+ ν1
2

u21 + λu22 −
1
2
u1u2 �

(λ

4
− 1
8

)
u21 +

(
λ− 1
2

)
u22 > 0 for λ � 1.

(iii) The case u3(t) > u1(t), u4(t) = u2(t): KU(t) = {V ; v4 � v2}. If simultaneously
ν2u4(t) � −u1(t) + λu2(t) then we obtain the same formula as in the case (i).

If ν2u4(t) < −u1(t) + λu2(t) then similarly as in (ii) (but with δ = 2) we get

1
2
d
dt

(
|PLPKU(t)|2

)
=

(
PLU̇(t), PLU(t)

)
=

(
PU(t)BλU(t), PLU(t)

)

= (λu1 + u2)u1 +
−u1 + λu2 + ν2u4

2
· u2

= λu21 +
λ+ ν2
2

u22 +
1
2
u1u2 �

(
λ− 1
2

)
u21 +

(λ

4
− 1
8

)
u22 > 0 for λ � 1.

(iv) The case u3(t) = u1(t), u4(t) = u2(t): KU(t) = {V ; v3 � v1, v4 � v2}. If
simultaneously ν1u3(t) � λu1(t) + u2(t), ν2u4(t) � −u1(t) + λu2(t)

or ν1u3(t) < λu1(t) + u2(t), ν2u4(t) � −u1(t) + λu2(t)
or ν1u3(t) � λu1(t) + u2(t), ν2u4(t) < −u1(t) + λu2(t)
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then we obtain the same formulas as in the case (i) or (ii) or (iii), respectively—

cf. (iv) in the proof of (1.1b), τ = +∞. If ν1u3(t) < λu1(t) + u2(t), ν2u4(t) <

−u1(t) + λu2(t) then

1
2
d
dt

(
|PLPKU(t)|2

)
=

(
PLU̇(t), PLU(t)

)
=

(
PU(t)BλU(t), PLU(t)

)

=
λu1 + u2 + ν1u3

2
· u1 +

−u1 + λu2 + ν2u4
2

· u2 =
λ+ ν1
2

· u21 +
λ+ ν2
2

· u22 > 0.

Proof of (2.10) for τ ∈ (0,+∞): It follows from (2.4), (2.3) by using (2.5) that

1
2
d
dt
(|U(t)|2)

=
(
λu1 + u2 − τ

(u3 − u1)−

2

)
· u1 +

(
−u1 + λu2 − τ

(u4 − u2)−

2

)
· u2

+
(
ν1u3 + τ

(u3 − u1)−

2

)
· u3 +

(
ν2u4 + τ

(u4 − u2)−

2

)
· u4

= λ(u21 + u22) + ν1u
2
3 + ν2u

2
4 +

τ

2

[
(u3 − u1)−(u3 − u1)

+ (u4 − u2)
−(u4 − u2)

]
< 0 if λ � 0.

Proof of (2.10) for τ = +∞: Setting Z = 0, Z = 2U(t) in (LI) we get(
U̇(t), U(t)

)
=

(
BλU(t), U(t)

)
and therefore by using (2.5) we obtain that

1
2
d
dt

(
|U(t)|2

)
=

(
U̇(t), U(t)

)
= λ

(
u21(t) + u22(t)

)
+ ν1u

2
3(t) + ν2u

2
4(t) < 0 if λ � 0.

Hence, the assumptions (1.1), (1.2) are fulfilled with Λm = 0, ΛM = 1 and ξ, η

small enough. Theorem 1.1 ensures the existence of a bifurcation point λI ∈ (0, 1)
announced.

Example 2.2. Consider the matrix Bλ as in Example 2.1. Set

(2.11) K = {U ∈ �
4 ; u3 � 0, u4 � 0, u3 + u4 � u1}.

The conditions (1.1), (1.2) can be verified by similar computations as in Exam-

ple 2.1 and we can get the existence of a bifurcation point λI ∈ (0, 1) from
Theorem 1.1 again. However, this can be derived directly from the properties

of the problem (2.1) mentioned in Remark 2.1. If G : �5 → �4 is a mapping
satisfying (G), (L) then the corresponding mapping G̃ : �4 → �3 defined by

G̃(λ, v1, v2, v3) = G(λ, v1, v2, v3, 0) or G̃(λ, v1, v2, v3) = G(λ, v1, v2, 0, v3) satisfies
(G), (L) as well. If V (t) = [v1(t), v2(t), v3(t)] is a periodic solution of (2.1) then

U(t) = [v1(t), v2(t), v3(t), 0] and U(t) = [v1(t), v2(t), 0, v3(t)], respectively, is a pe-
riodic solution of (I) with the cone (2.11) and our matrix Bλ. Particularly, any
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bifurcation point of (2.1) is simultaneously a bifurcation point of our inequality in

�
4 . Its existence was proved in [7] (see Remark 2.1). Moreover, bifurcating solutions
with the third trivial component and bifurcating solutions with the fourth trivial
component are obtained. However, the existence of bifurcating solutions U(t) with

both nontrivial components u3 and u4 does not follow from our theory.

Example 2.3. Consider the matrix Bλ as in Example 2.1. Set

K = {U ∈ �
4 ; u3 � 0, u4 � 0, u3 � c1u1, u4 � c2u2}

where c1 ∈ (0, 1], c2 ∈ (0, 1] are given. Then the same assertion about the bifurcation
of periodic solutions to (I) as in Example 2.1 can be proved by analogous considera-
tions. However, if at least one cj > 1 is large enough then this approach cannot be

used because it is not possible to find Λm, ΛM and ξ, η such that the assumptions
(1.1), (1.2) are fulfilled. The circulation of the projection into � of solutions of (LI)

and of (PS) with large τ can be damped down be the boundary of K and by the
penalty term, respectively, even for parameters λ for which the periodicity is not

excluded. Probably no bifurcation point of (I) exists.

Remark 2.2. We could also replace the cone in Example 1.1 by

K = {U ∈ �
4 ; u3 � 0, u4 � 0, u3 � |u1|, u4 � |u2|}.

However, then it is not clear if any periodic solution of (LI) and (LPE) must intersect
the interior of K and it would be necessary to find another argument for the proof of

(1.1c) than that from Example 1.1. The other considerations from Example 1.1 can
be simply modified. The method explained in Example 2.1 can be used for analogous

examples in higher dimensional spaces.

3. Proof of Bifurcation Theorem

Notation 3.1.
U τ

�,λ(·, V )), ετ
�,λ(·, V ))—the solution of the penalty system (PS) with the initial

condition U(0) = V , ε(0) = τ ,
B =

{[
2k�
ω0

, 0, 0, λ0
]
∈ (0,+∞)× �κ × � × I ; k positive integer

}
,

L� = {[T, V, τ, λ] ∈ [0,+∞)× �κ × � × I ; U τ
�,λ(T, V ) = V, ετ

�,λ(T, V ) = τ},
C� =

(
L� \ (0,+∞)× {0} × {0} × I

)
∪ B,

C0�—the component of C� containing [ 2�ω0
, 0, 0, λ0],

tk,τ
0,λ(V ) = inf{t0 ; rτ

0,λ(t, V ) > 0 for t ∈ [0, t0], ϕτ
0,λ(t0, V ) = −2k�} if V /∈ �λ—the

time of k-circuits of PLλ
PKU τ

0,λ(·, V ) around the origin.
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Remark 3.1. The properties of the branches C�, C0� were studied in [7]. At this
moment we recall only that C� is closed and contains the closure of L� \ (0,+∞) ×
{0} × {0} × I, for [T, V, τ, λ] ∈ C� we have either |V | > 0, τ > 0 or |V | = τ = 0, and
that the only points in C� with T > 0, τ = 0 are [2k�ω0

, 0, 0, λ0], k positive integer.

See [7], Observation 2.2.

Lemma 3.1. If Vn → 0, Vn

|Vn| → W , τn → τ ∈ [0,∞], λn → λ ∈ (Λm− ξ,ΛM + ξ),

U τ
0,λ(T, W ) =W , T > 0 then tk,τn

0,λn
(Vn)→ tk,τ

0,λ(W ) for any positive integer k.

�����. It follows from (1.1b) that there is δ > 0 such that

ϕk,τ
0,λ(t, W ) < −2k� for all t ∈ (tk,τ

0,λ(W ), t
k,τ
0,λ(W ) + δ).

Let t0 ∈ (tk,τ
0,λ(W ), t

k,τ
0,λ(W ) + δ) be fixed. Then ϕk,τn

0,λn
(t0, Vn) < −2k� for n large

as a consequence of [7], Lemmas 2.4, 2.5. Hence, there is t′n ∈ (0, t0) such that
ϕk,τn

0,λn
(t′n, Vn) = −2k� due to the continuity of ϕk,τn

0,λn
(·, Vn). That means tk,τn

0,λn
(Vn) <

t0. But t0 > tk,τ
0,λ(W ) was arbitrarily close to tk,τ

0,λ(W ) and therefore

lim sup tk,τn

0,λn
(Vn) � tk,τ

0,λ(W ).

Let tln be an arbitrary subsequence of t
k,τn

0,λn
(Vn), tln → t′. As a consequence of [7],

Lemmas 2.4, 2.5 we obtain ϕ
k,τln

0,λln
(tln , Vln)→ ϕk,τ

0,λ(t
′, W ), i.e. ϕk,τ

0,λ(t
′, W ) = −2k�. It

follows that t′ > 0, tk,τ
0,λ(W ) � t′. This holds for an arbitrary converging subsequence

and therefore lim inf tk,τn

0,λn
(Vn) � tk,τ

0,λ(W ), which together with the above estimate

gives tk,τn

0,λn
(Vn)→ tk,τ

0,λ(W ). �

In the paper [7], the following general assumptions were considered: there exist

�0 > 0, γ > 0, tM > 0, Λ1,Λ2 ∈ I such that

if [T, V, τ, λ] ∈ C0� , � ∈ (0, �0) then γ < T < tM , λ ∈ (Λ1,Λ2),(GA)
{
for any U ∈ ∂K, |U | > 0, λ ∈ [Λ1,Λ2]
there is Z ∈ K such that (BλU, Z − U) > 0.

(NS)

The condition (NS) means that the linearized inequality (LI) has no stationary so-
lution in ∂K for λ ∈ [Λ1,Λ2]; for Λ1 = Λm− ξ, Λ2 = ΛM + ξ this is a consequence of

our assumption (1.1b) in the setting of Section 1. The existence of a bifurcation point
of (I) was proved under the assumptions (µ), (G), (L), (GA), (NS) (see [7], Theo-

rem 1.2). We will see that our Theorem 1.1 follows from [7] by using the following
assertion.
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Lemma 3.2. If (1.1), (1.2) hold then the assumption (GA) is fulfilled with γ =
1
3Γ , tM = TM + γ, Λ1 = Λm − ξ, Λ2 = ΛM + ξ.

�����. (Cf. the considerations in [7], Model Example.) Set

CM
� = the component of {[T, V, τ, λ] ∈ C0� ; γ � T � tM} containing

[ 2�
ω0

, 0, 0, λ0
]

(see Observation 1.1). We will see later that in fact CM
� = C0� . First, let us show that

there is �0 > 0 such that

(3.1) if � ∈ (0, �0), [T, V, τ, λ] ∈ CM
� then λ ∈ (Λ1,Λ2).

Suppose by contradiction that this is not true. Since λ0 ∈ [Λm,ΛM ] and

[ 2�ω0
, 0, 0, λ0] ∈ CM

� for any � > 0, we obtain by using the connectedness of CM
�

that there are �n → 0, [Tn, Vn, τn, λ] ∈ CM
�n
, Tn ∈ [γ, tM ], Tn → T , τn → τ ∈ [0,+∞]

and either λ = Λ1 or λ = Λ2. It follows from [7], Observation 2.3, Lemma 2.1
and the Tn-periodicity of U τn

�n,λn
(t, Vn), Tn � tM that |Vn| → 0. We can suppose

Vn

|Vn| → W . We have U τn

�n,λn
(Tn, Vn) = Vn and the limiting process in this equation

divided by |Vn| (see [7], Lemma 2.4 or 2.5) implies that U τ
0,λ(T, W ) = W , T � γ.

This contradicts (1.2) or the fact that for τ = 0, (LPE) coincides with (LE) and
therefore it has a periodic solution only if λ = λ0 under the assumption (µ).

Further, we will show that �0 > 0 can be chosen such that

(3.2)

{
if � ∈ (0, �0), [T, V, τ, λ] ∈ CM

� , [T, V, τ, λ] �= [ 2�ω0
, 0, 0, λ0],

then |T − tτ0,λ(V )| < γ.

To prove (3.2), let us show first that for �0 small enough

(3.3)

{
if � ∈ (0, �0), [T, V, τ, λ] ∈ CM

� , [T, V, τ, λ] �= [2m�

ω0
, 0, 0, λ0], m = 1, 2, . . . ,

then there is a positive integer k such that |T − tk,τ
0,λ(V )| < γ.

Indeed, otherwise there would be [Tn, Vn, τn, λn] ∈ CM
�n
such that �n → 0, |Vn| > 0,

|Tn − tk,τn

0,λn
(Vn)| � γ for all k positive integer. We have |Vn| → 0 by [7], Observa-

tion 2.3, Lemma 2.1 and the Tn-periodicity and we can suppose [Tn, Vn, τn, λn] →
[T, 0, τ, λ], Vn

|Vn| → W . We have U τn

�n,λn
(Tn, Vn) = Vn. The limiting process ([7],

Lemma 2.4 or 2.5) gives U τ
0,λ(T, W ) =W , T � γ, and it follows by using (1.1), (1.2)

and (3.1) that T = tk,τ
0,λ(W ) with some positive integer k. Lemma 3.1 ensures that

tk,τn

0,λn
(Vn)→ tk,τ

0,λ(W ) and therefore |Tn− tk,τn

0,λn
(Vn)| � |Tn−T |+ |T − tk,τn

0,λn
(Vn)| → 0,

which is a contradiction and (3.3) is proved.
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Further, denote

C1� = {[T, V, τ, λ] ∈ CM
� ; τ > 0, |T − tτ0,λ(V )| < γ} ∪

{[ 2�
ω0

, 0, 0, λ0
]}

.

Let us show that

(3.4) dist
(
C1� ,

[2k�
ω0

, 0, 0, λ0
])

> 0 for all k > 1.

If this were not true then we would have [Tn, Vn, τn, λn] ∈ CM
� , [Tn, Vn, τn, λn] →

[2k�ω0
, 0, 0, λ0] with some k > 1, Vn

|Vn| → W , |Tn − tτn

0,λn
(Vn)| < γ. The limiting process

([7], Lemma 2.5) gives U00,λ0(T, W ) = W . Hence, Lemma 3.1 implies tτn

0,λn
(Vn) →

t00,λ0(W ) =
2�
ω0
, 2k�ω0

− 2�
ω0

> Γ by Observation 1.1, which is a contradiction.

Let us realize that

(3.5)
[ 2�
ω0

, 0, 0, λ0
]
∈ int C1� where int means the interior with respect to CM

� .

Indeed, otherwise [Tn, Vn, τn, λn] ∈ CM
� would exist such that [Tn, Vn, τn, λn] →

[ 2�ω0
, 0, 0, λ0], |Tn − tτn

0,λn
(Vn)| � γ, Vn

|Vn| → W . We would have U00,λ(
2�
ω0

, W ) = W

by [7], Lemma 2.5 and therefore tτn

0,λn
(Vn) → t00,λ0(W ) =

2�
ω0
by Lemma 3.1, a con-

tradiction.

Let us show that C1� is open in CM
� for any � ∈ (0, �0) if �0 is small enough. If C1�

is not open then according to (3.5), there exists [T, V, τ, λ] ∈ C1�, τ > 0, |V | > 0 (see
also Remark 3.1) such that in any neighbourhood there is [T ′, V ′, τ ′, λ′] ∈ CM

� \C1� . It
follows that if C1�n

are not open for some �n → 0 then there are [Tn, Vn, τn, λn] ∈ C1�n
,

τn > 0, |Vn| > 0, [T ′
n, V ′

n, τ ′n, λ′n] ∈ CM
�n
\C1�n

, |V ′
n| > 0 such that |Tn−T ′

n| < |Vn|, |Vn−
V ′

n| < |Vn|, |τn − τ ′n| < |Vn|, |λn − λ′n| < |Vn|. We have |Vn| → 0 by [7], Observation
2.3, Lemma 2.1, we can suppose Tn → T , Vn

|Vn| → W and obtain also T ′
n → T ,

V ′
n

|V ′
n| → W . We have |Tn− tτn

0,λn
(Vn)| < γ, |T ′

n− t
kn,τ ′n
0,λ′n

(V ′
n)| < γ with some kn > 1 by

the definition of C1�n
and (3.3). If kn → +∞ then there are k′n such that t

τ ′n
0,λ′n
(Zn)→ 0

for Zn = U
τ ′n
0,λ′n
(tk

′
n,τ ′n
0,λ′n

(V ′
n), V

′
n). We have |Zn| → 0 ([7], Observation 2.3, Lemma 2.1)

and we can suppose Zn

|Zn| → Y . We get U τ
0,λ(t

τ
0,λ(Y ), Y ) = Y by [7], Lemmas 2.4, 2.5

and therefore t
τ ′n
0,λ′n
(Zn) → tτ0,λ(Y ) � Γ by Lemma 3.1 and (1.1c), a contradiction.

Hence, kn must be bounded and we can suppose that our sequence is chosen such
that kn = k with some k. Then we obtain by using (1.1c)

{
T = limT ′

n � lim t
k,τ ′n
0,λ′n
(V ′

n)− γ = tk,τ
0,λ(W )− γ � tτ0,λ(W ) + (k − 1)Γ − γ,

T = limTn � lim tτn

0,λn
(Vn) + γ = tτ0,λ(W ) + γ.
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We have (k − 1)Γ − γ � Γ − γ > γ, which is a contradiction and therefore C1� must
be open in CM

� .

Let us show that C1� is also closed in CM
� for any � ∈ (0, �0) if �0 is small enough. If

C1� is not closed then (according to (3.4), (3.5)) there exists [T, V, τ, λ] ∈ CM
� \C1�, τ >

0, |V | > 0 such that in any neighbourhood there is [T ′, V ′, τ ′, λ′] ∈ C1� . Particularly,
if C1�n

are not closed for some �n → 0 then there are [Tn, Vn, τn, λn] ∈ CM
�n
\ C1�n

,
τn > 0, |Vn| > 0, [T ′

n, V ′
n, τ ′n, λ′n] ∈ C1�n

, τ ′n > 0, |V ′
n| > 0 such that |Tn − T ′

n| < |Vn|,
|Vn − V ′

n| < |Vn|, |τn − τ ′n| < |Vn|, |λn − λ′n| < |Vn|. We have |Vn| → 0 by [7],
Observation 2.3, Lemma 2.1, we can suppose Tn → T , Vn

|Vn| → W and obtain also

T ′
n → T , V ′

n

|V ′
n| → W . We have |Tn − tkn,τn

0,λn
(Vn)| < γ with some kn > 1 by (3.3) and

|T ′
n − t

τ ′n
0,λ′n
(V ′

n)| < γ. Analogously to the proof of the openess, we can show that kn

must be bounded and we can suppose that our sequence is chosen such that kn = k

with some k. Then we obtain by using (1.1c)

{
T = limTn � lim tk,τn

0,λn
(Vn)− γ = tk,τ

0,λ(W )− γ � tτ0,λ(W ) + (k − 1)Γ − γ,

T = limT ′
n � lim t

τ ′n
0,λ′n
(V ′

n) + γ = tτ0,λ(W ) + γ.

This is a contradiction and C1� must be closed in CM
� .

Hence, if �0 is small enough then C1� is nonempty, closed and open in CM
� for any

� ∈ (0, �0), that means C1� = CM
� and (3.2) is proved.

We obtain from (3.2), (1.1c) and Observation 1.1 that

(3.6)

{
if � ∈ (0, �0), [T, V, τ, λ] ∈ CM

� , [T, V, τ, λ] �= [ 2�ω0
, 0, 0, λ0],

then γ < Γ − γ < tτ0,λ(V )− γ < T < tτ0,λ(V ) + γ < TM + γ = tM .

It follows by using the connectedness of C0� that CM
� = C0� . The assertion of Lemma

3.2 follows now from (3.1) and (3.6). �

����� �� ������� 1.1. It follows from Lemma 3.2 and [7], Theorem 1.2

that there is a bifurcation point λI ∈ [Λm−ξ,ΛM+ξ] with the properties announced
in our Theorem 1.1. Particularly, U∞

0,λI
(·, W ) is nonstationary periodic for some W ,

|W | > 0, and therefore λI ∈ (Λm,ΛM ) by (1.2). At this moment, also the assertion
of Remark 1.5 is obvious. �
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