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REMARKS ON STEINHAUS’ PROPERTY AND RATIO SETS OF

SETS OF POSITIVE INTEGERS

Tibor Šalát, Bratislava

(Received June 17, 1997)

Abstract. This paper is closely related to an earlier paper of the author andW. Narkiewicz
(cf. [7]) and to some papers concerning ratio sets of positive integers (cf. [4], [5], [12], [13],
[14]). The paper contains some new results completing results of the mentioned papers.
Among other things a characterization of the Steinhaus property of sets of positive integers
is given here by using the concept of ratio sets of positive integers.

Introduction

Remember some fundamental notions and results that will be used in what follows.

Definition A. A set A ⊆ � is said to have Steinhaus property (S) provided that

for each x ∈ (0,+∞) there are qn ∈ A (n = 1, 2, . . .) such that lim
n→∞

qn

n = x (cf. [7]).

The reason of introducing this definition comes from the well-known Steinhaus

result (cf. [15], p. 155) according to which for each x > 0 there exists a sequence
(qn)∞1 of primes such that

qn

n → x (n →∞) (i.e. the set P of all prime numbers has

the property (S) by our terminology).

The concept of a ratio set has been introduced in the papers [12], [13]. If A ⊆ �,
B ⊆ �, then we put R(A, B) = {a

b : a ∈ A, b ∈ B}. The set R(A, B) is said to be

the ratio set of the sets A, B. In particular for A = B we put R(A, A) = R(A) =
{x

y : x ∈ A, y ∈ A}.
A set A ⊆ � is said to be (R)-dense provided that the set R(A) is a dense set in

(0,+∞).
The reason for introducing the concept or ratio sets comes from a result of

A. Schinzel (cf. [15], p. 155) by which the set of all numbers p
q , p, q are primes, is

dense in (0,+∞) (i.e. the set P of all primes is an (R)-dense set by our terminology).
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We remember the notion of asymptotic and uniform densities. If A ⊆ �, then we

put A(n) =
∑

a∈A,a�n

1. Then d(A) = lim inf
n→∞

A(n)
n and d(A) = lim sup

n→∞
A(n)

n is said to

be lower and the upper asymptotic density of the set A, respectively. If d(A) = d(A)

(= d(A)) then the number d(A) is called the asymptotic density of the set A (cf. [8],
p. 71).

If s, t are integers, s � 0, t � 1, then A(s+1, s+ t) denotes the number of elements
a ∈ A such that s+1 � a � s+t. Put αt = min

s�0
A(s+1, s+t), αt = max

s�0
A(s+1, s+t).

Then there exist u(A) = lim
t→∞

αt

t and u(A) = lim
t→∞

αt

t and these numbers are called

the lower and upper uniform density of the set A, respectively. If u(A) = u(A)
(= u(A)), then u(A) is called the uniform density of A. Put βt = lim inf

s→∞
A(s+1, s+t),

βt = lim sup
s→∞

A(s+1, s+t), then it is well–known that u(A) = lim
t→∞

βt

t , u(A) = limt→∞
βt

t

(cf. [2], [3]).

Denote by U the class of all infinite sets A ⊆ �. If A ∈ U , A = {a1 < a2 < . . . <

an < . . .} then we put �(A) =
∞∑

k=1
2−ak =

∞∑
k=1

εk2−k ∈ (0, 1], where (εk)∞1 is the

characteristic function of the set A. The function � : U → (0, 1] is a one-to-one

mapping of U onto (0, 1].

If S ⊆ U , then we set �(S) = {�(A) : A ∈ S}. The set �(S) is a tool for “measur-

ing” the greatness of the class S (cf. [8], p. 17-18).

In what follows λ(M) denotes the Lebesgue measure of the setM ⊆ R and dimM

the Hausdorff dimension of M (cf. [9], [10], [11]).

The symbol M denotes the closure of the set M ⊆ R. The concepts of the set
of the first (Baire) category and the set of the second (Baire) category in (0, 1] will

be used in the usual sense (cf. [6], p. 43), the interval (0, 1] being considering as a
metric space with the Euclidean metric. A set H ⊆ (0, 1] is said to be a residual set
provided that (0, 1] \H is a set of the first category.

1. Steinhaus’ property, ratio sets and uniform density of sets A ⊆ �

First of all we shall give a characterization of the property (S) based on the concept

of ratio sets of sets A ⊆ �.

Theorem 1.1. A set A ⊆ � has the property (S) if and only if for each infinite

set B ⊆ � the set R(A, B) is dense (0,∞).

�����. 1. Suppose that A has the property (S). Let B = {b1 < b2 < . . . <

bn < . . .} ⊆ � be an arbitrary infinite set and let x ∈ (0,∞). By the assumption there
exist qn ∈ A (n = 1, 2, . . .) such that qn

n → x (n → ∞). But then the subsequence
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( qbn

bn
)∞n=1 of the sequence (

qn

n )
∞
n=1 converges to x, as well. Now it suffices to observe

that qbn ∈ A, bn ∈ B (n = 1, 2, . . .) and the density of R(A, B) in (0,∞) follows.
2. Suppose that A = {a1 < a2 < . . . < an < . . .} ⊆ � has not the property (S).

In [7] (see Proposition 2 in [7]) is is proved that A has the property (S) if and only
if lim

n→∞
an+1

an
= 1. Hence we have lim sup

n→∞
an+1

an
> 1. Therefore it exist an η > 0 and

n1 < n2 < . . . such that

(1)
ank
+ 1

ank

� 1 + η (k = 1, 2, 3, . . .).

Construct the intervals Ik = (ank
, (1 + η), ank

) (k = 1, 2, . . .). From (1) we see

that Ik ∩ R(A, B) = ∅ (k = 1, 2, . . .), where B = {an1 < an2 < . . . < ank
< . . .}.

Hence the set R(A, B) is not dense in (0,∞). �

The relationship between (R)-density of a set A ⊆ � and its asymptotic density

is established in [12]. It is proved in [12] that if d(A) > 0 then A is an (R)-dense
set. Simultaneously it is shown in [12] that the condition d(A) > 0 is not sufficient

for the (R)-density of the set A. In connection with these facts the natural question
arises whether the positivity of u(A) is sufficient for (R)-density of A. The positive

answer is contained in the following result.

Theorem 1.2. If u(A) > 0, then the set A is an (R)-dense set.

Theorem 1.2 follows immediately from the following lemma.

Lemma 1.1. If A ⊆ � and the set R(A) is not dense in (0,∞), then

(2) lim inf
t→∞

αt = 0.

�����. Let A = {a1 < a2 < . . . < ak < . . .} ⊆ � be not (R) dense. Then
there exists an interval (c, d] � (0,∞) such that (c, d] ∩R(A) = ∅. From this we get
(cak, dak] ∩A = ∅ (k = 1, 2, . . .) and hence

(3) A([cak] + 1, [dak]) = 0 (k = 1, 2, . . .).

Put sk = [cak], tk = [dak]−[cak] (k = 1, 2, . . .). Then (3) yields A(sk+1, sk+tk) =

0 (k = 1, 2, . . .) and so αtk
= 0 (k = 1, 2, . . .). From this (2) follows. �

Remark 1.1. a) Note that the condition u(A) > 0 is only a sufficient but not

necessary condition for (R)-density of A. It is namely well-known that u(P ) = 0 (P
being again the set of all primes—cf. [3]), but P is an (R)-dense set (cf. [15], p. 155).
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b) Analogously it can be checked that Lemma 1.1 cannot be conversed. It suffices

to put A = P and remember that the sequence 1, 2, . . . , n, . . . of all positive integers
contains arbitrarily long “blocks” b+1, b+2, . . . , b+m that contain no prime number.

c) Note that from the property (S) of a set A ⊆ � its (R)-density follows (see [7]).

In connection with the mentioned characterization of the property (S) ([7], Propo-

sition 2) we are proving the following result.

Proposition 1.1. If the set A = {a1 < a2 < . . .} ⊆ � is (R)-dense then

(4) lim inf
n→∞

an+1

an
= 1.

�����. Suppose that (4) does not hold. Then there exists an η > 0 such that
for each n = 1, 2, . . . we have an+1

an
> 1 + η. But then (1, 1 + η) ∩R(A) = ∅. �

Remark 1.2. Proposition 1.1 cannot be conversed. This can be seen from the
example A = {22, 22+1, 24, 24+1, . . . , 22n, 22n+1, . . .} = {a1 < a2 < . . .}. Obviously
we have lim inf

n→∞
an+1

an
= 1 and simultaneously it can be verified that R(A)∩(54 , 165 ) = ∅.

In the end of this part we mention a problem from [5]. In this paper on p. 50

the following “Open Problem Two” is introduced which can be formulated in our
terminology as follows:

Let a, b ∈ �, (a, b) = 1. Denote by D(a, b) the set of all prime numbers that are

contained in the arithmetic progression (a+ bn)∞n=1. Is the set D(a, b) an (R)-dense
set?

The positive answer to this problem can be derived from an example which is
contained on p. 227 of the paper [12]. In this example it is shown that if A ⊆ � and

A(x) ∼ c1x
logα x (c1 > 0, α > 0), then A is an (R)-dense set. Now, it is wellknown

(cf. [1]. p. 154–155) that if A = D(a, b) then

A(x) ∼ 1
ϕ(b)

x

log x
(for x →∞),

ϕ being the Euler function. From this we get the positive answer to the mentioned
problem immediately.

A little different solution of the mentioned problem form [5] is given in [14].
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2. Metric and topological results

Using the method of dyadic numbers �(A) of sets A ∈ U we shall investigate some

classes of sets A ⊆ � that are related to the (R)-density and Steinhaus property (S).

Denote by T ∗R the class of all A = {a1 < a2 < . . .} ∈ U with lim inf
n→∞

an+1

an
= 1.

Denote by TR the class of all A ∈ U that are (R)-dense (cf.[13]) and by TS the class

of all A ∈ U having the property (S) (cf. [7]). Further denote by TB the class of all
A ∈ U that are bases for Q+ (i.e. for which the following holds: Every r ∈ Q+ can

be expressed in the form r = a
b , where a ∈ A, b ∈ A). The symbol TB0 denotes the

class of all A ∈ U that are strong bases for Q+ (for which the following holds: For

each r ∈ Q+ there exists an infinite number of pairs (a, b) ∈ A×A such that r = a
b )

(cf. [13]).

Obviously we have TB0 ⊆ TB and TR ⊆ T ∗R (see Proposition 1.1). Hence

(5) �(TR) ⊆ �(T ∗R)

Now the natural question arises how great is the difference T ∗R \ TR. A certain
information about this is given in the following theorem (see part (ii) and (iii) of

Theorem 2.1).

Theorem 2.1. (i) The set �(T ∗R) is a union of a Gδ-set and an Fσ-set in (0, 1].

(ii) The set �(T ∗R) is residual in (0, 1].

(iii) We have λ(�(T ∗R \ TR)) = 0.

(iv) We have dim �(T ∗R \ TR) �
√
2− 1 > 0.

�����.

(i) For n, k ∈ �, s � 0 we put B(n, s, k) =
{

x =
∞∑

k=1
εk(x)2−k ∈ (0, 1] : εn(x) = 1,

εn+1(x) = . . . = εn+s−1(x) = 0, εn+s(x) = 1, |n+s
n − 1| < 1

k

}
.

Then we get

(6) �(T ∗R) =
∞⋂

k=1

∞⋂

m=1

⋃

n,s�m

B(n, s, k).

Put E = (0, 1] \D, where D is the set of dyadic rationals. Then B(n, s, k) ∩ E is
an open set in E and so by (6) the set E ∩ �(T ∗R) is a Gδ-set in E and in (0, 1], as

well. Consider that D is a countable set, thus D ∩ �(T ∗R) is an Fδ-set. The assertion
follows from the following obvious equality

�(T ∗R) = [E ∩ �(T ∗R)] ∪ [D ∩ �(T ∗R)].
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(ii) Since �(TR) is residual in (0, 1] (cf. [13]), the part (ii) of Theorem follows

from (5).
(iii) Since � is a one-to-one mapping of U onto (0, 1] we get

(7) �(T ∗R \ TR) = �(T ∗R) \ �(TR)

But λ(�(TR)) = 1 (cf. [13]) and so by (5) we have λ(�(T ∗R)) = 1. The part (iii) of
Theorem follows from (7).

(iv) Construct the sets

Ak = {2k + 1, 2k + 2, . . . , 2k + [t2k]} (k = 1, 2, . . .),

0 < t <
√
2− 1 and put A =

∞⋃

k=1

Ak.

Obviously the set A belongs to T ∗R. We show that A does not belong to TR.
Let c, d ∈ A, c � d. There are two possibilities here:
a) There exist k, j, k 
= j, such that c ∈ Ak, d ∈ Aj

b) There exists a k such that c, d ∈ Ak.

a) We have k > j and so

c

d
� 2k + 1
2j + [t2j]

� 2
k−j

1 + t
� 2
1 + t

.

Since t <
√
2− 1, we have 1 + t < 2

1+t .
b) By a simple estimation we get

c

d
<
2k + [t2k]
2k

� 1 + t

According to previous inequalities we get R(A) ∩ (1 + t, 2
1+t ) = ∅. Thus A /∈ TR.

So we have A ∈ T ∗R \ TR. Obviously no subset A′ of A belongs to TR. Further a
subset B of A belongs certainly to T ∗R if

(8)
∞⋃

k=1

{2k + 1, 2k + 2} ⊆ B ⊆
∞⋃

k=1

{2k + 1, . . . , 2k + [t2k]}.

Denote by W the class of all B ⊆ A satisfying (8). Then

(9) W ⊆ T ∗R \ TR

In what follows we shall use the following consequence of Theorem 2.7 from [11]:
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Let I ⊆ � and (ε0k)k∈I be given sequence of 0’s and 1’s. Denote by Z =

Z(I, (ε0k), k ∈ I) the set of all numbers x ∈
∞∑

k=1
εk(x)·2−k ∈ (0, 1] for which εk(x) = ε0k

if k ∈ I and εk(x) = 0 or 1 for k ∈ � \ I. Then we have

dimZ(I, (ε0k), k ∈ I) = lim inf
n→∞

log
∏

j�n,j∈�\I
2

n log 2
= d(� \ I)

Using the previous result from [11] we get an estimation for the Hausdorff dimen-

sion of set �(W ).
By notation used in [11] (Theorem 2.7) we put

I =
∞⋃

j=1

{2j + 1, 2j + 2} ∪ (� \A), ε0k = 1 if

k ∈
∞⋃

j=1

{2j + 1, 2j + 2} and ε0k = 0 for k ∈ � \A.

Then �(W ) = Z(I, (ε0k), k ∈ I). Hence by definition of I we have

� \ I =
∞⋃

j=1

{2j + 3, 2j + 4, . . . , 2j + [t2j]}.

Minimal values of the quotient (�\I)(n)n are attained at the numbers n = 2j+1 + 2
(j = 1, 2, . . .).

Therefore we have

lim inf
n→∞

(� \ I)(n)
n

= lim
j→∞

j∑
k=3
[t2k]

2j+1 + 2
= t.

So we get dim �(W ) = d(� \ I) = t. This together with (9) yields dim
�(T ∗R \ TR) � t. Since this holds for every t, 0 < t <

√
2 − 1, the assertion fol-

lows. �

In what follows we shall investigate the relationship between TS , TB and TB0 from

metric and topological point of view.
Observe that the set P of all primes belongs to TS but obviously it does not belong

to TB (and so it does not belong to TB0 , as well). Hence TS \ TB 
= ∅ 
= TS \ TB0 .
Note that the inclusion TB ⊆ TS does not hold. This is a simple consequence of

two topological results on sets �(TB), �(TS) (cf. [7] and [13]). By these results the
set �(TB) is residual in (0, 1] and �(TS) is a set of the first category in (0, 1].
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Proposition 2.1. Each of the sets �(TB \ TS), �(TB0 \ TS) is residual in (0, 1].

�����. It suffices to prove the part concerning the second set. Since � is
one-to-one mapping, we have

(10) �(TB0) = �(TB0 \ TS) ∪ �(TB0 ∩ TS).

The set �(TB0) is residual (cf. [13]) and �(TS) is a set of the first category in (0, 1]

(cf. [7]). From these facts that assertion follows from (10). �

The sets �(TB), �(TB0) and �(TS) have the Lebesgue measure 1 (cf. [7], [13]).
From this we get immediately

Proposition 2.2. The sets �(TS \TB), �(TB \TS), �(TB0 \TS), �(TS \TB0) have

the Lebesgue measure 0.

Proposition 2.2 evokes the question what is the Hausdorff dimension of sets men-

tioned in this proposition. In this connection we give a lower estimation for dim
�(TS \ TB).

Theorem 2.2. We have dim �(TS \ TB) � 1
2 .

Corollary. We have dim �(TS \ TB0) � 1
2 .

�����. Observe that the set �1 = {1, 3, . . . , 2k − 1, . . .} of all odd positive
integers belongs to TS (cf. Proposition 2 in [7]), but it does not belong to TB and
consequently no subset of �1 belongs to TB.

Let d ∈ �. Put M0 = {1, 1 + 2d, 1 + 2d · 2, . . . , 1 + 2d · n, . . .} ⊆ �1 .

Denote by Sd the class of all sets M satisfying the inclusions M0 ⊆ M ⊆ M0 ∪M1,

where

M1 =
∞⋃

n=0

{1 + 2d · n+ 2, 1 + 2d · n+ 4, . . . , 1 + 2d · n+ 2(d− 1)}.

Using proposition 2 from [7] one can easily check that

(11) Sd ⊆ TS \ TB.

The Hausdorff dimension of the set �(Sd) can be determined on the basis of The-

orem 2.7 from [11]. We get

dim�(Sd) = lim inf
n→∞

log
∏

k�n,k∈M1

2

n log 2
= d(M1).
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We have obviously

d(M1) = d(�1 )− d(M0) =
1
2
− 1
2d

.

Owing to (11) we have �(TS \ TB) � 1
2 − 1

2d . This holds for every d ∈ �. Thus by
d →∞ the theorem follows. �
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