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AN AXIOMATIC APPROACH TO METRIC PROPERTIES OF
CONNECTED GRAPHS

LADISLAV NEBESKY*, Praha

(Received April 4, 1996)

Let G be a nontrivial connected graph and let d denote its distance function. As is
wellknown, d is a metric on V(G). In [4], and axiomatic characterization of the set of
all geodesics (i.e. shortest paths) in G was given. In [8], an axiomatic characterization
of the set of all steps in G (i.e. the set of all ordered triples (u,v,z) of vertices in
G with the property that d(u,v) = 1 and d(v,x) = d(u,x) — 1) was given. In the
present paper, a certain connection between an axiomatic characterization of the set
of all nontrivial geodesics in G and that of the set of all steps in G will be studied.

0. In this paper the letters 4, j, k, m and n are reserved for denoting non-negative
integers. By a graph we mean a finite undirected graph with no loop or multiple
edge. In the whole paper we assume that a nontrivial connected graph G is given.
Its vertex set, its edge set and its distance function will be denoted by V', E and d,
respectively. Hence V is a finite set with at least two elements.

As usual, if i > 0, then V**! denotes the set of all ordered (i + 1)-tuples

(1) (UO,...,UZ‘),
where wo, ...,u; € V. Instead of (1) we will shortly write

If j > 0, then we denote by 3; the set

oo

U Vi+1.

i=j
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Ifa=wvy...vp and 8 =wyp...wp,, where k > 0, m > 0 and vy, ..., vg, wo, ...

V', then we denote

af =vg...vEWg ... Wy

Let y=z¢...x,, where n > 0 and xg,...,x, € V. We denote
¥ =xy...20, a(y) =x9 and c(y) = xy,.
If n > 1, then we denote b(y) = 1. Moreover, we denote
¥ =30 U {x},

where 0% = § = x4 for every § € ¥y. Define xx = x and * = x.

y Wi €

Let wug,...,u; € V, where ¢ > 0. As usual, we say that (2) is a walk in G if

{uj,uj11} € E for each j, 0 < j <i;

we say that (2) is a path in G if it is a walk in G and the vertices uy, . .

, U; are

mutually distinct; we say that (2) is a nontrivial path in G if it is a path in G and
i > 1. Let II denote the set of all paths in (G, and let IIy denote the set of all

nontrivial paths in G.

By a geodesic (]2]) or a shortest path ([1]) in G we mean such a path (2) in G that

d(UQ, ’U,Z) =1.

Theorem 0 ([4]). Let R C II. Then R is the set of all geodesics in G if and only

if it fulfils the following Axioms X0, X1, X2+, X3, X4+, X5, X6 and X7:

X0 if {u,v} € E, thenuve R (Yu, veV);
X1 ifa € R, then@we R (Ya € X);
X2+ ifuaxr € R, thenua€ R (Vu, x € V, Va € 3);

X3 if auBxy, uéx € R, then audxy € R (NVu, x €V, Vo, 3,7, € X);

X4+  ifuwwazx, zy € R, uoyx ¢ R for all p € ¥ and uwvoy ¢ R

for alloc € ¥, then vaxy € R (Yu,v,z,y €V, Va € X);
X5 if u# x, then there exists T € ¥ such that utx € R (Vu,z € V);
X6 ifuvax € R, thenux ¢ R: (Yu,v,z €V, VYae€X);

X7 if wwazx, vufy, uByx € R, then vaxy € R (Yu,v,z, y €V, Va, 8€X).

Note that Theorem 0 was generalized in [6] and modified in [7].



We will need two propositions.

Proposition 1. Let R C II and let R fulfil Axioms X1, X2+ and X6. Then R
fulfils Axiom X4+ if and only if it fulfils the following Axiom X4:

X4 ifuwvax, xy € R, u#y #v, uoyx ¢ R for all p € ¥ and uwvoy ¢ R
for alloc € ¥, thenvaxy € R (Yu,v,z,y €V, VaeX).

Proof. Obviously, if R fulfils X4+, then it fulfils X4. Conversely, let R fulfil X4.
Consider arbitrary u,v,z,y € V and an arbitrary a € ¥ such that wvazx, ry € R,
uoyz ¢ R for all p € ¥ and uvoy ¢ R for all 0 € ¥. By X1, yz € R. If u =y, then
yvax € R, which contradicts X6. Hence u # y.

Suppose y = v. Then uyax € R. Combining X2+ and X1, we get xay € R. By
X6, o = *. Hence uyr € R. This means that there exists ¢ € ¥ such that uoyx € R,
which is a contradiction. Hence y # v. By X4, vazy € R. This means that R fulfils
X4+, which completes the proof. O

Proposition 2. Let R CII and let R fulfil Axiom X0. Then R fulfils Axiom X2+
if and only if it fulfils the following Axioms X2 and X8:

X2 if wwax € R, then uwva € R (Yu,v,z € V, VYa € X);
X8 ueR (MueV).

Proof. Since G has no isolated vertex, the result is obvious. O

Combining Theorem 0 with Propositions 1 and 2, we obtain the following charac-
terization of the set of all nontrivial geodesics in G:

Theorem A. Let R C Ily. Then R is the set of all nontrivial geodesics in G if
and only if it fulfils Axioms X0-X7.

Consider T C V3. We will say that T is associated with G if
{u,v} € E if and only if v # v and there exists x € V such that either vz € T
or vux €T
for all ordered pairs uv € V2.
Following [8], by a step in G we mean an ordered triple uvz € V3 with the
properties
d(u,v) =1 and d(v,z)=d(u,z)—1.

The next theorem was proved in [8]:



Theorem B. Let T C V3, and let T be associated with G. Then T is the set of
all steps in G if and only if it fulfils the following Axioms Y0-Y7:

YO0 ifuve € T, thenvuu €T (Vu,v,z €V);

Y1 ifuvx, vuy € T, thenxz #y (Vu,v,z,y €V);

Y2 ifuve, zyv € T, thenzyu €T (Vu,v,x,y € V);

Y3 ifuve, zyv € T, thenuvy € T (Yu,v,z,y € V);

Y4 ifuvx, xyy € T, then either zyu € T oryaxv € T oruvy € T
(Vu,v,z,y € V);

Y5 if u # x, then there exists z € V' such that uzz € T (Yu,x € V);

Y6 ifuve, uyv € T, theny=v (Vu,v,z,y € V);

Y7 if uvz, vuy, zyy € T, thenzyu € T (Yu,v,z,y € V).

We denote by R the set of all R C Il such that R fulfils X0-X5. We denote
by 7 the set of all T C V3 such that T is associated with G and it fulfils YO-Y5.
A one-to-one mapping ¢ from R onto 7 will be found in Theorem 1. Moreover, if
ReR and T = ®(R), then we will prove that R fulfils X6 and X7 if and only if T
fulfils Y6 and Y7 (Theorem 2).

Remark 1. The set of all geodesics in G is closely connected with the interval
function of G in the sense of [3]. An axiomatic characterization of the interval
function of G was given in [5].

1. In this part of the paper, some consequencies of Axioms Y0-Y5 will be found.
Let T C V3. If ug,...,u;, v € V, where ¢ > 1, then instead of

UQULV, .« o Uj— UV €T

we will write

ug ... u;lv.

Consider u,v,w,z € V and «, 8 € X. It is obvious that
(3) vavTz and vpwTz if and only if wavfwTx.
Let ¢ > 1 and let ug,...,u; € V. We will say that (2) is a process in T if

ug ... uilu;.



As follows from (3),
(4) ifi > 2 and wouy...u; is a process in T, then w;...u; is a process in T, too.

We denote by 7 the set of all T' C V3 such that T is associated with G.

Part of the next lemma was proved in [8].

Lemma 1. Consider T € Ty. Assume that T fulfils Axioms Y2 and Y3. Let

Uug, ..., U, v,w €V, where i > 1, and let

(5) ug ... u; L.

If

(60) woug € T,
then

(65) uj_ujw, wou; € T

(7:) vwu; €T,
then
(k) Up_1ULW, VWUE_1 € T

for each k, 1 <k < 1.

Proof. First, let wouy € T. We will prove that (6;) holds for each j, 0 < j <.
We proceed by induction on j. The case j = 0 is obvious. Let j > 1. By the
induction hypothesis, wvuj_1 € T. By (5), uj_1u;v € T. Combining Y2 and Y3, we
get (6;).

Next, let vwu; € T. We will prove that (7;—;) holds for each j, 0 < j < 4. The
case j = 0 is obvious. Let j > 1. By the induction hypothesis, vwu;—;11 € T. By
(5), wi—jui—j+1v € T. Combining Y2 and Y3, we get (7,—;). Thus the lemma is
proved. O
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Corollary 1. Consider T' € 7y. Assume that T fulfils Axioms Y2 and Y3. Let
Ug, ..., Ui, V,w €V, where ¢ > 1, and let (5) hold. If

either wvug € T or vwu; € T,
then ug ... u;Tw.

Lemma 2. Consider T' € 7y. Assume that T fulfils Axioms Y0, Y2 and Y3. Let
ug,...,u; € V, wherei > 1, and let u;...ug be a process in T. Then ug...u; is a
process in T as well.

Proof. Sincewu;...ugisa processin T, we have u; ...uoTug. We want to prove
that

(8) ug . .. ;.

We proceed by induction on i. If i = 1, then (8) immediately follows from YO0. Let
1 > 2. Since
Uj—1 - UQTUQ,

the induction hypothesis implies that
Ug .. Uj—1 T Uj—1.
Moreover, we have u;u;—1ug € T. By virtue of Corollary 1,
ug .. U1 u;.

Since w;u;—1ug € T, YO implies that w;—ju;u; € T, and thus (8) holds, which com-
pletes the proof. O

A very special version of the next lemma was proved (in a connection with char-
acterizing geodetic graphs) in [9].

Lemma 3. Consider T' € 7y. Assume that T fulfils Axioms Y0, Y2, Y3 and Y4.
Let ug,...,u;, v € V, where i > 1, and let (5) hold. If u; = ug, then

(9) ug ... u;Tw for each w € V.

Proof. Let u; =wug. Suppose, to the contrary, that (9) does not hold. Since G
is connected, there exist distinct z,y € V such that {z,y} € E,

(10) ug ... wilx
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and there exists j, 0 < j < ¢ — 1, such that ujuj;1y ¢ T. By virtue of (10),
ujujp1z € T. Recall that T € 7y. Since {z,y} € E, YO implies that zyy € T.
According to Y4,

(11) either yru;11 € T or xyu; € T.

Put Uij4+1 = U—441 = UL, ...,U2—1 = U—1 = Uj—1- Then Ujgs = Uj—; = Uj and
Ujtit1 = Wj—it1 = Uj+1. As follows from (10),

(12) Ujg1--- Uj+in+i+1Tx
and
(13) Uj—3Uj—i41 - - - ’U,jT.’I,‘.

Let yzu;y1 € T. Combining (12) with Corollary 1, we get
Ujp1 - Ujpithrit1 TY

and therefore u;u;41y € T, which is a contradiction.
Let yzu;y1 ¢ T. By (11), zyu; € T. Combining (13) with Corollary 1, we get

Uj—gUj—i41 - - - ’Z,LJTy
and therefore uju; 1y € T, which is a contradiction. Thus the lemma is proved. O

Lemma 4. Consider T € 7). Assume that T fulfils Axioms Yo—Y4. Let ug, ..., u;,
v €V, wherei > 1, and let (5) hold. Then (2) is a path in G.

Proof. First, we will prove that the vertices uo,...,u; are mutually distinct.
Suppose, to the contrary, that there exist g and h, 0 < g < h < i such that ug = uy.
We have

Ug ... upT.

Since ug = up, it follows from Lemma 3 that
Ug ... upTw
for every w € V. Therefore ugugyi1uqy € 7. By YO,
Ugp1ugly € T

which contradicts Y1. We have proved that uy,...,u; are mutually distinct.
Recall that T is associated with G. Therefore, (5) implies that wug ... u; is a walk
in G. Since uyg, ... ,u; are mutually distinct, (5) is a path, which completes the proof.
O
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Corollary 2. Consider T € Ty. Assume that T fulfils Axioms Y0-Y4. Then
every process in T is a nontrivial path in G.

Lemma 5. Consider T € 7Ty. Assume that T fulfils Axioms YO-Y5. Let u,v € V
and let u # v. There exists T € X such that urv is a process in T'.

Proof. Suppose, to the contrary, that the lemma does not hold. By virtue of
Y5, there exists an infinite sequence

(ug,u1,...)
of vertices in G such that
ug ... u;Tv foreach i =1,2,....
Since V is finite, there exist j and k such that 0 < j < k and u; = u. We have
uj ... up T,

which contradicts Lemma 4. Hence the lemma follows. O

Remark 2. As we will see, the assumption that T fulfils Axiom Y4 cannot be
removed from Lemma 5. Let |V| =7,

V = {0, x1, %2, Y0, Y1,Y2, 2},
E = {{z0,2},{yo, 2} } U {{zi, ziv 1}, {yi, yir }; 1 <0 < 3}

and

T = {xozz, zxomo, Y022, 2YoYo}
U{zjzoz, zx0xj, Y02, 2yoys; 1 < j <2}
U{ZRThr1Ths1, The1ThThy YRYh+1Yk+1, Ye+1YkYk; 0 <k < 2}

U {xmxm+1yn7 ymym-‘rlxn; 0 < m < 2a 0 < n < 2}7

where x3 = zp and y3 = yg. We see that T € 7y, it fulfils Axioms Y0-Y3 and Y5
but does not fulfil Axiom Y4. Moreover, we see that the conclusion of Lemma 5 does
not hold for T": for example, there exists no 7 € ¥ such that x¢7yg is a process in T'.
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2. Recall that R is the set of all R C Il such that R fulfils Axioms X0-X5 and 7
is the set of all T C V3 such that T is associated with G and fulfils Axioms Y0-Y5.
We denote by ® the mapping from R into V3 defined as follows:
® is the set of all uvx € V3 with the property that there exists £ € R such that
a(€) =u, b(§) =v and ¢(§) ==z
for each R € R.
Moreover, we denote by ¥ the mapping from 7 into 31 such that ¥(7') is the set
of all processes in T for each T' € 7.
The next theorem is the main result of the present paper:

Theorem 1. ® is a one-to-one mapping from R onto T and ¥ = &1,

Proof. (I) Consider an arbitrary R € R. Denote T'= ®(R). Combining the
fact that R C IIy with X0, we see that T is associated with G. X5 implies that T
fulfils Y5.

We will show that T fulfils YO—Y4. Consider arbitrary u,v,x,y € V. Let uvx € T.
Since T = ®(R), there exists 7 € ¥ such that urer € R and b(urz) = v. Since
utx € II, we have u # x.

(Verification of Y0). If 7 = %, then uv € R. If 7 # %, then by X2, uv € R, too.
By X1, vu € R. Since a(vu) = v, b(vu) = u = c(vu), we have vuu € T.

(Verification of Y1). Let vuy € T. We wish to show that = # y. Suppose, to the
contrary, that x = y. Then vux € T. Since u # =z, there exists 8 € ¥ such that
vufx € R. Since utz € R, X3 implies that vurz € R. Since b(urx) = v, we see that
vutz ¢ Iy, which is a contradiction. Thus x # y.

(Verification of Y2 and Y3). Let zyv € T. Then there exists 7 € X such that
zmv € R and b(xmv) = y. Since xmv € Uy, © # v. Since b(urx) = v, there exists
a € ¥ such that uwvaxr € R. Recall that zmv € R. By X1, vz € R. According to
X3, wwvTx € R.

First, let m = *. Then y = v and uyz € R. By X2, uy € R. Since v = y, we have
uvy € T. Since uyx € R, X1 implies that zyu € R. Hence xyu € T.

Now, let m # %. Then there exists 3 € ¥ such that zyBv = zmv. Hence vByx =
vz, Recall that uvTz € R. We get uwvfByx € R. By X1, zyfvu € R and therefore,
zyu € T. By X2, uvBy € R. Hence uvy € T.

(Verification of Y4). Let ayy € T. Then zy € R. By X0, yx € R.

First, let 7 = %. Then v = x. We see that yzv € T.

Now, let 7 # x. Then there exists « € ¥ such that wvax € R. By X1, wv € R. If
u =y, then xu € R and therefore, xyu € T. If y = v, then uy € R and therefore,
uvy € T. Let u # y # v.

It there exists ¢ € ¥ such that upyr € R, then, by X1, xzyou € R and therefore,
zyu € T. If there exists 0 € ¥ such that uvoy € R, then uvy € T. Assume that
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uoyr ¢ R for all p € ¥ and wvoy ¢ R for all 0 € X. By virtue of X4, vaxy.
According to X1, yrav € R and therefore, yxv € T.

We have proved that T € 7. This means that ® is a mapping into 7.

(IT) We will prove that

(14) if Ry # Rg, then ®(R;) # ®(R2), for any Ry, Ry € R.

Suppose, to the contrary, that there exist distinct R, R’ € R such that ®(R) = ®(R').
Without loss of generality, let R — R’ # (. Let m be the minimal k > 1 with the
property that (R — R') N V*+1 £ (). Combining the fact that R C Il with X0, we
see that m > 2. There exist u,v,z € V and « € ¥ such that

war € (R—R)ny™

Hence v # x. Since uvaxr € R, combining X1 and X2, we get var € R. By
the definition of m, vax € R’. Since wwazx € R, uvz € ®(R). Hence uvz € ®(R').
Recall we have that v # x. There exists 3 € ¥ such that uvBz € R'. Since vazx € R/,
X3 implies that uwvax € R’, which is a contradiction. Thus (14) is proved.

(III) Consider an arbitrary T' € 7. Denote R = ¥(T'). By Corollary 2, R C IIy.
Since T is associated with G, YO implies that R fulfils X0. By Lemma 2, R fulfils
X1. Combining (4) with X1, we see that R fulfils X2. By virtue of Lemma 5, R
fulfils X5. We will show that R fulfils X3 and X4.

(Verification of X3). Let aufBzy, udx € R, where u,z € V and «, 3,7,0 € . By
X2, aufr € R. Since aufx and udx are processes in T', we have

aufxTx and wudxTz.

If & = x, then cudz € R. Let o # *. Then cuTx. By (3), audzTz and therefore,
audx € R.

By X1, yzfu@, zdua € R. If v = %, then Jzdua € R and, by X1, audzy € R.
Let v # x. Put v = c¢(u@). We have

zouaTv and FaTwv.

By virtue of (3), FzduaTv. Since v = c(ud@), Jréua € R. By X1, audzy € R.
(Verification of X4). Let uw,v,x € V and a € ¥. Assume that uvaz, vy € R,
u#y#v, upyr ¢ R for all p € ¥ and wvoy ¢ R for all 0 € . Then wvz, ayy € T,
x # v and wvy ¢ T. Moreover, by virtue of X1, we have xypgu ¢ R for all p € X.
Hence zyu ¢ T. By X4, yzv € T. Recall that  # v. According to Lemma 5, there
exists 7 € ¥ such that z7v € R. Since yzv € T, (3) implies that yz7v € R. By
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X1, vTzy € R. Recall that uvax € R. Combining X1 and X2, we have vax. Since
vTay € R, X3 implies that vazy € R.

We have proved that R € R. This means that ¥ is a mapping into R.

(IV) Consider an arbitrary Ty € 7. It is clear that ®(¥ (7)) C To. Applying
Lemma 5 and (3), we easily get Ty C ®(¥(Ty)). Hence ®(¥(T)) = T for each
TeT.

Combining the results of (I)-(IV), we obtain the statement of the theorem. Thus
the proof is complete. O

Lemma 6. Consider T € Ty. Assume that T fulfils Axioms Y0, Y1 and Y4. Then
it fulfils Axiom Y7 if and only if it fulfils the following Axiom Y7+:

Y7+ if uvz, vuy, zyu € T, thenyzv €T (Yu,v,z,y € V).

Proof. Let T fulfil Y7. Consider arbitrary w,v,x,y € V and assume that
wvx, vuy,ryu € T. By virtue of Y0, yxx € T. Y7 implies that yav € T. Thus T
fulfils Y7+.

Conversely, let T" fulfil Y74. Consider arbitrary u,v, 2,y € V and assume that
wvx, vuy,ryy € T. Since uwvx,zyy € T, Y4 implies that either xyu € T or yav € T
or uvy € T. We will show that zyu € T. Suppose that either uvy € T or yzv € T.
If woy € T, then, by Y1, we have vuy ¢ T, which is a contradiction. Hence yzv € T.
Since wvx,vuy € T, Y7+ implies that xyu € T. Thus T fulfils Y7, which completes
the proof. O

Theorem 2. Let R € R. Denote T = ®(R). Then R fulfils Axioms X6 and X7
if and only if T fulfils Axioms Y6 and Y7.

Proof. (I) Let R fulfil X6 and X7. We will prove that 7" fulfils Y6 and Y7.
Consider arbitrary u,v,x,y € V. Assume that uwvz € T. By virtue of YO, uwvv € T.
Since R =9(T), uv € R.

(Verification of Y6). Let uvy € T. Assume that y # v. Then there exists § € &
such that uyfv € R. By X6, uv ¢ R, which is a contradiction. Thus y = v. We see
that T fulfils Y6.

(Verification of Y7). We first show that T fulfils Y7+. Assume that vuy, zyu € T.
By YO0, yzz € T. If v = x, then yzv € T. Suppose that v # x. There exists a € &
such that wvax € R. First, let v = y. Then zuu € T and thus, by Y0, uzx € T. By
Y6, uvx ¢ T, which is a contradiction. We have u # y. Then there exist 5,7 € &
such that vufy, xyyu € R. Combining X1 and X2, we get ufBy, uyyxr € R. By
X3, ufyx € R. Recall that wvazx, vufy € R. By virtue of X7, vaxy € R. By X2,
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yrxav € R. Hence yzv € T. We have shown that T fulfils Y7+4. By Lemma 6, it
fulfils Y7.

(IT) Let T fulfil Y6 and Y7. We will prove that R fulfils X6 and X7. Consider
arbitrary u,v,z,y € V and an arbitrary o € X. Assume that wvax € R. Then
uvr € T and v # x.

(Verification of X6). Assume that ux € R. Then uzx € T. Since uvx € T, Y6
implies that v = x, which is a contradiction. Thus ux ¢ R.

(Verification of X7). Let vufy, ufyx € R. Then vuy € T. Since wvazx, ufyz € R,
combining X1 and X2 we get vax, yr € R. Hence yxx € T.

Combining the fact that vuy, wvz, yrr € T with Y7, we get yzv € T. Since
v # x, there exists 7 € ¥ such that yxtv € R. By X1, vTzy € R. Since vax € R,
X3 implies that vaxy € R.

We have proved that R fulfils X6 and X7, which completes the proof of the theorem.

O

By virtue of Theorem 2, Theorem B immediately follows from Theorem A. And
similarly, by virtue of Theorem 2, Theorem A immediately follows from Theorem B.

Remark 3. Every step in G can be interpreted as a signpost showing a shortest
path from a vertex to another vertex in G. Then every step uvx in G can be
interpreted as the signpost located at u, “oriented” to v and signed by .
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