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Czechoslovak Mathematical Journal, 50 (125) (2000), 3–14

AN AXIOMATIC APPROACH TO METRIC PROPERTIES OF

CONNECTED GRAPHS

Ladislav Nebeský*, Praha

(Received April 4, 1996)

Let G be a nontrivial connected graph and let d denote its distance function. As is

wellknown, d is a metric on V (G). In [4], and axiomatic characterization of the set of
all geodesics (i.e. shortest paths) in G was given. In [8], an axiomatic characterization

of the set of all steps in G (i.e. the set of all ordered triples (u, v, x) of vertices in
G with the property that d(u, v) = 1 and d(v, x) = d(u, x) − 1) was given. In the
present paper, a certain connection between an axiomatic characterization of the set

of all nontrivial geodesics in G and that of the set of all steps in G will be studied.

0. In this paper the letters i, j, k, m and n are reserved for denoting non-negative

integers. By a graph we mean a finite undirected graph with no loop or multiple
edge. In the whole paper we assume that a nontrivial connected graph G is given.

Its vertex set, its edge set and its distance function will be denoted by V , E and d,
respectively. Hence V is a finite set with at least two elements.

As usual, if i � 0, then V i+1 denotes the set of all ordered (i+ 1)-tuples

(1) (u0, . . . , ui),

where u0, . . . , ui ∈ V . Instead of (1) we will shortly write

(2) u0 . . . ui.

If j � 0, then we denote by Σj the set

∞⋃

i=j

V i+1.
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If α = v0 . . . vk and β = w0 . . . wm, where k � 0, m � 0 and v0, . . . , vk, w0, . . . , wm ∈
V , then we denote

αβ = v0 . . . vkw0 . . . wm.

Let γ = x0 . . . xn, where n � 0 and x0, . . . , xn ∈ V . We denote

γ = xn . . . x0, a(γ) = x0 and c(γ) = xn.

If n � 1, then we denote b(γ) = x1. Moreover, we denote

Σ = Σ0 ∪ {∗},

where δ∗ = δ = ∗δ for every δ ∈ Σ0. Define ∗∗ = ∗ and ∗ = ∗.
Let u0, . . . , ui ∈ V , where i � 0. As usual, we say that (2) is a walk in G if

{uj, uj+1} ∈ E for each j, 0 � j < i;

we say that (2) is a path in G if it is a walk in G and the vertices u0, . . . , ui are

mutually distinct; we say that (2) is a nontrivial path in G if it is a path in G and
i � 1. Let Π denote the set of all paths in G, and let ΠN denote the set of all

nontrivial paths in G.
By a geodesic ([2]) or a shortest path ([1]) in G we mean such a path (2) in G that

d(u0, ui) = i.

Theorem 0 ([4]). Let R ⊆ Π. Then R is the set of all geodesics in G if and only

if it fulfils the following Axioms X0, X1, X2+, X3, X4+, X5, X6 and X7:

X0 if {u, v} ∈ E, then uv ∈ R (∀u, v ∈ V );

X1 if α ∈ R, then α ∈ R (∀α ∈ Σ);
X2 + if uαx ∈ R, then uα ∈ R (∀u, x ∈ V, ∀α ∈ Σ);
X3 if αuβxγ, uδx ∈ R, then αuδxγ ∈ R (∀u, x ∈ V, ∀α, β, γ, δ ∈ Σ);
X4 + if uvαx, xy ∈ R, u�yx /∈ R for all � ∈ Σ and uvσy /∈ R

for all σ ∈ Σ, then vαxy ∈ R (∀u, v, x, y ∈ V, ∀α ∈ Σ);
X5 if u �= x, then there exists τ ∈ Σ such that uτx ∈ R (∀u, x ∈ V );

X6 if uvαx ∈ R, then ux /∈ R : (∀u, v, x ∈ V, ∀α ∈ Σ);
X7 if uvαx, vuβy, uβyx ∈ R, then vαxy ∈ R (∀u, v, x, y ∈ V, ∀α, β ∈ Σ).

Note that Theorem 0 was generalized in [6] and modified in [7].
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We will need two propositions.

Proposition 1. Let R ⊆ Π and let R fulfil Axioms X1, X2+ and X6. Then R

fulfils Axiom X4+ if and only if it fulfils the following Axiom X4:

X4 if uvαx, xy ∈ R, u �= y �= v, u�yx /∈ R for all � ∈ Σ and uvσy /∈ R

for all σ ∈ Σ, then vαxy ∈ R (∀u, v, x, y ∈ V, ∀α ∈ Σ).

�����. Obviously, if R fulfils X4+, then it fulfils X4. Conversely, let R fulfil X4.

Consider arbitrary u, v, x, y ∈ V and an arbitrary α ∈ Σ such that uvαx, xy ∈ R,
u�yx /∈ R for all � ∈ Σ and uvσy /∈ R for all σ ∈ Σ. By X1, yx ∈ R. If u = y, then

yvαx ∈ R, which contradicts X6. Hence u �= y.
Suppose y = v. Then uyαx ∈ R. Combining X2+ and X1, we get xαy ∈ R. By

X6, α = ∗. Hence uyx ∈ R. This means that there exists � ∈ Σ such that u�yx ∈ R,
which is a contradiction. Hence y �= v. By X4, vαxy ∈ R. This means that R fulfils
X4+, which completes the proof. �

Proposition 2. Let R ⊆ Π and let R fulfil Axiom X0. Then R fulfils Axiom X2+
if and only if it fulfils the following Axioms X2 and X8:

X2 if uvαx ∈ R, then uvα ∈ R (∀u, v, x ∈ V, ∀α ∈ Σ);
X8 u ∈ R (∀u ∈ V ).

�����. Since G has no isolated vertex, the result is obvious. �

Combining Theorem 0 with Propositions 1 and 2, we obtain the following charac-

terization of the set of all nontrivial geodesics in G:

Theorem A. Let R ⊆ ΠN . Then R is the set of all nontrivial geodesics in G if

and only if it fulfils Axioms X0–X7.

Consider T ⊆ V 3. We will say that T is associated with G if

{u, v} ∈ E if and only if u �= v and there exists x ∈ V such that either uvx ∈ T

or vux ∈ T

for all ordered pairs uv ∈ V 2.
Following [8], by a step in G we mean an ordered triple uvx ∈ V 3 with the

properties
d(u, v) = 1 and d(v, x) = d(u, x)− 1.

The next theorem was proved in [8]:
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Theorem B. Let T ⊆ V 3, and let T be associated with G. Then T is the set of

all steps in G if and only if it fulfils the following Axioms Y0–Y7:

Y0 if uvx ∈ T, then vuu ∈ T (∀u, v, x ∈ V );

Y1 if uvx, vuy ∈ T, then x �= y (∀u, v, x, y ∈ V );

Y2 if uvx, xyv ∈ T, then xyu ∈ T (∀u, v, x, y ∈ V );

Y3 if uvx, xyv ∈ T, then uvy ∈ T (∀u, v, x, y ∈ V );

Y4 if uvx, xyy ∈ T, then either xyu ∈ T or yxv ∈ T or uvy ∈ T

(∀u, v, x, y ∈ V );

Y5 if u �= x, then there exists z ∈ V such that uzx ∈ T (∀u, x ∈ V );

Y6 if uvx, uyv ∈ T, then y = v (∀u, v, x, y ∈ V );

Y7 if uvx, vuy, xyy ∈ T, then xyu ∈ T (∀u, v, x, y ∈ V ).

We denote by R the set of all R ⊆ ΠN such that R fulfils X0–X5. We denote
by T the set of all T ⊆ V 3 such that T is associated with G and it fulfils Y0–Y5.

A one-to-one mapping Φ from R onto T will be found in Theorem 1. Moreover, if
R ∈ R and T = Φ(R), then we will prove that R fulfils X6 and X7 if and only if T

fulfils Y6 and Y7 (Theorem 2).

Remark 1. The set of all geodesics in G is closely connected with the interval
function of G in the sense of [3]. An axiomatic characterization of the interval

function of G was given in [5].

1. In this part of the paper, some consequencies of Axioms Y0–Y5 will be found.
Let T ⊆ V 3. If u0, . . . , ui, v ∈ V , where i � 1, then instead of

u0u1v, . . . , ui−1uiv ∈ T

we will write

u0 . . . uiTv.

Consider u, v, w, x ∈ V and α, β ∈ Σ. It is obvious that

(3) uαvTx and vβwTx if and only if uαvβwTx.

Let i � 1 and let u0, . . . , ui ∈ V . We will say that (2) is a process in T if

u0 . . . uiTui.
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As follows from (3),

(4) if i � 2 and u0u1 . . . ui is a process in T, then u1 . . . ui is a process in T, too.

We denote by T0 the set of all T ⊆ V 3 such that T is associated with G.

Part of the next lemma was proved in [8].

Lemma 1. Consider T ∈ T0. Assume that T fulfils Axioms Y2 and Y3. Let
u0, . . . , ui, v, w ∈ V , where i � 1, and let

(5) u0 . . . uiTv.

If

(60) wvu0 ∈ T,

then

(6j) uj−1ujw, wvuj ∈ T

for each j, 1 � j � i. If

(7i) vwui ∈ T,

then

(7k) uk−1ukw, vwuk−1 ∈ T

for each k, 1 � k � i.

�����. First, let wvu0 ∈ T . We will prove that (6j) holds for each j, 0 � j � i.
We proceed by induction on j. The case j = 0 is obvious. Let j � 1. By the
induction hypothesis, wvuj−1 ∈ T . By (5), uj−1ujv ∈ T . Combining Y2 and Y3, we
get (6j).

Next, let vwui ∈ T . We will prove that (7i−j) holds for each j, 0 � j � i. The
case j = 0 is obvious. Let j � 1. By the induction hypothesis, vwui−j+1 ∈ T . By

(5), ui−jui−j+1v ∈ T . Combining Y2 and Y3, we get (7i−j). Thus the lemma is
proved. �
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Corollary 1. Consider T ∈ T0. Assume that T fulfils Axioms Y2 and Y3. Let

u0, . . . , ui, v, w ∈ V , where i � 1, and let (5) hold. If

either wvu0 ∈ T or vwui ∈ T,

then u0 . . . uiTw.

Lemma 2. Consider T ∈ T0. Assume that T fulfils Axioms Y0, Y2 and Y3. Let

u0, . . . , ui ∈ V , where i � 1, and let ui . . . u0 be a process in T . Then u0 . . . ui is a

process in T as well.

�����. Since ui . . . u0 is a process in T , we have ui . . . u0Tu0. We want to prove
that

(8) u0 . . . uiTui.

We proceed by induction on i. If i = 1, then (8) immediately follows from Y0. Let

i � 2. Since
ui−1 . . . u0Tu0,

the induction hypothesis implies that

u0 . . . ui−1Tui−1.

Moreover, we have uiui−1u0 ∈ T . By virtue of Corollary 1,

u0 . . . ui−1Tui.

Since uiui−1u0 ∈ T , Y0 implies that ui−1uiui ∈ T , and thus (8) holds, which com-
pletes the proof. �

A very special version of the next lemma was proved (in a connection with char-
acterizing geodetic graphs) in [9].

Lemma 3. Consider T ∈ T0. Assume that T fulfils Axioms Y0, Y2, Y3 and Y4.

Let u0, . . . , ui, v ∈ V , where i � 1, and let (5) hold. If ui = u0, then

(9) u0 . . . uiTw for each w ∈ V.

�����. Let ui = u0. Suppose, to the contrary, that (9) does not hold. Since G

is connected, there exist distinct x, y ∈ V such that {x, y} ∈ E,

(10) u0 . . . uiTx
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and there exists j, 0 � j � i − 1, such that ujuj+1y /∈ T . By virtue of (10),

ujuj+1x ∈ T . Recall that T ∈ T0. Since {x, y} ∈ E, Y0 implies that xyy ∈ T .
According to Y4,

(11) either yxuj+1 ∈ T or xyuj ∈ T.

Put ui+1 = u−i+1 = u1, . . . , u2i−1 = u−1 = ui−1. Then uj+i = uj−i = uj and
uj+i+1 = uj−i+1 = uj+1. As follows from (10),

(12) uj+1 . . . uj+iuj+i+1Tx

and

(13) uj−iuj−i+1 . . . ujTx.

Let yxuj+1 ∈ T . Combining (12) with Corollary 1, we get

uj+1 . . . uj+iuj+i+1Ty

and therefore ujuj+1y ∈ T , which is a contradiction.
Let yxuj+1 /∈ T . By (11), xyuj ∈ T . Combining (13) with Corollary 1, we get

uj−iuj−i+1 . . . ujTy

and therefore ujuj+1y ∈ T , which is a contradiction. Thus the lemma is proved. �

Lemma 4. Consider T ∈ T0. Assume that T fulfils Axioms Y0–Y4. Let u0, . . . , ui,

v ∈ V , where i � 1, and let (5) hold. Then (2) is a path in G.

�����. First, we will prove that the vertices u0, . . . , ui are mutually distinct.

Suppose, to the contrary, that there exist g and h, 0 � g < h � i such that ug = uh.
We have

ug . . . uhTv.

Since ug = uh, it follows from Lemma 3 that

ug . . . uhTw

for every w ∈ V . Therefore ugug+1ug ∈ T . By Y0,

ug+1ugug ∈ T,

which contradicts Y1. We have proved that u0, . . . , ui are mutually distinct.
Recall that T is associated with G. Therefore, (5) implies that u0 . . . ui is a walk

in G. Since u0, . . . , ui are mutually distinct, (5) is a path, which completes the proof.
�
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Corollary 2. Consider T ∈ T0. Assume that T fulfils Axioms Y0–Y4. Then

every process in T is a nontrivial path in G.

Lemma 5. Consider T ∈ T0. Assume that T fulfils Axioms Y0–Y5. Let u, v ∈ V

and let u �= v. There exists τ ∈ Σ such that uτv is a process in T .

�����. Suppose, to the contrary, that the lemma does not hold. By virtue of

Y5, there exists an infinite sequence

(u0, u1, . . .)

of vertices in G such that

u0 . . . uiTv for each i = 1, 2, . . . .

Since V is finite, there exist j and k such that 0 � j < k and uj = uk. We have

uj . . . ukTv,

which contradicts Lemma 4. Hence the lemma follows. �

Remark 2. As we will see, the assumption that T fulfils Axiom Y4 cannot be

removed from Lemma 5. Let |V | = 7,

V = {x0, x1, x2, y0, y1, y2, z},
E = {{x0, z}, {y0, z}} ∪ {{xi, xi+1}, {yi, yi+1}; 1 � i � 3}

and

T = {x0zz, zx0x0, y0zz, zy0y0}
∪ {xjx0z, zx0xj , yjy0z, zy0yj ; 1 � j � 2}
∪ {xkxk+1xk+1, xk+1xkxk, ykyk+1yk+1, yk+1ykyk; 0 � k � 2}
∪ {xmxm+1yn, ymym+1xn; 0 � m � 2, 0 � n � 2},

where x3 = x0 and y3 = y0. We see that T ∈ T0, it fulfils Axioms Y0–Y3 and Y5
but does not fulfil Axiom Y4. Moreover, we see that the conclusion of Lemma 5 does
not hold for T : for example, there exists no τ ∈ Σ such that x0τy0 is a process in T .
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2. Recall that R is the set of all R ⊆ ΠN such that R fulfils Axioms X0–X5 and T
is the set of all T ⊆ V 3 such that T is associated with G and fulfils Axioms Y0–Y5.
We denote by Φ the mapping from R into V 3 defined as follows:
Φ is the set of all uvx ∈ V 3 with the property that there exists ξ ∈ R such that

a(ξ) = u, b(ξ) = v and c(ξ) = x

for each R ∈ R.
Moreover, we denote by Ψ the mapping from T into Σ1 such that Ψ(T ) is the set

of all processes in T for each T ∈ T .
The next theorem is the main result of the present paper:

Theorem 1. Φ is a one-to-one mapping from R onto T and Ψ = Φ−1.
�����. (I) Consider an arbitrary R ∈ R. Denote T = Φ(R). Combining the

fact that R ⊆ ΠN with X0, we see that T is associated with G. X5 implies that T

fulfils Y5.

We will show that T fulfils Y0–Y4. Consider arbitrary u, v, x, y ∈ V . Let uvx ∈ T .
Since T = Φ(R), there exists τ ∈ Σ such that uτx ∈ R and b(uτx) = v. Since

uτx ∈ Π, we have u �= x.
(Verification of Y0). If τ = ∗, then uv ∈ R. If τ �= ∗, then by X2, uv ∈ R, too.

By X1, vu ∈ R. Since a(vu) = v, b(vu) = u = c(vu), we have vuu ∈ T .
(Verification of Y1). Let vuy ∈ T . We wish to show that x �= y. Suppose, to the

contrary, that x = y. Then vux ∈ T . Since u �= x, there exists β ∈ Σ such that
vuβx ∈ R. Since uτx ∈ R, X3 implies that vuτx ∈ R. Since b(uτx) = v, we see that
vuτx /∈ ΠN , which is a contradiction. Thus x �= y.

(Verification of Y2 and Y3). Let xyv ∈ T . Then there exists π ∈ Σ such that
xπv ∈ R and b(xπv) = y. Since xπv ∈ ΠN , x �= v. Since b(uτx) = v, there exists

α ∈ Σ such that uvαx ∈ R. Recall that xπv ∈ R. By X1, vπx ∈ R. According to
X3, uvπx ∈ R.

First, let π = ∗. Then y = v and uyx ∈ R. By X2, uy ∈ R. Since v = y, we have
uvy ∈ T . Since uyx ∈ R, X1 implies that xyu ∈ R. Hence xyu ∈ T .

Now, let π �= ∗. Then there exists β ∈ Σ such that xyβv = xπv. Hence vβyx =
vπx. Recall that uvπx ∈ R. We get uvβyx ∈ R. By X1, xyβvu ∈ R and therefore,

xyu ∈ T . By X2, uvβy ∈ R. Hence uvy ∈ T .
(Verification of Y4). Let xyy ∈ T . Then xy ∈ R. By X0, yx ∈ R.

First, let τ = ∗. Then v = x. We see that yxv ∈ T .
Now, let τ �= ∗. Then there exists α ∈ Σ such that uvαx ∈ R. By X1, uv ∈ R. If

u = y, then xu ∈ R and therefore, xyu ∈ T . If y = v, then uy ∈ R and therefore,
uvy ∈ T . Let u �= y �= v.

It there exists � ∈ Σ such that u�yx ∈ R, then, by X1, xy�u ∈ R and therefore,
xyu ∈ T . If there exists σ ∈ Σ such that uvσy ∈ R, then uvy ∈ T . Assume that
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u�yx /∈ R for all � ∈ Σ and uvσy /∈ R for all σ ∈ Σ. By virtue of X4, vαxy.

According to X1, yxαv ∈ R and therefore, yxv ∈ T .
We have proved that T ∈ T . This means that Φ is a mapping into T .
(II) We will prove that

(14) if R1 �= R2, then Φ(R1) �= Φ(R2), for any R1, R2 ∈ R.

Suppose, to the contrary, that there exist distinct R, R′ ∈ R such that Φ(R) = Φ(R′).
Without loss of generality, let R − R′ �= ∅. Let m be the minimal k � 1 with the
property that (R − R′) ∩ V k+1 �= ∅. Combining the fact that R ⊆ ΠN with X0, we
see that m � 2. There exist u, v, x ∈ V and α ∈ Σ such that

uvαx ∈ (R−R′) ∩ V m+1.

Hence v �= x. Since uvαx ∈ R, combining X1 and X2, we get vαx ∈ R. By
the definition of m, vαx ∈ R′. Since uvαx ∈ R, uvx ∈ Φ(R). Hence uvx ∈ Φ(R′).
Recall we have that v �= x. There exists β ∈ Σ such that uvβx ∈ R′. Since vαx ∈ R′,
X3 implies that uvαx ∈ R′, which is a contradiction. Thus (14) is proved.

(III) Consider an arbitrary T ∈ T . Denote R = Ψ(T ). By Corollary 2, R ⊆ ΠN .
Since T is associated with G, Y0 implies that R fulfils X0. By Lemma 2, R fulfils

X1. Combining (4) with X1, we see that R fulfils X2. By virtue of Lemma 5, R

fulfils X5. We will show that R fulfils X3 and X4.

(Verification of X3). Let αuβxγ, uδx ∈ R, where u, x ∈ V and α, β, γ, δ ∈ Σ. By
X2, αuβx ∈ R. Since αuβx and uδx are processes in T , we have

αuβxTx and uδxTx.

If α = ∗, then αuδx ∈ R. Let α �= ∗. Then αuTx. By (3), αuδxTx and therefore,
αuδx ∈ R.

By X1, γxβuα, xδuα ∈ R. If γ = ∗, then γxδuα ∈ R and, by X1, αuδxγ ∈ R.
Let γ �= ∗. Put v = c(uα). We have

xδuαTv and γxTv.

By virtue of (3), γxδuαTv. Since v = c(uα), γxδuα ∈ R. By X1, αuδxγ ∈ R.
(Verification of X4). Let u, v, x ∈ V and α ∈ Σ. Assume that uvαx, xy ∈ R,

u �= y �= v, u�yx /∈ R for all � ∈ Σ and uvσy /∈ R for all σ ∈ Σ. Then uvx, xyy ∈ T ,
x �= v and uvy /∈ T . Moreover, by virtue of X1, we have xy�u /∈ R for all � ∈ Σ.
Hence xyu /∈ T . By X4, yxv ∈ T . Recall that x �= v. According to Lemma 5, there
exists τ ∈ Σ such that xτv ∈ R. Since yxv ∈ T , (3) implies that yxτv ∈ R. By
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X1, vτxy ∈ R. Recall that uvαx ∈ R. Combining X1 and X2, we have vαx. Since

vτxy ∈ R, X3 implies that vαxy ∈ R.

We have proved that R ∈ R. This means that Ψ is a mapping into R.
(IV) Consider an arbitrary T0 ∈ T . It is clear that Φ(Ψ(T0)) ⊆ T0. Applying

Lemma 5 and (3), we easily get T0 ⊆ Φ(Ψ(T0)). Hence Φ(Ψ(T )) = T for each

T ∈ T .
Combining the results of (I)–(IV), we obtain the statement of the theorem. Thus

the proof is complete. �

Lemma 6. Consider T ∈ T0. Assume that T fulfils Axioms Y0, Y1 and Y4. Then
it fulfils Axiom Y7 if and only if it fulfils the following Axiom Y7+:

Y7 + if uvx, vuy, xyu ∈ T, then yxv ∈ T (∀u, v, x, y ∈ V ).

�����. Let T fulfil Y7. Consider arbitrary u, v, x, y ∈ V and assume that

uvx, vuy, xyu ∈ T . By virtue of Y0, yxx ∈ T . Y7 implies that yxv ∈ T . Thus T

fulfils Y7+.

Conversely, let T fulfil Y7+. Consider arbitrary u, v, x, y ∈ V and assume that

uvx, vuy, xyy ∈ T . Since uvx, xyy ∈ T , Y4 implies that either xyu ∈ T or yxv ∈ T

or uvy ∈ T . We will show that xyu ∈ T . Suppose that either uvy ∈ T or yxv ∈ T .

If uvy ∈ T , then, by Y1, we have vuy /∈ T , which is a contradiction. Hence yxv ∈ T .
Since uvx, vuy ∈ T , Y7+ implies that xyu ∈ T . Thus T fulfils Y7, which completes

the proof. �

Theorem 2. Let R ∈ R. Denote T = Φ(R). Then R fulfils Axioms X6 and X7
if and only if T fulfils Axioms Y6 and Y7.

�����. (I) Let R fulfil X6 and X7. We will prove that T fulfils Y6 and Y7.

Consider arbitrary u, v, x, y ∈ V . Assume that uvx ∈ T . By virtue of Y0, uvv ∈ T .
Since R = Ψ(T ), uv ∈ R.

(Verification of Y6). Let uvy ∈ T . Assume that y �= v. Then there exists β ∈ Σ
such that uyβv ∈ R. By X6, uv /∈ R, which is a contradiction. Thus y = v. We see

that T fulfils Y6.

(Verification of Y7). We first show that T fulfils Y7+. Assume that vuy, xyu ∈ T .
By Y0, yxx ∈ T . If v = x, then yxv ∈ T . Suppose that v �= x. There exists α ∈ Σ
such that uvαx ∈ R. First, let u = y. Then xuu ∈ T and thus, by Y0, uxx ∈ T . By
Y6, uvx /∈ T , which is a contradiction. We have u �= y. Then there exist β, γ ∈ Σ
such that vuβy, xyγu ∈ R. Combining X1 and X2, we get uβy, uγyx ∈ R. By
X3, uβyx ∈ R. Recall that uvαx, vuβy ∈ R. By virtue of X7, vαxy ∈ R. By X2,
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yxαv ∈ R. Hence yxv ∈ T . We have shown that T fulfils Y7+. By Lemma 6, it

fulfils Y7.
(II) Let T fulfil Y6 and Y7. We will prove that R fulfils X6 and X7. Consider

arbitrary u, v, x, y ∈ V and an arbitrary α ∈ Σ. Assume that uvαx ∈ R. Then

uvx ∈ T and v �= x.
(Verification of X6). Assume that ux ∈ R. Then uxx ∈ T . Since uvx ∈ T , Y6

implies that v = x, which is a contradiction. Thus ux /∈ R.
(Verification of X7). Let vuβy, uβyx ∈ R. Then vuy ∈ T . Since uvαx, uβyx ∈ R,

combining X1 and X2 we get vαx, yx ∈ R. Hence yxx ∈ T .
Combining the fact that vuy, uvx, yxx ∈ T with Y7, we get yxv ∈ T . Since

v �= x, there exists τ ∈ Σ such that yxτv ∈ R. By X1, vτxy ∈ R. Since vαx ∈ R,
X3 implies that vαxy ∈ R.

We have proved thatR fulfils X6 and X7, which completes the proof of the theorem.
�

By virtue of Theorem 2, Theorem B immediately follows from Theorem A. And

similarly, by virtue of Theorem 2, Theorem A immediately follows from Theorem B.

Remark 3. Every step in G can be interpreted as a signpost showing a shortest

path from a vertex to another vertex in G. Then every step uvx in G can be
interpreted as the signpost located at u, “oriented” to v and signed by x.
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