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A REMARK ON k-SYSTEMS IN GROUPS

M. M. Parmenter,1 St. John’s

(Received August 15, 1996)

If (G,+) is a uniquely 2-divisible Abelian group and * is the usual arithmetic mean

value, then (G,+, ∗) satisfies the identity x+ (y ∗ z) = (x ∗ y) + (x ∗ z). Conversely,
Kepka and Niemenmaa showed in [3] that if (G,+) is any group supporting a binary

operation * which satisfies this identity, then (G,+) is Abelian and 2-divisible. How-
ever, G need not be uniquely 2-divisible. To see this, let Q/�be the additive group of

rational numbers modulo 1 and, for 0 < a, b < 1, define 0 ∗ 0 = 0, a ∗ 0 = 0 ∗ a = a+1
2

and a ∗ b = a+b
2 where

a+1
2 and

a+b
2 are computed by viewing a, b as elements of Q.

In [3], results are also obtained where a more general identity x + k(y ∗ z) =
(x ∗ y) + (x ∗ z) is assumed (k ∈ �). Such a system (G,+, ∗) is called a k-system.

In this brief note, we are interested in determining what additional equations

are needed in (G,+, ∗) to completely characterize the usual arithmetic mean value.
Note that if (G,+) is Abelian and uniquely 2-divisible, and * is the mean value, then

x+(y∗z) = (x+y)∗(x+z) also holds. We will show that this identity, together with
the earlier one, completes the required characterization. In fact this result holds for

all k-systems, and that will be our main result (Theorem 1).

Jakubík [2] also investigated the second identity stated above in a group theoretic
setting, while in [1], Gardner and Parmenter (unaware of [2]) studied different aspects

of a very similar structure.

Theorem 1. Let (G,+, ∗) be a k-system such that for all x, y, z ∈ G, x+k(y∗z) =

(x+ y) ∗ (x+ z). Then (G,+) is Abelian and one of the following must occur.

(i) |G| = 1.
(ii) k = 1 and G is uniquely 2-divisible.

(iii) k �= 1 and G is of finite odd exponent dividing k − 1.
In all cases, ∗ is the usual arithmetic mean value on G.

1 This work was supported in part by NSERC grant A8775.
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�����. First note that if k = 0, then setting y = x = z in the k-system identity

gives x = 2(x ∗ x) while setting y = z = 0 in the second identity gives x = (x ∗ x).
This forces |G| = 1, so we assume from now on that k �= 0.
We proceed to make a few basic observations. Setting x = y = z = 0 in both

identities gives 2(0 ∗ 0) = (0 ∗ 0), so 0 ∗ 0 = 0. Then setting y = z = 0 in the second
identity gives x+ k(0 ∗ 0) = x ∗ x, so we have that for all x in G,

(x ∗ x) = x.

Now putting y = x = z in the first identity gives x+ k(x ∗ x) = 2(x ∗ x), so for all x

in G,
(k − 1)x = 0.

If k �= 1, we can now conclude that the exponent of G is finite and divides k − 1.
Also, we can assume from now on that (x∗y)+(x∗z) = x+(y ∗z) = (x+y)∗ (x+z)

for all x, y, z in G.
The next part of the argument follows steps similar to those seen in [3], but we

include them for completeness.
Putting y = z = 0, we obtain x = 2(x ∗ 0) for all x in G. Note that if k �= 1, we

have now proved that the exponent of G is odd (and hence, as remarked in Lemma
1.1 of [3], that G is uniquely 2-divisible).

Next observe that x + (0 ∗ x) = (x ∗ 0) + (x ∗ x) = (x ∗ 0) + x by above. Since
x = 2(x∗0), we conclude that (x∗0) = (0∗x) for all x in G. Hence (x∗0)+(x∗y) =

x+ (0 ∗ y) = x+ (y ∗ 0) = (x ∗ y) + (x ∗ 0). Thus for all x, y in G,

(x ∗ 0) + y = (x ∗ 0) + (x+ (y − x))

= (x ∗ 0) + (x+ (y − x) ∗ (y − x))

= (x ∗ 0) + 2(x ∗ (y − x))

= 2(x ∗ (y − x)) + (x ∗ 0)
= y + (x ∗ 0).

Thus (x ∗ 0) is in the centre of G, and hence x = 2(x ∗ 0) is in the centre of G. We
have shown that (G,+) is Abelian.

To show that G is uniquely 2-divisible when k = 1, we now only need prove that
G has no elements of order 2. So assume that 2x = 0 for some x in G. Then

(x ∗ 0) + (x ∗ x) = x+ (0 ∗ x) = x ∗ (2x) = x ∗ 0. Hence x ∗ x = 0, forcing x = 0 and
we’re done.

Finally, note that setting y = z gives x + (y ∗ y) = 2(x ∗ y), i.e. x + y = 2(x ∗ y).
Since G is Abelian and uniquely 2-divisible, ∗ is the usual mean value on G. �
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