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A NEW PROOF OF A CHARACTERIZATION OF THE SET OF
ALL GEODESICS IN A CONNECTED GRAPH

LADISLAV NEBESKY, Praha

(Received September 13, 1996)

In [2], the present author gave a characterization of the set of all geodesics (or
shortest paths) in a connected graph G. More precisely, he gave a necessary and
sufficient condition for a set of paths in G to be the set of all geodesics in G. The
proof of necessity is easy and was omitted in [2]. But the proof of sufficiency given
there was rather long.

This characterization was partially modified in [3]; the proof given there was also
long (in fact, the characterization was derived form a more general theorem proved
there). In the present paper we present its new and shorter proof. The proof utilizes
a new lemma, which yields a deeper insight into the idea of the characterization.

Let G be a (finite undirected) connected graph (without loops and multiple edges),
and let V, E and D denote its vertex set, its edge set and its diameter, respectively.
If w, v € V, then d(u,v) denotes the distance between u and v in G. (The letters
g, h,...,n will be used to denote integers).

We denote by X the set of all sequences

(0) Uy - -+, Ug
where ug,...,uy € V and g > 0. Similarly as in [2] and [3], instead of (0) we will
write ug ... uqg. Let o« = vg ... vy, where vy, ..., vy € V and h > 0. We write Aa = vy,

Za =y, ||a]| = h and
a = Vp...00.
Let 3=x0...2; and v = yo...y;, where xo,..., %4, Yo,...,¥; €V,i>0and j > 0;
we write
ﬁ’Y:.’ITO.’I,‘ZyOy]
We denote by * the empty sequence in the sense that *d = § = §* for each § € .
Put #x = % and ¥ = *. Define ¥ = X U {x}.
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Let m € ¥ . We say that 7 is a path in G if there exist £ > 0 and mutually distinct
wo, ..., wi € V such that 7 = wq ... wy and if k > 1, then

{wo, w1}, ..., {wk—1,wi} € E.
The set al all paths in G will be denoted by P. If Q@ C P and m > 0, then we define
Q(m) = {w € Q; d(Aw, Zw) = m}.
Obviously, if 7 € P, then d(Am, Zm) < ||«]|.
Let 7 € ¥. We say that 7 is a geodesic (or a shortest path) in G if 7 € P and
d(At, ZT) = ||I7].

The following theorem gives a characterization of the set of all geodesics in G.

Theorem ([3]). Let R C P, and let ' denote the set of all geodesics in G. Then
the statements (1) and (2) are equivalent:

(1) R=T.

(2) R satisfies the following properties A(R) — G(R) (for all u, v, z, y € V and all
v, Y €X):

A(R) if uwvpx € R, then {u,x} ¢ E;

B(R) if uvpx € R, then zvu € R;

C(R) if uvpxr € R, then vox € R;

D(R) if uwvpz, vipx € R, then uvipx € R;

E(R) if wvpz, vuypy € R and {x,y} € E, then vpxy € R;

F(R) ifuvpx € R, {z,y} € E, uwvpy ¢ R for all p € ¥ and uoyx ¢ R for allo € 3,

then vpxy € R;
G(R) there exists £ € R such that A, = u and Z& = x.

We will present a new proof of the theorem. The proof that (1) implies (2) is not
complicated and will be omitted here. We only prove that (2) implies (1).
The next lemma yields a deeper insight into the theorem and suggest a new method

for proving it.

Lemma. Let ug, u1,...,Ugyn—1 € V, where min(g, h) > 2. Denote j = min(g, h)

and Ugqp = U, Ughtl = UL, ..., Ug+ht; = Uj. Moreover, denote
O = UUiy1 - - Uitg aNd Bi = Uit gUitgr1 - Uitgth

for each i, 0 <7 < j.
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Let Q, T C P. Assume that Q satisfies B(Q) — F(Q) and 7 satisfies B(T) — E(T).
Next, assume that the following conditions I-IV hold for all i, 0 < i < j, and all @,
P e X:
Iifa; € QandfB; ¢ T, then o; € T

IT if uttip19Uiqgr1 € Q, Bi € T and a1 ¢ Q, then uu;19Uig+1 € T ;

III if wjtit19Uirg € T and uiti41PUirg € Q, then uj19Ui+g € Q;

IV if Uiy gUirgr1@PUivgrn € T and Uit gUiygr1Uivgrn € Q, then Uiy g 10Uivgin

€ Q.

Finally, assume that ag € Q and By € 7. Then (§y € Q.

Proof. Suppose, to the contrary, that Sy ¢ Q. Then fy € T — Q. First, we will
show that

(3) either a; ¢ Qor 3; ¢ 7.

If g = h, then (3) immediately follows from the fact that Gy ¢ Q. Next, let g > h.
Then j = h. Suppose that a;; € Q. Applying B(Q) to oy and C(Q) to v, we get

Uglg—1 - . - U, Ug—1Ug ... Ugth € Q
Recall that ug+s, = ug. By D(Q),
Uglg—1Ug . . - Ugth € Q.

Thus Q — P ¢ 0, a contradiction. We get a; ¢ Q and therefore (3) holds. Finally,
let h > g. Then j = g. In a similar way, we get §; ¢ 7. Thus (3) holds again.

Recall that ag € Q and fy € 7 — Q. Combining this fact with (3), we see that
there exists k, 0 < k < j such that

(4) OszQandﬂkG’T*Q
and
(5) opr1 ¢ Qor B ¢ 7 — Q.

Denote a = ag, &' = agt1, B = Bk, 5 = Br+1. Clearly, «, 8 € P. We distinguish
two cases:

1. Let o/ € Q. If &/ ¢ T, then I implies that 8’ € 7. If o/ € T, then combining
B(7) and E(7), we get 8’ € T again. By (5), 3’ ¢ T — Q. Hence ' € Q. By (4),
a € Q. Combining B(Q) with E(Q), we get § € Q, which contradicts (4).
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2. Let o/ ¢ Q. Denote u = ug, v = Up41, & = Uk+g and y = Upy4+1. Clearly, there
exist o, 7 € ¥ such that a = uwvpr and 8 = zy7u. Hence o = vpry. We distinguish
two subcases:

2.1. Let uoyx ¢ Q for all 0 € 3. By virtue of F(Q), there exists o € ¥ such
that wvgy € Q. Since 8 € 7 and o ¢ Q, II implies that uwvoy € 7. By B(7),
yovu € T. Recall that xyTu € 7. By D(7), ayovu € 7 and by B(T), uvoyx € T.
Since uvpz € Q, III implies that voyx € Q. By D(Q), wvoyzr € Q and by B(Q),
xyovu € Q. Since xyTu € T, IV implies that yru € Q. By D(Q), f = aytu € Q,
which contradicts (4).

2.2. Let there exist 0 € X such that uoyzr € Q. By B(Q), zyou € Q. Since 5 € 7,
IV implies that y7u € Q. By D(Q), 8 € Q, which contradicts (4) again.

Thus (g € 9, which completes the proof of the lemma. O

Proof of the theorem. We will only prove that (2) implies (1). Now, let
(2) hold. We will prove that I'(n) C R(n) and R(n) C I'(n) for every n > 0. We
proceed by induction on n. The fact that I'(0) = R(0) follows from G(R). The fact
that I'(1) = R(1) follows from G(R) and A(R). Let n > 2. Assume that

(6) I'(m) = R(m) for each m,0 < m < n.

The case when D < n is trivial. Suppose that D > n.
Consider an arbitrary w € I'(n). Put @ =R, 7 =T and h = n. Obviously, G(Q)
holds. There exist ug,...,ug+n—1 € V, where g > h, such that

(7) U1 ... Ug € Q and w = Uglig41 ... Ugyn, Where ugipn = ug.

By virtue of (6), I-IV hold. According to the lemma, w € R. We have proved that
I'(n) C R(n).

Consider an arbitrary w € R(n). Put @ = I', T = R and g = n. There exist
UQ, - - -, Ugth—1 € V, where h > g, such that (7) holds. Combining (6) with the fact
that T'(n) C R(n), we see that I-IV hold. According to the lemma, w € I'. We have
proved that R(n) C I'(n), which completes the proof of the theorem. O

Remark 1. The fact that V is finite was not utilized in any point of our proof.

Remark 2. A different way of characterizing the set of all geodesics in a connected
graph can be found in [4].

Remark 3. Some types of graphs can be characterized by counting geodesics.
For this topis, see [1].
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