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A NEW PROOF OF A CHARACTERIZATION OF THE SET OF

ALL GEODESICS IN A CONNECTED GRAPH

Ladislav Nebeský, Praha

(Received September 13, 1996)

In [2], the present author gave a characterization of the set of all geodesics (or
shortest paths) in a connected graph G. More precisely, he gave a necessary and

sufficient condition for a set of paths in G to be the set of all geodesics in G. The
proof of necessity is easy and was omitted in [2]. But the proof of sufficiency given

there was rather long.
This characterization was partially modified in [3]; the proof given there was also

long (in fact, the characterization was derived form a more general theorem proved
there). In the present paper we present its new and shorter proof. The proof utilizes

a new lemma, which yields a deeper insight into the idea of the characterization.
Let G be a (finite undirected) connected graph (without loops and multiple edges),

and let V , E and D denote its vertex set, its edge set and its diameter, respectively.
If u, v ∈ V , then d(u, v) denotes the distance between u and v in G. (The letters
g, h, . . . , n will be used to denote integers).

We denote by ΣN the set of all sequences

(0) u0, . . . , ug

where u0, . . . , ug ∈ V and g � 0. Similarly as in [2] and [3], instead of (0) we will
write u0 . . . ug. Let α = v0 . . . vh, where v0, . . . , vh ∈ V and h � 0.We write Aα = v0,
Zα = vh, ‖α‖ = h and

α = vh . . . v0.

Let β = x0 . . . xi and γ = y0 . . . yj, where x0, . . . , xi, y0, . . . , yj ∈ V , i � 0 and j � 0;
we write

βγ = x0 . . . xiy0 . . . yj .

We denote by ∗ the empty sequence in the sense that ∗δ = δ = δ∗ for each δ ∈ ΣN .

Put ∗∗ = ∗ and ∗ = ∗. Define Σ = ΣN ∪ {∗}.
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Let π ∈ ΣN .We say that π is a path in G if there exist k � 0 and mutually distinct
w0, . . . , wk ∈ V such that π = w0 . . . wk and if k � 1, then

{w0, w1}, . . . , {wk−1, wk} ∈ E.

The set al all paths in G will be denoted by P . If Q ⊆ P and m � 0, then we define

Q(m) =
{
ω ∈ Q ; d(Aω,Zω) = m

}
.

Obviously, if π ∈ P , then d(Aπ,Zπ) � ‖π‖.
Let τ ∈ ΣN . We say that τ is a geodesic (or a shortest path) in G if τ ∈ P and

d(Aτ, Zτ) = ‖τ‖.
The following theorem gives a characterization of the set of all geodesics in G.

Theorem ([3]). Let R ⊆ P , and let Γ denote the set of all geodesics in G. Then
the statements (1) and (2) are equivalent:

(1) R = Γ.
(2) R satisfies the following properties A(R)−G(R) (for all u, v, x, y ∈ V and all

ϕ, ψ ∈ Σ):
A(R) if uvϕx ∈ R, then {u, x} /∈ E;
B(R) if uvϕx ∈ R, then xϕvu ∈ R;
C(R) if uvϕx ∈ R, then vϕx ∈ R;
D(R) if uvϕx, vψx ∈ R, then uvψx ∈ R;
E(R) if uvϕx, vuψy ∈ R and {x, y} ∈ E, then vϕxy ∈ R;
F(R) if uvϕx ∈ R, {x, y} ∈ E, uv
y /∈ R for all 
 ∈ Σ and uσyx /∈ R for all σ ∈ Σ,

then vϕxy ∈ R;
G(R) there exists ξ ∈ R such that Aξ = u and Zξ = x.

We will present a new proof of the theorem. The proof that (1) implies (2) is not
complicated and will be omitted here. We only prove that (2) implies (1).

The next lemma yields a deeper insight into the theorem and suggest a new method
for proving it.

Lemma. Let u0, u1, . . . , ug+h−1 ∈ V , where min(g, h) � 2. Denote j = min(g, h)
and ug+h = u0, ug+h+1 = u1, . . ., ug+h+j = uj. Moreover, denote

αi = uiui+1 . . . ui+g and βi = ui+gui+g+1 . . . ui+g+h

for each i, 0 � i � j.
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Let Q, T ⊆ P . Assume that Q satisfies B(Q)−F(Q) and T satisfies B(T )−E(T ).
Next, assume that the following conditions I–IV hold for all i, 0 � i � j, and all ϕ,

ψ ∈ Σ:
I if αi ∈ Q and βi /∈ T , then αi ∈ T ;
II if uiui+1ϕui+g+1 ∈ Q, βi ∈ T and αi+1 /∈ Q, then uiui+1ϕui+g+1 ∈ T ;
III if uiui+1ϕui+g ∈ T and uiui+1ψui+g ∈ Q, then ui+1ϕui+g ∈ Q;
IV if ui+gui+g+1ϕui+g+h ∈ T and ui+gui+g+1ψui+g+h ∈ Q, then ui+g+1ϕui+g+h

∈ Q.
Finally, assume that α0 ∈ Q and β0 ∈ T . Then β0 ∈ Q.

�����. Suppose, to the contrary, that β0 /∈ Q. Then β0 ∈ T −Q. First, we will
show that

(3) either αj /∈ Q or βj /∈ T .

If g = h, then (3) immediately follows from the fact that β0 /∈ Q. Next, let g > h.

Then j = h. Suppose that αj ∈ Q. Applying B(Q) to α0 and C(Q) to αj , we get

ugug−1 . . . u0, ug−1ug . . . ug+h ∈ Q

Recall that ug+h = u0. By D(Q),

ugug−1ug . . . ug+h ∈ Q.

Thus Q − P /∈ ∅, a contradiction. We get αj /∈ Q and therefore (3) holds. Finally,
let h > g. Then j = g. In a similar way, we get βj /∈ T . Thus (3) holds again.
Recall that α0 ∈ Q and β0 ∈ T − Q. Combining this fact with (3), we see that

there exists k, 0 � k < j such that

(4) αk ∈ Q and βk ∈ T −Q

and

(5) αk+1 /∈ Q or βk+1 /∈ T −Q.

Denote α = αk, α′ = αk+1, β = βk, β′ = βk+1. Clearly, α, β ∈ P . We distinguish
two cases:

1. Let α′ ∈ Q. If α′ /∈ T , then I implies that β′ ∈ T . If α′ ∈ T , then combining
B(T ) and E(T ), we get β′ ∈ T again. By (5), β′ /∈ T − Q. Hence β′ ∈ Q. By (4),
α ∈ Q. Combining B(Q) with E(Q), we get β ∈ Q, which contradicts (4).
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2. Let α′ /∈ Q. Denote u = uk, v = uk+1, x = uk+g and y = uk+g+1. Clearly, there

exist ϕ, τ ∈ Σ such that α = uvϕx and β = xyτu. Hence α′ = vϕxy. We distinguish
two subcases:

2.1. Let uσyx /∈ Q for all σ ∈ Σ. By virtue of F(Q), there exists 
 ∈ Σ such
that uv
y ∈ Q. Since β ∈ T and α′ /∈ Q, II implies that uv
y ∈ T . By B(T ),
y
vu ∈ T . Recall that xyτu ∈ T . By D(T ), xy
vu ∈ T and by B(T ), uv
yx ∈ T .
Since uvϕx ∈ Q, III implies that v
yx ∈ Q. By D(Q), uv
yx ∈ Q and by B(Q),
xy
vu ∈ Q. Since xyτu ∈ T , IV implies that yτu ∈ Q. By D(Q), β = xyτu ∈ Q,
which contradicts (4).

2.2. Let there exist σ ∈ Σ such that uσyx ∈ Q. By B(Q), xyσu ∈ Q. Since β ∈ T ,
IV implies that yτu ∈ Q. By D(Q), β ∈ Q, which contradicts (4) again.
Thus β0 ∈ Q, which completes the proof of the lemma. �

����� �� ��� �������. We will only prove that (2) implies (1). Now, let
(2) hold. We will prove that Γ(n) ⊆ R(n) and R(n) ⊆ Γ(n) for every n � 0. We
proceed by induction on n. The fact that Γ(0) = R(0) follows from G(R). The fact
that Γ(1) = R(1) follows from G(R) and A(R). Let n � 2. Assume that

(6) Γ(m) = R(m) for each m, 0 � m < n.

The case when D < n is trivial. Suppose that D � n.

Consider an arbitrary ω ∈ Γ(n). Put Q = R, T = Γ and h = n. Obviously, G(Q)
holds. There exist u0, . . . , ug+h−1 ∈ V , where g � h, such that

(7) u0u1 . . . ug ∈ Q and ω = ugug+1 . . . ug+h, where ug+h = u0.

By virtue of (6), I–IV hold. According to the lemma, ω ∈ R. We have proved that
Γ(n) ⊆ R(n).
Consider an arbitrary ω ∈ R(n). Put Q = Γ, T = R and g = n. There exist

u0, . . . , ug+h−1 ∈ V , where h � g, such that (7) holds. Combining (6) with the fact

that Γ(n) ⊆ R(n), we see that I–IV hold. According to the lemma, ω ∈ Γ. We have
proved that R(n) ⊆ Γ(n), which completes the proof of the theorem. �

Remark 1. The fact that V is finite was not utilized in any point of our proof.

Remark 2. A different way of characterizing the set of all geodesics in a connected
graph can be found in [4].

Remark 3. Some types of graphs can be characterized by counting geodesics.
For this topis, see [1].
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