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σ-ELEMENTS IN MULTIPLICATIVE LATTICES

C. Jayaram, Kwaluseni, and E.W. Johnson, Iowa City

(Received July 10, 1995)

All rings are assumed commutative with identity. By a multiplicative lattice, we

mean a complete lattice L, with least element 0 and compact greatest element 1, on
which there is defined a commutative, associative, completely join distributive prod-
uct for which 1 is a multiplicative identity. By a C-lattice, we mean a multiplicative

lattice which is generated under joins by a multiplicatively closed subset of compact
elements. It is easy to see that in a C-lattice L, the set L∗ of compact elements is

multiplicatively closed. Throughout we assume that L is a C-lattice

An element p < 1 in L is said to be prime if ab � p implies a � p or b � p. If 0 is
prime, L is said to be a domain. By a filter on L∗ we mean a multiplicatively closed

subset F ⊆ L∗ such that a ∈ F , b ∈ L and a � b imply b ∈ F. We use F(L∗) to
denote the set of all filters of L∗. For any a ∈ L∗, the smallest filter containing a is

denoted by [a), so [a) = {x ∈ L∗ | x � an for some nonnegative integer n}. For any
a ∈ L and any F ∈ F(L∗), we define aF =

∨{x ∈ L∗ | xy � a for some y ∈ F}, and
LF = {aF | a ∈ L}. For any prime element p of L, we define Fp = {x ∈ L∗ | x � p},
so Fp ∈ F(L∗). In this case we denote L(Fp) by Lp and for a ∈ L, ap = a(Fp). An

element m < 1 in L is said to be maximal if m < x � 1 implies x = 1.It is easily seen
that maximal elements are prime. For any filter F on L∗, LF is again a multiplicative
lattice under the same order as L with multiplication defined by ab = (ab)F , where

the right side is computed in L.

An element a ∈ L is nilpotent if an = 0 for some positive integer n. The lattice L

is said to be reduced if 0 is the only nilpotent element of L. We say that an element

a has a property locally if am has the property in Lm for every maximal element m.

For example, we say that an element a ∈ L is locally nilpotent if am is nilpotent in

Lm for every maximal element m.

We denote the residual of a by b by a : b. In a C-lattice, we have a : b =
∨{x ∈

L∗ | xb � a}. The lattice L is said to be quasiregular if for any x ∈ L∗, there exists
y ∈ L∗ such that (0 : (0 : x)) = (0 : y). An element a ∈ L is said to be complemented
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if it satisfies ab = 0 and a ∨ b = 1, for some b. The lattice L is said to be a regular

lattice if every compact element a ∈ L is complemented. L is a Baer lattice if, for
all x ∈ L∗, (0 : (0 : x)) ∨ (0 : x) = 1. L is said to be M -normal if every prime
element contains a unique minimal prime element. For various characterizations of

quasiregular lattices, regular lattices, Baer lattices andM -normal lattices, the reader
is referred to [5] and [6].

An element a of L is a ∗-element if a = 0F for some F ∈ F(L∗). The element

a is said to be a Baer element if for any x ∈ L∗, x � a implies (0 : (0 : x)) � a.
Baer elements and ∗-elements have been used to characterize quasiregular lattices,
M -normal lattices and Baer lattices (see [6]).
The reader is referred to [4], for general background and terminology.

We begin with the following definitions.

Definition 1. An element a ∈ L is a σ-element if, for every compact element

x � a, a ∨ (0 : x) = 1.

Definition 2. σ(L) = {a ∈ L | a is a σ-element}.

It can be easily verified that σ(L) is closed under finite meets, finite products and
arbitrary joins. Also 0, 1 ∈ σ(L). Hence σ(L) is a multiplicative lattice under the

same order as L. A σ-element a ∈ L is said to be a prime σ-element if a is prime in
σ(L). An σ-element a ∈ L is said to be a maximal σ-element if a is maximal in σ(L).

Every maximal σ-element is a prime σ-element, and every σ-element is contained in
a maximal σ-element.

Note that a compact element is a σ-element if and only if it is a complemented
element. The following gives additional characterizations of σ-elements.

Proposition 1. The following statements are equivalent for an element a ∈ L :
(i) a is locally complemented.

(ii) a is a σ-element.

(iii) a =
∧{0m | m is a maximal element containing a}.

�����. (i) ⇒ (ii). Suppose (i) holds. Assume x ∈ L∗ and x � a. Suppose

a ∨ (0 : x) �= 1. Then a ∨ (0 : x) � m for some maximal element m of L. Note that
the only complemented elements of Lm are 0m and 1. Then am � mm, and so by (1),

am = 0m. It follows that (0 : x)m = (0m : xm) = 1 � mm = m, which contradicts
the choice of m. Therefore a is a σ-element.

(ii) ⇒ (iii). Suppose (ii) holds. Let m be a maximal element such that a � m.
Then, for any compact element x � a, (0 : x) � m and x(0 : x) = 0. As L is a

C-lattice, it follows that x � 0m, and hence that a � 0m. Therefore a �
∧{0m | m

is a maximal element containing a}. If y is compact and y �
∧{0m | m is a maximal
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element containing a}, and if p is any maximal element, then 0p : yp = 1p if a � p,

and ap = 1p if a � p. Hence, (a ∨ (0 : y))p = 1p for every maximal element p, so
a ∨ (0 : y) = 1. Then y = ay � a, so (iii) holds. The implication (iii) ⇒ (i) is
obvious. �

Remark 1. By Proposition 1, every σ-element is the meet of ∗-elements.

It is convenient to record the following for later reference.

Proposition 2. The following are equivalent for a prime element p ∈ L.

(i) p is a minimal prime over a ∈ L.

(ii) For any x ∈ L∗, x � p implies there exists y � p such that xny � a for some

positive integer n.

�����. This is given by Lemma 3.5 of [3]. �

We now characterize M -normal lattices in terms of σ-elements.

Theorem 1. Let L be reduced. Then the following statements are equivalent:

(i) Each maximal element contains a unique minimal prime element.

(ii) For every maximal element m of L, Lm is a domain.

(iii) L is M -normal.

(iv) Every ∗-element is a σ-element.

(v) Every minimal prime element is a σ-element.

(vi) Every minimal prime element is a maximal σ-element.

�����. (i) ⇒ (ii). Suppose (i) holds. Let m be a maximal element of L. Then
0m = 0Fm is a ∗-element, so by Lemma 6 of [6], 0m is the meet of all minimal prime
elements containing it. By (i) 0m is a prime element and so (ii) holds.
(ii) ⇒ (iii). Suppose (ii) holds. Let p be a prime element. Then p � m for some

maximal element m of L. Then 0m � p and 0m is the only minimal prime element
contained in p. Therefore L is M -normal.

(iii) ⇒ (iv). Suppose (iii) holds. Let a be a ∗-element. Then a = 0F for some
F ∈ F(L∗). Let x � a be any compact element. Then xy = 0 for some y ∈ F . By

(iii) and by Theorem 7 of [6], (0 : x) ∨ (0 : y) = 1. Since y ∈ F , (0 : y) � 0F = a, so
a ∨ (0 : x) = 1 and hence a is a σ-element.

(iv) ⇒ (i). Suppose p1 and p2 are two distinct minimal prime elements. Choose
any compact element x � p1 such that x � p2. It follows from Proposition 2 that

xy = 0 for some compact element y � p1. As (0 : x) = 0[x), (0 : x) is a ∗-element, so
by (iv), (0 : x) is a σ-element and hence (0 : x) ∨ (0 : y) = 1. Since (0 : x) � p2 and

(0 : y) � p1, it follows that p1 ∨ p2 = 1 and hence every maximal element contains a
unique minimal prime element.
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(iv)⇒ (v). Assume (iv). Let p be a minimal prime of L. It follows from Proposition

2 that p = 0p. Hence, p is a σ-element by (iv).

(v) ⇒ (vi). Assume (v) holds. Let p be a minimal prime element and assume

p � a � m for some σ-element a and some maximal element m of L. By Proposition
1, a is locally complemented, so p = pm = am = 0m and therefore a � am � pm = p.

Hence (vi) holds.

(vi)⇒ (i). Assume (vi). Let m be a maximal element and let p � m be a minimal

prime element. By Proposition 1, p is locally complemented, so p = 0m, and hence
p is the only minimal prime � m. �

It can be easily shown that an ideal I of a ring R is a pure ideal (x ∈ I implies
xy = x for some y ∈ I) if and only if I is a σ-ideal (see [2] and [7]). Pure ideals

have been studied extensively in [1], [2] and [7] and σ-ideals have been studied by
Cornish [9] in the case of distributive lattices. The following characterizes reduced

Baer lattices in terms of σ-elements.

Theorem 2. Suppose L is reduced. Then L is a Baer lattice if and only if every

Baer element is a σ-element.

�����. Suppose L is a Baer lattice. Then by Theorem 10 of [6], L is M -normal
and quasiregular. As L is quasiregular, by Theorem 2 of [6], every Baer element is a

∗-element. It follows from Theorem 1 that every Baer element is a σ-element.

Conversely, assume every Baer element is a σ-element and x ∈ L∗. It is observed

in [3](page 63) that (0 : (0 : x)) is a Baer element. As x � (0 : (0 : x)), by hypothesis
(0 : (0 : x)) ∨ (0 : x) = 1 and hence L is a Baer lattice. �

Regular lattices can also be characterized in terms of σ-elements.

Theorem 3. L is regular if and only if every element is a σ-element.

�����. If every element is a σ-element, then x ∨ (0 : x) = 1 for every x ∈ L∗,
and so L is regular.

Conversely, assume that L is regular. Then every compact element is comple-
mented. Note that every complemented element is a σ-element. So every compact

element is a σ-element. As L is compactly generated and the arbitrary join of σ-
elements is a σ-element, it follows that every element is a σ-element. �

For any a ∈ L, let a∆ =
∧{0m | m is a maximal element containing a}.

Lemma 1. Let L be a reduced M -normal lattice. Then for any a ∈ L, a∆ is a

σ-element.
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�����. Assume x ∈ L∗ and x � a∆. Then m ∨ (0 : x) = 1 for all maximal

elements m containing a, so (0 : x) ∨ a = 1. Therefore y ∨ a = 1 for some compact
element y � (0 : x). Since xy = 0 and L is M -normal, by theorem 7 of [6] we have
(0 : x) ∨ (0 : y) = 1. Then x1 ∨ y1 = 1 for some compact elements x1 � (0 : x) and
y1 � (0 : y). Note that if m is a maximal element containing a, then y � m and so
y1 � 0m. Therefore y1 � a∆ and obviously a∆ ∨ (0 : x) = 1. This shows that a∆ is

a σ-element. �

Lemma 2. Let L be a reduced M -normal lattice. Suppose a is a σ-element and

let m be a maximal element containing a. If “x � 0m implies x∆ � a”, then a = 0m.

�����. Since a � m and a is a σ-element, it follows that am = 0m and so a � 0m.
Assume x ∈ L∗ and x � 0m. As 0m is a ∗-element and therefore a σ-element, we
have 0m ∨ (0 : x) = 1, so 0m ∨ y = 1 for some y ∈ L∗ with xy = 0. As L is M -

normal, as in the proof of Lemma 1, we have (0 : x) ∨ (0 : y) = 1, so 1 = x1 ∨ y1,
where xx1 = yy1 = 0 for some x1, y1 ∈ L∗. Since yy1 = 0 it follows that y1 � 0m.
Therefore, by hypothesis y∆1 � a. Again since x � y∆1 , it follows that x � a and
hence a = 0m. �

Theorem 4. Let L be a reduced M -normal lattice.

(i) An element p is a minimal prime if and only if p is a maximal σ-element.

(ii) Every prime σ-element is a maximal σ-element.

�����. (i) Assume that p is a maximal σ-element. Suppose p � m for some

maximal element m of L. By Proposition 1, pm = 0m. As L is M -normal, 0m is a
minimal prime element and therefore (Theorem 1) a maximal σ-element. As p � pm,

it follows from the hypothesis on p that p = pm, and hence that p is a minimal prime.
The converse is given by Theorem 1.

(ii) Suppose a is a prime σ-element that is not a maximal σ-element. Then there
is a maximal element m such that a � m and a �= 0m. As a is a σ-element,

a � 0m. By Lemma 2, there exists x ∈ L∗ such that x � 0m and x∆ � a. Note
that x∆ ∧ (0 : x)∆ = 0. As a is a prime σ-element, it follows by Lemma 1 that

(0 : x)∆ � a. Again since x � 0m and 0m is a ∗-element and therefore a σ-element,
we have 0m ∨ (0 : x) = 1. So there exists y ∈ L∗ such that y � 0m and y � p for

all maximal elements p � (0 : x). As y � 0m and 0m is a σ-element, it follows that
0m∨(0 : y) = 1. So z∨y1 = 1 for some compact elements z, y1 ∈ L such that z � 0m
and yy1 = 0. Note that y1 � (0 : x)∆, so m ∨ (0 : x)∆ = 1. But (0 : x)∆ � a � m,
so m = 1, a contradiction. Thus a is a maximal σ-element. �

Corollary 1. L is regular if and only if L is reduced and every prime element is

a prime σ-element.
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�����. If L is regular, then by Theorem 3, every prime element is a prime σ-

element. Assume x ∈ L∗ and x is nilpotent. Then for every prime p, x � p and
p ∨ (0 : x) = 1. It follows that x = 0, so L is reduced.
Conversely, if L is reduced and every prime is a σ-element, then by Theorem 1,

every prime is a maximal σ-element, and so by Theorem 4, every prime element is a
maximal element. If x ∈ L∗, then by Proposition 2, x∨ (0 : x) = 1, so L is a regular

lattice. �

Theorem 5. Let L be reduced. Then L is a Baer lattice if and only if every prime

Baer element is a prime σ-element.

�����. If L is a Baer lattice, then by Theorem 2, every prime Baer element is

a prime σ-element. Conversely, assume that every prime Baer element is a prime
σ-element. Observe that a prime element which is a σ-element is a minimal prime

element and therefore, by hypothesis, every prime Baer element is a minimal prime
element and every minimal prime element is σ-element. Consequently by Theorem

3 of [6], L is quasiregular. It is observed in [6](p. 63) that every minimal prime is a
Baer element, so by Theorem 1, L is M -normal as well as quasiregular. Fix x ∈ L∗.

Choose an element y ∈ L∗ satisfying (0 : (0 : x)) = (0 : y). Then xy = 0. It follows
by Theorem 7 of [6] that (0 : x) ∨ (0 : y) = 0. Hence (0 : x) ∨ (0 : (0 : x)) = 1.

Therefore L is a Baer lattice. �

Definition 3. L is said to be an almost Baer lattice if, for each x ∈ L∗, (0 : x)

is the join of complemented elements of L.

If R is an almost PP-ring (for each a ∈ R, aR is a projective R module), then

the lattice L(R) of all ideals of R is an almost Baer lattice (see [2]). If L0 is a
complementedly normal lattice, then the lattice I(L0) of all ideals of L0, is an almost

Baer lattice (see [8]). Every Baer lattice is an almost Baer lattice and an almost Baer
lattice is a Baer lattice if and only if for each x ∈ L∗, there is a smallest complemented

element y such that x = xy.
We record the following without proof.

Lemma 3. L is an almost Baer lattice if and only if for each x ∈ L∗ and for any

y ∈ L∗, x � (0 : y) implies xg = x for some complemented element g � (0 : y).

Definition 4. An element a ∈ L is said to be a strong σ-element if for each
x ∈ L∗, x � a implies e ∨ (0 : x) = 1 for some complemented element e � a.

Note that every strong σ-element is a σ-element.

Theorem 6. Let L be reduced. Then the following statements are equivalent:
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(i) L is an almost Baer lattice.

(ii) Every ∗-element is a strong σ-element.

(iii) Every minimal prime element is a strong σ-element.

�����. (i) ⇒ (ii). Suppose (i) holds. Let a = 0F for some F ∈ F(L∗). Let

x � a be any compact element. Then x � (0 : y) for some y ∈ F . By (i) and
Lemma 3, xe = x for some complemented element e � (0 : y). Note that e � a and

e ∨ (0 : x) = 1 and therefore (ii) holds.
(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i). Assume that each minimal prime element is a strong σ-element. Ob-

serve that by Theorem 1, L is M -normal, so for every maximal element m, 0m is
a minimal prime element. Assume x, y ∈ L∗ and x � (0 : y). We show that, for
any maximal element m of L, there exists a complemented element e′ � m such
that either e′ � (0 : x) or e′ � (0 : y). Let m be a maximal element. Since 0m
is a minimal prime element we have either x � 0m or y � 0m. As 0m is a strong
σ-element, there exists a complemented element e � 0m such that xe = x or ye = y.

Note that (0 : e) = e′ � m and either e′ � (0 : x) or e′ � (0 : y). It follows that
1 =

∨{fα | fα is a complemented element such that fα � (0 : x) or fα � (0 : y)}.
As 1 is compact, 1 =

n∨
i=1

fαi . Let fα1 , fα2 , . . ., fαk
� (0 : x) and fαk+1 , fαk+2 , . . .,

fn � (0 : y). Put g =
n∨

i=k+1
fαi . Then xg = x and g � (0 : y). This shows that L is

an almost Baer lattice and the proof is complete. �

Let c(L) = {x ∈ L | x is a complemented element} and let R(L) = {a ∈ L | a

is the join of complemented elements of L}. Then R(L) =
(
R(L),

∧
R

,
∨

, 0, 1
)
is a

regular lattice, where for any collection {aα} ⊆ R(L),
∧
R

aα =
∨{x ∈ c(L) | x � aα

for all α}. Note that for a1, a2, . . . , an ∈ R(L),
n∧

i=1
ai =

n∧
R

i=1

ai = a1a2 . . . an.

For any prime p of L we define pR =
∨{a ∈ R(L) | a � p}. For any prime q of

R(L) we define q∗ =
∨{x ∈ L∗ | xe = 0 for some complemented element e � q}.

Note that pR � p and q � q∗.

Lemma 4. Let p be a prime element of L. Then pR is a prime element of R(L).

�����. Obvious. �

Henceforth, we denote the complement of an element x ∈ c(L) by x′.

Lemma 5. Let L be a reduced almost Baer lattice and let q be a prime element

of R(L). Then q∗ is minimal prime of L and a prime σ-element.
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�����. Suppose x, y ∈ L∗ and let xy � q∗. Then xye = 0 for some comple-

mented element e � q. Assume that y � q∗. As L is an almost Baer lattice, we have
xf = x and f � (0 : ye) for some f ∈ C(L). Since yfe = 0, y � q∗, it follows that
f � q, so f ′ � q and also xf ′ = 0. Therefore x � q∗. This shows that q∗ is a prime

element and since q∗ = 0q∗ , it follows that q∗ is a minimal prime element. As L is
M -normal, by Theorem 1, q∗ is a minimal prime in L and a prime σ-element. �

Let π(R(L)) be the set of prime elements of R(L) and π(σ(L)) be the set of prime
σ-elements of L.

Theorem 7. Let L be a reduced almost Baer lattice. Then the map q −→ q∗

from π(R(L)) into π(σ(L)) is a bijection map.

�����. Suppose q∗ = p∗ for some p, q ∈ π(R(L)). We show that q � p. Assume
x ∈ L∗∩c(L) and x � q. Then there exists a complemented element e with x � e � q.

Necessarily e′ � q, so e � q∗ = p∗. Hence also e′ � p∗. As e � p implies e′ � p∗it

follows that e � p. Hence x � e � p. Hence q � p. Similarly p � q and hence p = q.
Therefore the map is one-one. If p ∈ π(σ(L)), then by Lemma 5, p is a minimal

prime element, so by Lemma 4, pR ∈ π(R(L)). Again by Lemma 5, p∗
R ∈ π(σ(L))

and p∗
R � p and hence p∗

R = p. Thus the map is a bijection. �

Definition 5. L is said to be relatively M -normal if any two noncomparable
prime elements are comaximal. (a, b ∈ L are said to be comaximal if a ∨ b = 1).

Note that regular lattices, zero dimensional lattices are examples of relatively M -

normal lattices. If R is a Prüfer domain, then the lattice L(R) of all ideals of R is
a relatively M -normal lattice (see [10]). If L0 is a relatively normal lattice (see [8]),

then I(L0) is a relativelyM -normal lattice. If L is an r-lattice domain satisfying any
one of the conditions of Theorem 3.4 of [4], then L is a relatively M -normal lattice.

We record the following four lemmas for future reference.

Lemma 6. The following statements are equivalent for an element a ∈ L.

(i) (a : x) = (a : xn) for all x ∈ L∗ and for all n ∈ �+.
(ii) a =

√
a.

(iii) (a : xy) = (a : x ∧ y) for all x, y ∈ L∗.

�����. The implications (i)⇒ (2)⇒ (3)⇒ (1) are easily established. �

Lemma 7. Let a ∈ L. If a =
√

a, then for any x ∈ L∗, (a : x) = a[x).

�����. Clearly x ∈ [x), so (a : x) � a[x). If t � a[x), then ty � a for some

y � some power of x. It follows that tnxn � txn � a for some n, and hence that
t � (a : x). �
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Lemma 8. Let p be a minimal prime over a. Then, for any x ∈ L∗, p contains

precisely one of x, (
√

a : x).

�����. Suppose x ∈ L∗. As (
√

a : x)x � √
a � p, it follows that either x � p

or (
√

a : x) � p. If x � p, then by Proposition 2 there exists a compact element

y � p such that xny � a for some n ∈ �+. As (xy)n � a, we have y � (√a : x) and
therefore (

√
a : x) � p. This shows that p contains precisely one of x, (

√
a : x). �

Lemma 9. Assume a ∈ L, F ∈ F(L∗) and af �= 1. If p is a minimal prime over

aF then p is a minimal prime over a.

�����. Suppose p is a minimal prime over aF . Obviously a � p. Let x be any

compact element such that x � p. By Proposition 2, we get the following: As p is a
minimal prime over aF , there exists a compact y � p, such that xny � aF for some

n ∈ �+. Then xnys � a for some s ∈ F . Note that [0, b] ∩ F = [0, p] ∩ F = ∅, so
s � p. Thus ys � p and xnys � a, and hence p is a minimal prime over a. �

Theorem 8. Let a be a proper element of L. Then the following statements are

equivalent:

(i) For any x, y ∈ L∗, xy � a implies (a : x) ∨ (a : y) = 1.
(ii) For every x, y ∈ L∗, (a : xy) = (a : x) ∨ (a : y).
(iii) a =

√
a and for every prime element p containing a, ap is a prime element.

(iv) a =
√

a and every prime element containing a, contains a unique minimal prime

over a.

(v) a =
√

a and any two distinct minimal primes over a are comaximal.

�����. (i) ⇒ (ii). Suppose (i) holds. Let x, y ∈ L∗. Clearly (a : x) ∨ (a :
y) � (a : xy). Choose any compact element r ∈ L∗ such that r � (a : xy). Then
xyr � a, so by (i), (a : x) ∨ (a : yr) = 1. Again r = 1r = ((a : x) ∨ (a : yr))r = (a :

x)r ∨ (a : yr)r = (a : x)r ∨ (((a : y) : r))r � (a : x) ∨ (a : y) as (a : x)r � (a : x) and
((a : y) : r)r � (a : y). Thus (a : x) ∨ (a : y) = (a : xy).

(ii) ⇒ (iii). Suppose (ii) holds. By (ii), (a : xn) = (a : x) for every x ∈ L∗
and for every positive integer n and so by Lemma 6, a =

√
a. Let p be a prime

element containing a. Suppose xy � ap for some x, y ∈ L∗. Then xys � a for some
s � p. Suppose x � ap. Then xz � a for all z ∈ Fp, so (a : xs) � p. By (ii),

1 = (a : y) ∨ (a : xs) and hence (a : y) � p. Therefore there exists r ∈ L∗ such that
yr � a and r � p. As r � p, necessarily y � ap. This shows that ap is a prime

element.

(iii) ⇒ (iv). Suppose (iii) holds. Note that a � ap for every prime element p of L.
Again if p, q are prime elements such that a � q � p, then ap � aq � q. Therefore if
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p is a prime element containing a, then by (iii), ap is the only minimal prime over a

that is contained in p. Thus (iv) holds.

(iv) ⇔ (v) is obvious.
(iv) ⇒ (i). Suppose (iv) holds. Assume x, y ∈ L∗ and xy � a. If a is a radical

element, by Lemma 7, (a : x) = a[x) and (a : y) = a[y). Suppose (a : x) ∨ (a : y) < 1.
Then (a : x) ∨ (a : y) � p for some prime element p of L. Again there exist prime

elements p1, p2 ∈ L such that (a : x) � p1 � p, (a : y) � p2 � p, p1 is a minimal
prime over (a : x) and p2 is a minimal prime over (a : y). By Lemma 9, p1 and

p2 are minimal primes over a and so by (iv), p1 = p2. By Lemma 8, x � p1 and
y � p1 and hence xy � p1, which contradicts the fact the xy � a � p1. Therefore

(a : x)∨(a : y) = 1 and hence (i) holds. This completes the proof of the theorem. �

We now characterize relatively M -normal lattices.

Theorem 9. The following statements on L are equivalent:

(i) For every x, y, a ∈ L∗, xy � √
a implies (

√
a : x) ∨ (√a : y) = 1.

(ii) For every x, y, a ∈ L∗, (
√

a : xy) = (
√

a : x) ∨ (√a : y).

(iii) For every prime element p and a � p, (
√

a)p is a prime element.

(iv) Every prime element containing an element a ∈ L contains a unique minimal

prime over a.

(v) Any two distinct minimal primes over an element a ∈ L are comaximal.

(vi) For every x, y ∈ L∗, (
√

x : y) ∨ (√y : x) = 1.

(vii) L is a relatively M -normal lattice.

�����. By Theorem 8, (i) through (v) are equivalent. We show that (i), (vi)
and (vii) are equivalent.

(i)⇒ (vi). Suppose (i) holds. Let x, y ∈ L∗. Then 1 = (
√

x∧√y : x∧y) = (
√

xy :
x ∧ y) =(Lemma6) (

√
xy : xy) = (

√
xy : x) ∨ (√xy : y). But (

√
xy : x) = (

√
y : x)

and (
√

xy : y) = (
√

x : y) and therefore 1 = (
√

x : y) ∨ (√y : x). Thus (vi) holds.

(vi) ⇒ (vii). Suppose (vi) holds. Let p1, p2 by any two incomparable prime

elements. Choose x, y ∈ L∗ such that x � p1, x � p2, y � p2 and y � p1. Then
(
√

x : y) � p1 and (
√

y : x) � p2. Therefore by (vi), p1 and p2 are comaximal. Hence

(vii) holds.

The proof of (vii) ⇒ (i) is similar to the proof of Theorem 8 ((iv) ⇒ (i)).
Thus (i), (vi) and (vii) are equivalent. �

Remark 2. By definition, every relatively M -normal lattice is an M -normal
lattice. By Theorem 9(vi), L is a relatively M -normal lattice if and only if any two

radical elements are locally comparable. This shows that if every compact element is
principal, then L is a relativelyM -normal lattice and Lm is totally ordered for every
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maximal element m of L (see Theorem 4 and Theorem 6 of [11]). We are unable to

prove the converse. It would be interesting to find some conditions for a relatively
M -normal lattice to be a lattice in which every compact element is principal.
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