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ON POSITIVE SOLUTIONS OF QUASILINEAR ELLIPTIC SYSTEMS 

YUANJI CHENG, Lu lea 

(Received March 3, 1995) 

Abstract. In this paper, we consider the existence and nonexistence of positive solutions 
of degenerate elliptic systems 

' -Apu = f(x,u,v), in Q, 

-Apv = g(x,u,v), in П, 

u = v = 0, on дíì, 

where — Ap is the p-Laplace operator, p > 1 and f2 is a C , a-domain in Rn . We prove an 
analogue of [7, 16] for the eigenvalue problem with f(x,u,v) = Xivp~1, g(x,u,v) = A2up_1 

and obtain a non-existence result of positive solutions for the general systems. 

Keywords: Eigenvalue problem, Degenerate elliptic operator, Nonlinear systems, Positive 
solutions. 

1. Let n be a bounded C1,c*-domain in Rn, and —Ap the p-Laplace operator, 

p > 1. In this paper, we are concerned with positive solutions of the elliptic system 

(i) 

' —Apu = f(x,u,v), in П, 

—Apv = g(x, u, v), in íî, 

k u = v = 0, on дíì. 

For semilinear equations, the above problem is mentioned in [12] as an open problem 

and has been studied, for example, in [4] on the convex domain, in [14] for a ball, 

and in [7] on an annulus for systems with more than two equations. The quasilinear 

elliptic systems on the unit ball were investigated in [5] by an ODE approach. To 

understand the quasilinear system (1), we found that there is a big difference between 

semilinear and quasilinear systems, which is created by the nonlinearity of the p-

Laplace operator. For instance, it is much harder to deduce the L°°-boundedness 
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for positive solutions of (1), partly due to the fact there is no corresponding Rellich 
identity [13, 16], than in the semilinear systems, where linearity of the Laplacian 
plays an important role. Further, some simple facts about non-existence of positive 
solutions of semilinear systems become very delicate to handle in the quasilinear 
version (1). Anyway, our proofs are new even for the semilinear equations. 

In the sequel, we denote by /x(p) > 0,<p(x) > 0 the first eigenvalue and the 
corresponding normalized eigenfunction of the p-Laplace operator — Ap [11], For a 
given uniformly elliptic operator L = — ~Zi,j di(aij(x)dj) w e denote the eigenvalues 
and the corresponding eigenfunctions [6] by jj,k,ipk(x), k = 1,2, 

First we consider the following linear eigenvalue problem for u,v E W0'
2(Cl): 

( Lu = au + X\v, 

Lv = X2u + (5v, 

where a,Xi,X2,(3 E R. 

Theorem 1. 1) Ifa,/3 < /ii then (2) has positive solutions if and only if X\ > 0 
and AiA2 = (/ii - a)(ui - /?). 

2) The system (2) has nontrivial solutions if and only if X\X2 = (fik — a)(/j,k — /3) 
for some k ^ 1 and the solutions u, v belong to the eigenspace of Hk-

As a corollary of Theorem 1, we consider the following elliptic systems [10] on 

wZ'2(<iy. 

{ -aAu - BAv = X\v, 

-f3Au - 6Av = X2u, 

where a, (3, X, S, fi are constants and a > 0, aS — /32 > 0. 

Corollary 1. The system (3) has a pair of positive solutions if and only if Xi > 

(3jj,i, a5u\ = (Ai — /3u\)(X2 — (3ui) and the solutions are of the form u = axpi(x), 

v = bi^i(x). 

For the special quasilinear elliptic system: u,v G W0'
P(Q), 

( -Avu = Ai \v\p~2v, on H, 
(4) I 

\-Apv = X2\u\p~2u, on ft, 

we have 

Theorem 2. 1) The system (4) has positive solutions if and only if Ai > 0, 

A1A2 = /i(p)2 and the solutions are given by u = ci^p(x), v = c2<p(x), c\ > 0, 

C2 = c1(A2/A1)1/2("-1). 
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2) If A1A2 ^ 0, then (4) has nontrivial solutions if and only if \A1A2 is an eigen­
value of —Ap and u, v are the associated eigeniunctions. 

Concerning the general system (1), we only have a non-existence result 

Theorem 3. If there exist non-negative constants a, /3, Xi, i = 1,2 such that one 

of the following conditions is satisfied, then (1) has only trivial non-negative solution 

u,v ^ fc: 
1) A < p(p) and for all (x, u,v) G O x [0, fc]2, 

f(x, u, v) < an*'1 + A i ^ - 1 , g(x, u, v) ^ X2u
p~1 + ^v9'1; 

2) A > p(p) and for all (x, u,v) G i l x [0, fc]2, 

f(x, u, v) ^ atf-1 + Aivp_1 , g(x, u, v) ^ X2u
p~1 + f3vp~1, 

where 2A = a + 0 + - / ( a - /3)2 + 4AiA2. 

2. In this part, we prove a lemma, which is an improvement of the result in 
[7, 16]. From now on we work on the Sobolev space WQ

1,P(Q) with the norm \\u\\p = 

/JVuI'd*. 

Lemma 1. If an > 0 is constant and u, v are nonzero elements of W0
1,p(ft) 

satisfying 

!

-ApU = ao\v\p~2v, on H, 

—Apv = ao\u\p~2u, on Q, 

in the weak sense, then u = v and an is an eigenvalue of —Ap. Moreover, ifu^O 

on fi, then a0 = p(p) and u = v = cip(x) for constant c. 

P r o o f . If we choose ip = (u — v)+ G JV0
1,p(fi) as a test function for (5), we see 

[8] that 

(6) / IVu\p-2Vu • V(u -v)dx = a0 J \v\p~2v(u - v) dx, 
J {u>v} J {u>v} 

(7) I IVv\p '2Vv • V(u - v) da; = a0 / \u\p~2u(u - v) dx. 
J{u>v} J{u>v} 

It follows from (6) and (7) that 

/ (|Vu\p~2Vu - IVv\p~2Vv) • V(u - v) dx 
J{u>v} 

= - a 0 / (\u\p~2u - \v\p~2v)(u - v) dx ^ 0, 
J {u>v} 
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which implies that u ^ v a.e. on fi. Similarly, it can be also shown that u ^ v a.e. on 
17. Consequently, u = v and ao is an eigenvalue of - A p . Since the first eigenvalue 
of — Av is simple [11], it follows that ao = u(p) in the case u ^ 0 or v ^ 0 on Q. 

3. We shall prove Theorems 1 to 3 in this section. D 

P r o o f of T h e o r e m 1. 

1) The sufficiency is obvious, since (ipi(x), (/JL - a)/\\ • ip\(x)) is a pair of positive 
solutions. It remains to show the necessity. First observe that if (u,v) is a pair of 
positive solutions of (2), then A; > 0, since a, ft < u\ and L - a, L — (5 are positive 
operators. Further, choosing c > 0 such that a + c\\ = \2/c + (3 = A and changing 
variables by uo = u, vo = v/c, we see that wo, ^o satisfy the system 

{ Luo = auo + c\\Vo, 

Lv0 = \2uo/c + (3v0. 

Now, define w = max{uo,^o}, wo = min{uo,^o}, then we have 

W + W0 = UO+VQ, w - wo = |w0 - v0\, 

{ Luo = auo + c\\Vo ^ Aw, 

Lv0 = \2u0/c + (3v0 ^ Aw, 

which implies [8] that w satisfies 

(9) Lw ^ Aw. 

Similarly, ujo satisfies the inequality LWQ ^ AWQ. Consequently, 

(10) L(w - wo) ^ A(w - wo). 

If we use ip = w as & test function for the inequality (9), we get 

/ aijWXiwXj dx ^ A / w2 dx, 
JQ Jn 

which implies that A = JJL\ , w = yipi (x) for some 7 > 0 because 

/ji\ =inf< / aijWXiwXjdx I \ w2 dx, 0 7- w G WQA(Q,) ^ 

and ift\ is the normalized minimizer [6]. In a similar way, we derive w — wo = 70^1 
for some 70 ^ 0. 
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We are done if 70 = 0. If 70 > 0, then u0 — v0 does not change its sign on ft, due to 
the fact that Vi is positive on H. Therefore, either u0 - v0 = 7^1 or v0 - u0 = 70^1 • 
We may assume that u0 — v0 = 70^1 > then ^0 = 7^i and u0 = (7 - 7o)V>i- Via the 
first equation in (8), we deduce 

Mi7 = aj + Aic(7 - 70) = A7 - A1C70. 

But A = /ii, so we see from the above equation that A1C70 = 0. This is a contradiction 
and the proof of 1) is complete. 

2) Let (u,v) be a nontrivial solution of (2), then u, v have the expansions [6] 
u(x) = £ * akipk(x), v = Yk h^k(x), with 0 7- { a / J ^ , {6fc}i° G i2. We obtain from 
(2) that ak, bk solve the system of linear equations 

( /j,kak = aak + \\bk, 

Hkbk = A2a,t + (3bk, 

which has a nontrivial solution (ak,bk) if and only if AiA2 = (y,k — a)(/j>k — (3). • 

P r o o f of T h e o r e m 2. 

1) First observe by the positivity of the p-Laplace operator [9] that if (3) has a 
pair of positive solutions then A; > 0, i = 1,2. The assertion follows from Lemma 
and a rescaling argument. 

2) Assuming that \/X~X~ is an eigenvalue of —Ap, then (\Xi\2{p-1)ip(x), 

\\2\
2{l'-1)ip(x)) is a pair of solutions of (3), where i\) is an associated eigenfunc-

tion of \/AiA2. On the other hand, if AiA2 ^ 0 and (u, v) is a nontrivial solution of 
(3), then we derive by the Sobolev embedding theorem that AiA2 > 0 and both u 

and v are nonzero elements in W0
p(Sl). Furthermore, changing the variables by 

u0 = \\x\^~~u, v0 = \\2\^~^v, 

we see that (u0,v0) satisfies the system (5) with a0 = VA1A2 and hence the conclusion 
is true via Lemma. 

Open problem: Is there a positive number a > 0 such that the system 

{ -ApU = a\v\p~2v, on fi, 

—ApV = -a\u\p~2u, on ft 

has a pair of nontrivial solutions u, v G W0
l'p(Q)? • 
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P r o o f of T h e o r e m 3 . Since the case when A1A2 = 0 is easy, we may 
assume AiA2 > 0. Supposing that (1) has a pair of positive solutions u(x),v(x) ^ k 

a.e. on ft, we change variables by 

u = u0, v = cv0, where 2Aicp_1 = /? - a + ^(P - a)2 + 4AiA2. 

Let w = msx{u0,v0}, w = min{u0,v0}, then w,w ^ k a.e. on ft. If the condition 1) 

in Theorem 3 holds, we have A < u(p) and 

-Apu0 = f(x,u,v) < aul'1 + A i ^ - 1 ^ " 1 < Awp~1, 

-Apv0 = c1~pg(x,u,v) ^ c1-pX2u
PT1 + /Jvg"1 < A ^ " 1 . 

From these two inequalities we get [8] that w satisfies the inequality — Apw ^ Aivp_1 

in the weak sense, which implies that ||w||p ^ A||w||£7,. But this inequality has only 

the trivial solution w = 0, if A < u(p). 

It the condition 2) satisfied, then A > u(p). Analogously, we can show that w 

satisfies — Apw ^ Awp _ 1 in the weak sense. 

Define r = (A/p(p))1^p~1^ > 1 and choose t > 0 such that t<p(x) ^ TW(X) on ft, 

which is possible due to the fact that w, (f > 0 on ft, and ^f, | ^ > 0 on dft [15]. 

Denoting (pi(x) = tip(x), and then choosing (<̂ i — w)+ as a test function both for 

the differential inequality —Apuj ^ Awp~1 and the equation — Ap<px = p(p)(pp~1, we 

obtain 

/ |Vw|p~2Vw • V((/?i - w ) d . O A / ^p"1(<f°i - w)d~, 
«/{vi>^} J{y>i>~} 

/ \V<pi\p-2V<pi-V((pi-w)dx = u(p) / ^ J - 1 ( ^ i - f i f ) d x . 
J{v?l>-u;} J{^1>^} 

Consequently, 

0 3* / ( |Vгv |p~2Vгv-|V(Di |p"2V(Di)-V((Di-Ã)da; 
^l{(^i>ѓü} 

^ / {ЛÛ?-1 - M(PK - 1 }(VI - й) dz 
J{<ŕ?l>ѓì;} 

łvtø)-1 í {(тwГ'1 - ^ Г 1 } ^ ! - t-Oda; ^ 0, 
•'{<ŕl>'u>} J{V>1>^} 

because on the domain {a:; <pi(x) > w(x)} the inequality {(™)p_1-(Di~1}((Di — w) > 
0 holds. Thus, we have <pi ^ w a.e. on ft. 

Applying the preceding trick once more to the eigenfunction Ttpife rw) we obtain 
r(/?i ^ w on ft, too. An iteration process yields rn<D ^ w on ft for any integer n ^ 1. 
Letting n tend to infinity, we deduce <p = 0 on ft. This is absurd and the proof is 
done. • 
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