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INTRODUCTION

We can observe that theories containing a certain compatible collection of basic
theorems, a calculus, lie in the focus of the present measure and integration inves-
tigations. This calculus makes possible and determines further applications of the
integral in a particular branch of mathematics.

Integral of I. Dobrakov. Let X and Y be Banach spaces. A a d-ring of subsets
of a set T # 0, L(X,Y) the space of all continuous operators L: X — Y, m:
A = L(X.Y) a measure g-additive in the strong operator topology. We say that
a measurable function f: T — X is integrable in Dobrakov’s sense if there exists a
sequence £, : T — X n € N, of simple functions converging m-a.e. to f, such that
for every E € o(A) (the o-algebra generated by A), the sequence fE f,dm, n e N,
is convergent in Y, cf. [7]. The integral of the function f on E € g(A) is defined by
the equality [, fdm = lim [,.f, dm, cf. [7], Definition 2.

n—oo
In [7] [14] I. Dobrakov developed a Lebesgue-type integration theory in the Banach

spaces for an operator valued measure. This theory involves convergence theorcms
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(the Lebesgue dominated theoreimn), integration per substitution. Fubini theorems. L,,-
spaces, mean-value theorem, cte. In [25] a Radon-Nikodym theorem for Dobrakov's
integral is given. Papers [29], [30] present Dobrakov’s integral as a weak-type integral.
Dobrakov’s integral yields a greater class of integrable functions than the also well-
known (Lebesgue-type) integral of R. G. Bartle, [1], considering the same measure
and set systems, cf. [7].

Dobrakov’s construction of the integral is based on the Egoroff theorem. Note that
the Egoroft theorem does not hold for arbitrary nets of measurable functions without
some restrictions on the measure, net convergence. or the class of measurable func-
tions. A necessary and sufficient condition in locally convex setting for the assertion
that everywhere (net) convergence of measurable functions implies convergence in
semivariation has been given iu [19], Th. 3.3.

Various generalizations of Dobrakov’s integral. [n [31], W. Smith and D. H.
Tucker used the idea of the decomnposition of locally conver (topological vector) spaces
(L.C.S.) into the projective limit of normed spaces for a generalization of Dobrakov's
integral. The class of integrable functions is built via a transfinite induction starting
with the class of simple functions. A representation theorem for this integral is
proved.

The second generalization of Dobrakov's integral to L.C".S. is represented by papers
in which authors consider measures satisfying the so called *-condition (e.g. [27] by
R. Rao Chivukula and A. S. Sastry).

The third direction of the enlargement of Dobrakov's integral to L.C.S. is based on
the fact that Dobrakov’s integral is also a weak-type integral (e.g. papers of C. De-
bieve, [15], and S. K. Roy and N. D. Charkaborty, [28]). Integrals deal with functions
‘ranging in a Banach space and with measures in locally convex spaces of continuous
operators acting from a class of Banach subspaces of one locally convex space into
another.

The fourth way how to extend the theory of I. Dobrakov is to avoid problems with
uniform convergence of functions, i.e. to deal with L.C'.S. of functions for which a
Egoroff theorem holds, cf. the papers of M. E. Balvé. R. Bravo, and P. J. Jiménez
Guerra, [2], [3], [4], [5]).

Aim of the paper. The bornological character of the bilinear integration theory
developed in [27] shows the fitness of developing a bilincar integration theory in the
context of bornological convex vector spaces.

The Dobrakov integral is defined in Banach spaces. If both X,Y are considered to
be inductive limits of Banach spaces, i.e. complete bornological locally convex spaces
(C.B.L.C.S.), a natural question arises whether an integral in C.B.L.C.S. can be
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defined as a finite sum of Dobrakov’s integrals in various Banach spaces, the choice
of which may depend on the function which we integrate.

In this paper we (1) introduce a notion of g-additive bornological operator valued
measure in C.B.L.C.S., and (2) present a construction of the integral with respect to

such measure.

1. PRELIMINARIES

C.B.L.C.S. The theory of C.B.L.C.S. can be found in [23], [24], and [26].

Let X, Y be two C.B.L.C.S. over the field K of real R or complex C numbers
equipped with bornologies Bx . By. The basis I/ of the bornology Bx has a marked
clement Uy € U, if Uy C U for every U € U. Let bases U, W be chosen to consist of all
Bx-, By-bounded Banach disks in X, Y, with marked elements Uy € U, Uy # {0},
and Wy € W, Wy # {0}, respectively. Recall that o Banach disk in X is a set which
is closed, absolutely convex and the linear span of which is a Banach space. The
space X is an inductive limit of Banach spaces Xy, U e U, X = ixbj liblln Xy, cf. [24],

€

where X/ is the linear span of U € U and U is directed by inclusion (analogously
for Y and W). If a sequence of clements x,, € X, n € N, converges bornologically to

x € X (in the bornology Bx with the basis U/), then we write x = U- lim x,,.
n— oo

On U the lattice operations are defined as follows. For U;,U; € U we have:
Uy AU, =U;NU,, Uy VUy = acs(U; UU,), where acs denotes the topological closure
of the absolutely convex span of the set. Analogously for W. For (U, Wy), (U, W) €
U x W we write (Uy, W) < (U, Ws) if and only if U C Us and Wp D W,.

A more detailed consideration of a lattice structure of C.B.L.C.S. has been given
in [20], §1.

Operator structures. Denote by L(X,Y) the space of all continuous lincar
operators L: X = Y. The lattice structure of L(X.Y) is considered in [21]. Note
that in the terminology of [26], Chap. 4, §2, Th. 1, the space L(X,Y) (as an inductive
limit of seminormed spaces) is a bornological convex vector space.

Set structures. Let T # @) he a set. Denote by A a d-ring of subsets of T. If A
is a system of subsets of the set T', then o(.A) denotes the o-algebra generated by the
system A. Denote & = g(A), N = {1,2,...}. We use \g to denote the characteristic
function of the set E. By py: X — [0,00] we denote the Minkowski functional of
the set U € Y. (If U does not absorb x € X, we put py(x) = 00.) Similarly, py
denotes the Minkowski functional of the set W € W.

S
[en}
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For (U,W) € U x W, denote by my w the (U".11")-semivariation of a charge
(= finitely additive measure) m: A — L(X,Y), where

ﬁlU,W(E):suppW<Z (ENE)x ) E€ex.

and the supremum is taken over all finite sets {x; € {":/ =1,2....,I} and all disjoint
sets {E; € A i =1,2,....1}. It is well-known that 7y is a submeasure, i.c. a
monotone, subadditive set function, and my w (@) = 0. Denote by Ayw C A the
largest d-ring of sets £ € A, such that iy w(E) < ~x. Denote iy w = {1y :
(U, W) el x W}.

For W € W, denote by |u|u the W-semivariation of a charge u: T — Y, where

1
lulw (E) = sup pw <Z)\iﬂ(Em Ei))- EeX,

=1

and the supremum is taken over all finite sets of scalars {A; € K; |\ < 1.7 =
1,2,...,1} and all disjoint sets {E; € A; i = 1.2...., I'}. The W-semivariation
|u|w is a submeasure. Denote iy = {uw ; W e W},

Various lattices of set functions (among them 1y, v, ) related to L(X.Y)-
valued measures have been studied in [20], §2, the lattices of set systems (and null
sets) in [20], §3.

Convergences of functions. We assume that the generalizations of the classical
notions (such as almost uniform convergence, almost cverywhere convergence, and
convergence in measure of measurable functions and relations among them) to inte-
gration in Banach spaces are commonly well-understood. ef. [7]. All this theory can
be generalized to C.B.L.C.S. as follows.

Let Buyw be a lattice of submeasures fyyw: & — [0,0¢]. (U W) € U x W.
such that Bu, wa A By iy = Busavs,wavwys Bron V Buyavy = Buavis, Wanil,
(Ug, W), (U3, W3) €U x W, e.g. Puw = lilu)v\;.

Denote by O(Bu.w) ={N € S; Buw(N) =0}, (U.1W) eUd x W. Theset N € ©
is called By, w-null if there exists a couple (U, W) € 4 x W such that Sy,w (N) = 0.
We say that an assertion holds ;34 w-almost everywherc. shortly By w-a.e., if it holds
everywhere except in a 3y w-null set. A set E € T is said to be of finite submeasure
Bu,w if there exists a couple ([.1V) € U x W such that 3w (E) < oo.

For E€ S ,Re U, (U W) el xW, we say that a sequence f,,: T — X, n € N,
of functions (R, E)-converges 3pw-a.c. to a function f: T — X if 7}3130 pr(f.(t) —
f(t)) = 0 for every t € E\ N. where N € O(3-1). We say that a sequence f,,:
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T — X, n € N, of functions (4. E)-converges iy w-a.e. to a tunction f: T — X if
there exist R € U, (U, W) € U x W such that the sequence f,,, n € N, of functions
(R, E)-converges By w-a.e. to f. We write £ = - Ylliixgo f, Buw-a.e. If E =T, then
we will simply say that the sequence R-converges 31 yv-a.e., or ({-converges [ y-a.c.

For E€ S, Redd, (U,W) el xW we say that a sequence f,,: T'— X, n € N, of
functions (R, E)-converges uniformly to a function f: T' — X if lim If.—fllg.r = 0.

where ||f]|z.r = suppr(f(t)). We say that a sequence f,: T' — X n 6 N, of functions
teE

(R, E)-converges Py w -almost uniformly to a function f: T — X if for every ¢ > 0
there exists a set N € T such that By w(N) < ¢ and the sequence f,,,n € N, of
functions (R, E \ N)-converges uniformly to f. We say that a sequence f,,: T —
X,n € N, of functions (U, E)-converges By w-almost uniformly to a function f:
T — X if there exist R € U, (U, W) € U x W such that the sequence f,,n € N,
of functions (R, E)-converges /3 v-almost uniformly to f. It £ = T, then we will
simply say that the sequence of functions R-converges uniformly, or R-converges
S -almost uniformly, or U-converges /3 yw-almost uniformly.

Convergences in measure, almost everywhere, almost uniform and relations
between them have been studied in the context of L(X,Y)-valued measures in
C.B.L.C.S. in [21], where a Egoroft theorem has been proved. too.

2. MEASURES IN C.B.1..C.S.

Charges of o-finite (U, W)-semivariation. We use ¢ to denote the class of all
functions 4 — W with an order < defined as follows: for ¢, ¢" € ¢ we write ¢ <
whenever o(U7) C y(U) for every U € U.

For (U,1V) € U x W we say that a charge m is ofa -finite (U, W)-semivariation

if there exist sets E; € Ay w,i € N, such that T = U E;. For p € ® we say that a
=1
charge m is of o,-finite (U, W)-semivariation if for every U € U the charge m is of

o-finite (U, p(U7))-semivariation.

Definition 2.1.  We say that a charge m is of o-finite (4, W)-semivariation if
there exists a function ¢ € ® such that m is of o,-finite ({4, WW)-semivariation.

Lemma 2.2. Let ¢, € ® and ¢ < 9. If a charge m is of o,-finite (U, W)-
semivariation. then m is also of oy -finite (U, VW)-semivariation.

Proof. By the assumption, for each U € U there exists a sequence E; (U, W) €
Apa. i € N, W = o(U), of sets such that |J E;(U,W) = T. From the impli-

i=1

cation vy (Ef(U,W)) < co. i € N, W C Wi, W, € W = thyw, (Ei(U,W)) <
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my,w(E; (U, W)) we see that we can put E;(U,¢(U")) = E;(U,¢(U)), i € N. Hence
m is of oy-finite (U, W)-semivariation. O

U eUye ®, and or(Ay ,v)) is the smallest local o-ring of all sets of o-finite
(U, ¢(U))-semivariation (i.e. the following implication is true: if A € Ay ). B €
or(Aypw)), then AN B € Ay ), then Op(iy ,11y) = O@iy ,1)), where
Or(My ) = {N € or(Au.an); iy @) (N) = 0}

Lemma 2.3. Let ¢ € ®. If a charge m is of o ,-finite (U, W)-semivariation, then
Y =o0r(Ay,uv)) for every U € U.

Proof. Let U € U. The inclusion op(Ay 1)) C U is trivial.
Let us show that op(Ay o)) D E. Let G € . By the construction of ¥, there
oo

exist sets G; € A, j € N, such that |J G; = G. By the definition of the o-finiteness
i=1

of the (U, ¢(U))-semivariation. there exist T; € Ar (). i € N, such that T’ = U T:.

i=1

G(Gm

j=1

Clearly Ti N Gj S AU,(p(U)' We have G=TNG = < U Tl) N ( U G]> =
=1 Jj=1

U Ti) = U U@nNGj),ie. G € ap(Aupw)) and. therefore, o (Ay 1) D .
i=1 i=1j=1
a

o-additivity of measures in C.B.L.C.S. Let 11" € W. We say that a charge
w: ¥ =Y is a (W,0)-additive vector measure, if yi is Yy -valued (countable addi-
tive)vector measure. Note that if u: ¥ — Y is a (W, ¢)-additive vector measure and
W Cc W, W, W, €W, then u is a (W7, 0)-additive vector measure.

Definition 2.4.  We say that a charge : & — Y is a (W, 0)-additive vector
measure, if there exists W € ¥V such that p is a (11, 0)-additive vector measure.

Let W e W. Let v,: & — Y, n € N, be a sequence of (W, o)-additive vector
measures. Recall the following notion. If for every ¢ > 0, E € &, pyw (v, (E)) < >
and E; € &, E;NE; =0, # j, i,j €N, there exists Jy € N, such that for every

oo
J = Jo, pw (un( U Ein E)) < e uniformly for cvery n € N; then we say that
i=J+1

the sequence of measures v,,, n € N, is uniformly (1. o)-additive on I, cf. [6]. I.1,
Definition 14. Note that if a sequence v,, n € N, of measures is uniformly (W.o)-
additive on &, W € W, then the sequence v,. n € N, of measures is uniformly
(W1, 0)-additive on ¥ whenever Wy DIV, Wy € W

Definition 2.5. We say that the family of measures v,,: ¥ = Y, n € N. is
uniformly (W, o)-additive on < if there exists W € WV such that the family v, n € N,
of measures is uniformly (W, #)-additive on . -
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Let o € ®. We say that a charge m: A — L(X,Y) is a o,-additive measure
if m is of o,-finite (U, W)-semivariation, and for every A € Ay ), the charge
m(AN)x: S =Y is a (p(U).o)-additive measure for every x € Xy, U € Y.

If o <Y, o, € &, and a charge m: A = L(X.Y) is a o,-additive measure,
then m is a oy-additive measure. Indeed, the fact that m is of oy-finite (U, W)-
semivariation follows from Lemma 2.2. The assertion that for every A € Ay w, the
charge m(AN)x: S — Y is a ((U), o)-additive measure for every x € Xy, follows
from the inequality py)(y) < pe)(¥), Y € Y.

Definition 2.6. We say that a charge m: A — L(X,Y) is a o-additive
bornological (operator valued) measure if there exists ¢ € @ such that m is a o,-
additive measure.

In what follows the charge m is supposed to be a g-additive bornological measure.

3. AN INTEGRAL IN C.B.L.C.S.

Basic spaces of functions. We use My to denote the space of all U-measurable
functions, the largest vector space of functions f: T — X with the property: there
exists R € U such that for every U D R,U € U and ¢ > 0 the set {t € T; py(£(t)) >
0} € . In what follows we deal only with functions which are {{-measurable, cf. [22],
Definition 2.5.

A function f: T — X is called A-simple if £(T) is a finite set and f~!(x) € A
for every x € X\ {0}. The space of all A-simple functions is denoted by S. For
(U, W) € U x W, a function £: T — X is said to be Ay w-simple if £ = i Xi\E;

=1

where x; € Xy, E; € Ayw,E;NE; =0 fori # j, i,j = 1,2,...,1. The space
of all Ay w-simple functions is denoted by Syw. A function f € S is said to be
Ay, w-simple if there exists a couple (U, W) € U x W such that f € Sy, w. The space
of all Ay, w-simple functions is denoted by Sy .

Two classical theorems.

Theorem 3.1. (R. G. Bartle - N. Dunford — J. T. Schwartz) Let I be a o-
additive vector measure with values in a Banach space and defined on a o-algebra
E. Then there exists a nonnegative real-valued o-additive measure y: & — [0,00)
such that v(E) — 0 if and only if |T|(E) — 0; the measure v can be chosen so that

0<v(E) <|T|(E) for all E € T.

Proof. [6], Chap. 1.2, Corollary G, p. 14. ]



Note that the measure v in ‘Th. 3.1 can be chosen to be finite. Such a measure is
constructed in [6], Chap. 1.2. the proof of Th. 4.. p. 1.
The following theorem is only a rewriting of the classical Egoroff theorem.

Theorem 3.2. (D. T. Egoroff) Let v: & — [0, x) he a g-additive measure and
E € T be a set of (0-) finite measure. If a sequence £, € My,n € N, of functions
(U, E)-converges to a tunction f € My, then the sequence f,.n € N, of functions
(U, E)-converges y-almost unitormly to f.

Proof. Same asin [18], §21. Th. A. p. 83. For the case of E being of o-finite
measure, cf. [18], §21, Exercise (3), p. 90. 0

Construction of the integral. Forevery E € and f € Spw, (U, W) € U x WV,
/ 1
we define the integral by the formula fE fdm =Y m(ECE)x;. wheref = 5 xi\x,.
i i=1
x; € X, Eie Apw EiNE; =0.0# j.i,j .2 ... I Note that for the function
f. the integral [ fdm is a (17 7)-additive measurc on *

I
——

Theorem 3.3. If @ sequence £, € Sy 11 of functions U-converges to
f € My then there cxists a real-valued g-additive mcasure ~ @ S — [0.1] such that
fa) the sequence f,.1n € N of functions U-couverges ~-almost uniformly to f.
) 1 X

o

‘Wi for each ~-null «+ NV ¢ / f,dm =0 fo: cvervn € AL

\

Proof. There exists R & M such that the <cquence £,.n € NLof functions
R-converges to the function f

Consider £, € Syeavon € Moo there exist (07, 11, € ¢ x W such that f, &
Sy, o € N For cact o€ L the integral [ f, dinis a (11, 0)-additive measure
on ¥. By Theorem 3.1 for every n € N there exist nonnegative real-valued o-
additive finite measures <, qy, ., on S such that ap , ,(£) — 0 if and oniy if
|f f, (1111|U”‘H," (E) = 9. £ € S Choose the mcasures aqr, gy, 0y 1 € N, so that
0<ar, w, (E) < |f £, (lmi{,“.”.” (E) for every [ e ‘..

Construct the following set function ~ on :

. -\‘ 1 eprop n’E) -
(1) S =S S el B e o
' — 2" 1+, w, (T

It is easy to see that ~ - — [0, 1] is a s-additive measure on .

(a) By Theorem 3.2, the sccuence f,, n € N of funerions R-converges ~-almost
uniformly to f. Hence. it U-converges y-almost uniformly to f.

(b) The equality (1) implies that for each r-unll set N € &, fV f, dm = 0 for

—

every n € N. 3
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Definition 3.4. Let f € .M,,. For every iy, yw-null set M, the function f -\ y
is said to be nygyyp-null. The family of all My, p-null functions will be denoted

by Hyw. For £ € My and cach myyyp-null set M € . define fE fxydm =

-’[‘.\IOE f,dm =0, F € =.

It is casy to see that the family Hy o is a vector space.

Lemma 3.5. Let (U.W) e U xW. If a sequence v,: o(Apw) = Y, n €N, is
a family of uniformly (W, o)-additive measures. then the W-semivariations |vy, |y v,
n € N of these measures are uniformly continuous on o(Ay w ). I.e.

lim v, |eav (£) = 0.
12—=0

E € S, uniformly in n € N.

Proof. Same asin [7]. cf. the note after Th. 1 in this paper. O

Lemma 3.6. Let U, Cc U". W, c W.U. U, e d, W. W, € W, n e N. If
Ae N £, €Sy, v, then £\ 4 € Sy for evervn € NL

Proot.  Clearly. fi\a: N, 0y = Yy, C Y. Since U, C U C
Vv =0 W, n W = W, ATV we have AH,,,H',, N A(.’.W C AU..UU,W,.OH" C
Apvin, aw C Ay, e £y as Ay = Yy O

Tlie proof of the following icimma is trivial.

Lemma 3.7. Let (ULTV) e xW. Ifg e Sy and G € a(Ay,w), then

2) PW(/ g(lm\ <ilgllao iy w (G).

J

Theorem 3.8. Let m be a g-additive hornological measure and £ € My, If
there exists a sequence f,, € Sy, n € N, of functions such that

(a) U- ii;{l f, = f my; w-a.c.,

b [ f’,: (i;;l. n € N, are uniformly (W, a)-additive measures on &,
then the limit v(E, f) = W- ”1211\ [L f, dm exists unitormly in E € E.

Proof. Let E€ Z.e>0.

By assumption, there exist {7 € U.(R,S) € U x VW, and M € T such that
mp (M) = 0 and nl'l_l)lio[)l'(f,,(f) — f(t)) = 0 for evervy t € T\ M. By Defini-

tion 3.4, [, f\ardm = 0. Without loss of generality, supposce that the sequence f,,,
e N of functions [7-converges to f.



Since m is a o, -additive measure for some ¢, € . for U there exists W, € W
such that ¢, (U) = W,. By assuption, there exists 11", € W such that the integrals
[ f.dm, n € N, are uniformly (W;,o)-additive measures on . Put o(U) = 17" =
W,V W,. Then the integrals [ f, dm, n € N, are uniformly (W, o)-additive measures
on ¥ and the measure m is also of p-finite (U, WW)-scmivariation by Lemma 2.2. By
virtue of o,-finiteness of the (U7, W)-semivariation of m, there exist disjoint sets

o0
A; € Ayw,such that |J 4;=T,j€N.

Jj=1
Applying Definition 2.5, the uniform (W, o)-additivity of integrals f f,dm, n e N,
on ¥ implies that there exists iy € N such that for every i > ig, 1 € N,

(3) o </ f, (lm> <e
E\B;

uniformly for every n € N, where B; = |J A;. Put A = B;,. Further, by Lemma 3.6.
j=1
faxa € Suw.
Let p € N. By Theorem 3.3 there exists a real-valued o-additive finite measure ~:
¥ — [0, 1], a nondecreasing sequence of sets Fj, € . Fi, C A, k € N, and a y-null set
(o o]

N € T such that |J Fr, = A\ N, [ f.dm =0, n € N, and the sequence f,, n € N,
k=1
of functions (U, F})-converges uniformly to f for every & € N. For a given ¢, there

exists ng € N such that for every n > ng, n € N, we have

c
<

4 fn - fn I g - .
(4) l +pllFu S (D)

By Lemma 3.5, for a given = there exists kg € N such that for every k > kg, k € N,

(5) ‘/f,, dm

holds uniformly in n € N.
Let n > ng, k > kg. We have

PW (/ f, dm —/ frotp dm) < pw</ f, (lm> +1)W</ froip dm)
E E E\A JE\A

+ pw( / (f, —fntp) dm> + iy ( / (£, — £atp) dm):
JENANN JEAA\N

by (3) and Theorem 3.3(b),

<2+ 0+pw (/ (fn - fn+p) dlll) + pw ( / (fn - fn+p) dm) B
ENF, JEAA\FAN
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by Lemma 3.7,

<2+ |Ifn = fugpllenr, v thow (EN F)

+ pw ( / f. (lm> + pw ( / frp (1m) ;
JEAA\FA\N ENA\F\N

by (4) and (5),

g 2-¢€ + ”fn - fn+p”Fk,U : lil(7,1/1/(A)

+ l/fn dm (A\F.\N) + ’ /f,t+,) dm
. UW .

Since € is an arbitrary positive number, E an arbitrary element in ¥, and Yw a

(A\Fy \ N) < 5¢.
UW

complete space, the existence and the uniformity in £ € ¥ of the limit is proved. By
Lemma 2.3, £ =op(Ayw), U € U, W = ¢(U). The theorem is proved. O

Remark 3.9. From the proof of Theorem 3.8 we see that v(E,f) = v(T,f\g),
EeX.

Definition 3.10. A function f € My, is said to be Ay y-integrable, we write
f € Tis v, if there exists a sequence £, € Sy, n € N, of functions such that
(a) U- lim f, =f my w-ac,
N n—o0
() [[ f,, dm, n € N, are uniformly (W, o)-additive measures on .

The integral of the function f € Zy; 1y on a set E € ¥ is defined by the equality

/ fdm = W- lim / f,, dm.
E n—oo . E

4. SOME PROPERTIES OF THE INTEGRAL

Theorem 4.1. Let h,g € Ij,yw and E € © .
Ifh+g=0, then [,hdm + [, gdm = 0.

Proof. Let h(T) C Xy,. g(T) C Xy, [hdm C Yw,, [gdm C Y, for
some U, U, € U, W, Wy, € W. (1) If Uy = U,, W, = Wy, of. [7]. (2) The case
Uy # U, or Wy # W, is reduced to (1) as follows: take U = U} VU; and W = o(U),
where p(U) = ¢ (U) VW VIV, o € &, where ¢; € ® is such that T is of o, -finite
(U, p1(U))-semivariation. a

o
—_
(U



Theorem 4.2. Let v(E.f) = fEf(lm. EeX feTlyw. Thenv(,f): S =Y
is a (W, o)-additive measure.

Proof. Let E= | Ei, EiNE; =0. E;,E; € X.0 # j.i.j €N. By Definition

=1
3.10, there exists W € W such that for every I € N and ¢ > 0 there exists ng € N
such that for every n > ng, n € N, we have

pw< / fdm —/ f, (lm) < .

JE E

(10) pw</, fdm — /, f, <1111> <e.
U E; U E;

] i=1

By the uniform (W, o)-additivity of the integrals [ f, dm, n € N, for every ¢ > 0
there exists I € N such that

(11) pw</ f,dm— [, f,l(llll> <e
S

U Ei
i=1

uniformly for every n € N. Thus (10) and (11) imply

PW (/ fdm — /, f(lm) < pW(/ f, dm — /, f, dm)
E U E JE JU E,

i

+ pw </ fdm - / f, (lm) + pw ( /, f, dm — /, fdm) < 3e.
E E Uk J U E;
=1 i=1

a

Theorem 4.3. Let f € M,,. The function f € I,; if and only if there exists a
sequence f,, € Sy w, n € N, of functions such that

(a) it (U, E)-converges iy, y-a.e. to f.
(b) the limit W- lim _fE f, dm = v(E) exists

for every E € 3. In this case Af',,_, fdm = v(E) for every set E € ¥ and this limit is

uniform on T.

Proof. According to Theorem 3.8, we have to prove that the existence of the
limit W- lim [ £ fn dm for every E € T implies the uniform (W, o)-additivity of the
n—00
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integrals fE f,dm =v,(E),neN. Let E= |J E;, E;NE, =0, E;,E € T,i # k,
1=1

i,k € N, then by the definition of the W-semivariation,

(12) pw(va( U &) <o U E)

i=1+1 i=1+41

If v,, n € N, is a given sequence of g-additive Y -valued vector measures on
S, W e W, and lim v,(E) = v(E) € Yw exists for every set E € I, then the
semivariations |z/nn[;:ro(ci), n € N, are uniformly continuous on . From this fact and
(12) we obtain the asserted uniform (W,o)-additivity of integrals v,(-) = [ fdm,
n € N, as a corollary. O

The proof of the following theorem is easy.

Theorem 4.4. (a) The family Iy \ is a vector space.
(b) For every E € &, the map [, (-)dm: Iy w — Y is a linear operator.

We can observe (analogously to [7]) that Theorems 3.3 and 3.8 hold when we
replace sequences f, € Sy, w, n € N, of functions by f, € I,y w, n € N. So, we
obtain the following theorems as corollaries.

Theorem 4.5 (Theorem 3.8a). If a sequence of functions f,, € Ty, n € N,

(a) U-converges to a function f € My my w-a.e., and
(b) [ f,dm, n €N, are uniformly (W,o)-additive measures on &,

then £ € Ty w, fFfdm = W- lim [.f,dm. E € S, and this limit is uniform in
~ n-—00
EeX.

Theorem 4.6 (Theorem 4.3x). If a sequence of functions f, € Ty w, n € N,

(a) U-converges my w-a.e. to a function f € My. and
(b) the limit W- lim [, f, dm = v(E) exists for every E € T,
n—oo

then f € Ty w. fE fdm = v(E), E € &, and this limit is uniform in E € .

Theorem 4.7. The set Iy, is the smallest class of functions which contains
Su,w and Theorem 4.6 holds.
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