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INTRODUCTION 

We can observe that theories containing a certain compatible collection of basic 

theorems, a calculus, lie in the focus of the present measure and integration inves­

tigations. This calculus makes possible and determines further applications of the 

integral in a particular branch of mathematics. 

I n t e g r a l of I. Dobrakov . Let X and Y be Banach spaces. A a o~-ring of subsets 

of a set T 7̂  0, L ( X , Y ) the space of all continuous operators L: X —> Y , m : 

A -> L(X, Y ) a measure O-additive in the strong operator topology. We say tha t 

a measurable function f: T —> X is intcgrable in Dobrakov's sense if there exists a 

sequence fn: T —> X, n G N, of simple functions converging m-a.e. to f, such tha t 

for every E G O(A) (the O-algebra generated by A) , the sequence | E fn d m , n G N, 

is convergent in Y , cf. [7]. The integral of the function f on E G O(A) is defined by 

the equality JFf d m = lim | r fu d m , cf. [7], Definition 2. 

111 [7]--[14] I. Dobrakov developed a Lebesgue-type integration theory in the Banach 

spaces for an opera tor valued measure. This theory involves convergence theorems 

205 



(the Lebesgue dominated theorem), integration per substitution. Fubini theorems, Lp-

spaces, mean-value theorem, etc. In [25] a Radon-Nikodym theorem for Dobrakov's 

integral is given. Papers [29], [30] present Dobrakov's integral as a weak-type integral. 

Dobrakov's integral yields a greater class of integrable functions than the also well-

known (Lebesgue-type) integral of R. G. Bartle, [1], considering the same measure 

and set systems, cf. [7]. 

Dobrakov's construction of the integral is based on the Egoroff theorem. Note that 

the Egoroff theorem does not hold for arbitrary nets of measurable functions without 

some restrictions on the measure, net convergence, or the class of measurable func­

tions. A necessary and sufficient condition in locally convex setting for the assertion 

tha t everywhere (net) convergence of measurable functions implies convergence in 

semi variation has been given in [19], Th. 3.3. 

Var ious genera l izat ions of Dobrakov's integral . In [31], W. Smith and D. H. 

Tucker used the idea of the decomposition of locally convex (topological vector) spaces 

(L.C.S.) into the projective limit of normed spaces for a generalization of Dobrakov's 

integral. The class of integrable functions is built via a transfinite induction start ing 

with the class of simple functions. A representation theorem for this integral is 

proved. 

The second generalization of Dobrakov's integral to L.C.S. is represented by papers 

in which authors consider measures satisfying the so railed *-condition (e.g. [27] by 

R. Rao Chivukula and A. S. Sastry). 

The third direction of the enlargement of Dobrakov's integral to L.C.S. is based on 

the fact tha t Dobrakov's integral is also a weak-type integral (e.g. papers of C. De-

bieve, [15], and S. K. Roy and N. D. Charkaborty, [28]). Integrals deal with functions 

ranging in a Banach space and with measures in locally convex spaces of continuous 

operators acting from a class of Banach subspaces of one locally convex space into 

another. 

The fourth way how to extend the theory of I. Dobrakov is to avoid problems with 

uniform convergence of functions, i.e. to deal with L.C.S. of functions for which a 

Egoroff theorem holds, cf. the papers of M. E. Balve, R. Bravo, and P. J. Jimenez 

Guerra, [2], [3], [4], [5]). 

A i m of t h e p a p e r . The bornological character of the bilinear integration theory 

developed in [27] shows the fitness of developing a bilinear integration theory in the 

context of bornological convex vector spaces. 

The Dobrakov integral is defined in Banach spaces. If both X, Y are considered to 

be inductive limits of Banach spaces, i.e. complete bornological locally convex spaces 

(C.B.L.C.S.), a natural question arises whether an integral in C.B.L.C.S. can be 
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defined as a finite sum of Dobrakov's integrals in various Banach spaces, the choice 

of which may depend on the function which we integrate. 

In this paper we (1) introduce a notion of O-additive bornological operator valued 

measure in C.B.L.C.S., and (2) present a construction of the integral with respect to 

such measure. 

1. P R E L I M I N A R I E S 

C . B . L . C . S . The theory of C.B.L.C.S. can be found in [23], [24], and [26]. 

Let X , Y be two C.B.L.C.S. over the field K of real U or complex C numbers 

equipped with homologies 93x. ® Y - The basis U of the homology 93 x has a marked 

clement U0 E U, if Uo C U for every U E U. Let bases U,W be chosen to consist of all 

®x-> 2$Y-bounded Banach disks in X , Y , with marked elements Uo E U, U0 ^ {0}, 

and tVo E W, IVo ^ {0}, respectively. Recall tha t a Banach disk in X is a set which 

is closed, absolutely convex and the linear span of which is a Banach space. The 

space X is an inductive limit of Banach spaces Xjy, U E U, X = inj limXfy, cf. [24], 
ueu 

where X// is the linear span of U E U and U is directed by inclusion (analogously 
for Y and W). If a sequence of elements xn E X, n E N, converges bornologically to 

x E X (in the homology *Bx with the basis U), then we write x — U- lim x n . 
n—>oo 

On U the lattice operations are defined as follows. For U\,U2 E U we have: 

Ui A Uo = Ui Pi U2, Ui V U2 = acs(Ui U U2), where acs denotes the topological closure 

of the absolutely convex span of the set. Analogously for W. For (U\,W\), (U2, W2) E 

U x W we write (Ui, IVi) « (U2, W2) if and only if U{ C U2 and Wx D W2. 

A more detailed consideration of a lattice structure of C.B.L.C.S. has been given 

in [20], §1. 

O p e r a t o r s t r u c t u r e s . Denote by L ( X , Y ) the space of all continuous linear 

operators L: X —> Y . The lattice structure of L(X, Y ) is considered in [21]. Note 

tha t in the terminology of [26], Chap. 4, §2, Th. 1, the space L(X, Y) (as an inductive 

limit of seminormed spaces) is a bornological convex vector space. 

Se t s t r u c t u r e s . Let T ^ 0 be a set. Denote by A a tf-ring of subsets of T. If A 

is a system of subsets of the set T, then a (A) denotes the <7-algebra generated by the 

system A. Denote E = O(A), N = { 1 , 2 , . . . } . We use \E to denote the characteristic 

function of the set E. By pu ' X -» [0, oo] we denote the Minkowski functional of 

the set U E U. (If U does not absorb x E X, we put pu(x) — oo.) Similarly, p\y 

denotes the Minkowski functional of the set IV E W. 
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For (U,W) G U x W, denote by riilfiv the (UAY)-semivariation of a charge 

(= finitely additive measure) m : A —•> L(X, Y ) , when* 

vhu,w(E) = s i i p y ; H / ^ ^ m ( F n L ; / ) x , V F G E, 
^ 7 = 1 ' 

and the supremum is taken over all finite sets {x,- G U: / = 1 , 2 . . . . , / } and all disjoint 

sets {Ei G A ; i = 1 , 2 , . . . , / } . It is well-known that ih/l,vV is a submeasure, i.e. a 

monotone, subadditive set function, and iiiu,w($) = 0. Denote by Au,w C A the 

largest S-nng of sets E G A, such that m/ j ,^ (F ) < x . Denote m ^ , w = {r iV, i r : 

(U,JV) eU x W } . 

For IV G W, denote by |tt|vr the W-semivariatiov of a charge L/,: E -» Y , where 

H i v ( . E ) = s u p 7 ; v v ^ A 1 - / z ( - 5 n £ 1
l - ) ) . -5 G E, 

and the supremum is taken over all finite sets of scalars {A7- G IK; |A*| ^ 1, / = 

1 , 2 , . . . , / } and all disjoint sets {E{ G A ; i = 1.2 / } . The IV-semivariation 

\p]w is a submeasure. Denote //w = {^w ; W G W } . 

Various lattices of set functions (among them iii//.w-A*w) related to L(X,Y)-

valued measures have been studied in [20], §2, the lattices of set systems (and null 

sets) in [20], §3. 

C o n v e r g e n c e s of func t ions . We assume that the generalizations of the classical 

notions (such as almost uniform convergence, almost everywhere convergence, and 

convergence in measure of measurable functions and relations among them) to inte­

gration in Banach spaces are commonly well-understood, cf. [7]. All this theory can 

be generalized to C.B.L.C.S. as follows. 

Let / i / ,w be a lattice of submeasures fiu.w'• - —> [0, oo], (U, IV) G U x W. 

such tha t 0u2,w2 A f3u3,w3 = rfu2AU3,w2vw3, fiu2.w2 V l3u3.w3 = f3u2vu3,w2,wv3< 

(U2,W2),(U3,W3) eUxW, e.g. i3u,w = i % , w . 

Denote by 0((3u,w) = {N G E; fa,w(N) = 0}, (U, IV) eU x W. The set N G E 

is called fayy-null if there exists a couple (U, IV) G U x W such that 0u,w(N) = 0. 

We say tha t an assertion holds fa ^-almost everywhere, shortly /3k/,w-a.e., if it holds 

everywhere except in a /j/^w-mill set. A set E G E is said to be oi finite submeasure 

Pu,w if there exists a couple (U. IV) G / i x ] l V such that l3u,\v(E) < oo. 

For £ G E, i? G / / , (U, IV) G / i x W , we say that a sequence fn: T -» X , H G N, 

of functions (R,E)-converges iiu,w~&-G- to a function f: T -> X if lim PR(fn(t) — 
n—>oo 

f(l)) = 0 for every f G E\ N. where N G O(liu.w)- We say tha t a sequence f„ : 
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T —> X, n G N, of functions (U. E)-converges fiu^-a.e. to a function f: T -» X if 

tliere exist R e U, (U, W) e U x W such that the sequence f7M n G N, of functions 

(I?, F)-converges /3rt iy-a.e. to f. We write f = U- lim fn (3u^-a.e. If E = T, then 
n—too 

we will simply say tha t the sequence H-converges finy-a.Q., or ///-converges / ^ w - a . e . 

For £ G S, 1? G 6Y, (U, IV) G W x W we say that a sequence ffl: T -> X , n G N, of 

functions (H, E)-converges uniformly to a function f: T —> X if lim ||fn —f ||E,R — 0̂  
11—^oo 

where ||f \\E,R — supp#( f ( l ) ) . We say that a sequence fn : T -> X,7i G N, of functions 
teE 

(R, E)-converges flu y/-almost uniformly to a function f: T —> X if for every e > 0 

there exists a set N G £ such that f3ny/(N) < e and the sequence fn,n G N, of 

functions (H, F \ IV)-converges uniformly to f. We say that a sequence fn: T —> 

X,7i G N, of functions (U, E)- converges flu ^-almost uniformly to a function f: 

T -> X if there exist R G U,(U,W) e U x W such that the sequence fn,n G N, 

of functions (I?, E)-converges (3 ii^y-almost uniformly to f. If E — T, then we will 

simply say tha t the sequence of functions H-converges uniformly, or H-converges 

ftUy w-almost uniformly, or ^-converges /3u y>-almost uniformly. 

Convergences in measure, almost everywhere, almost uniform and relations 

between them have been studied in the context of L(X, Y)-valued measures in 

C.B.L.CS. in [21], where a Egoroff theorem has been proved, too. 

2. M E A S U R E S IN C . B . L . C S . 

C h a r g e s of O-fmite (U, W)- sem ivar ia t i on. We use <I> to denote the class of all 

functions U -> W with an order < defined as follows: for <p, </' G <D we write ip < V 

whenever p(U) C iJ'(U) for every U G U. 

For (U,W) G U x W we say that a charge m is of a-finite (U,W)-semivariation 
oo 

if there exist sets F?; G AU)W,i G N, such that T = [j E\. For p G 4> we say tha t a 
i = i 

charge m is of a^-finite (U, W)-semivaviation if for every U G U the charge m is of 

O-finite (U, (p(U))-semivariation. 

Def i i i i t ion 2 . 1 . We say that a charge m is of a-finite (U, W)-semivariation if 

there exists a function <p G $ such that m is of O^-finite (U, W)-semivariation. 

L e m m a 2 .2 . Let (p,yj G $ and (D ^ tp. If a charge m is of ap-finite (U,W)-

semi variation, then m is also of a\j,-finite (U,W)-seinivariation. 

P r o o f . By the assumption, for each U G U there exists a sequence Ei(U, IV) G 
CO 

A(7U,-, i e N, IV = v?(U), of sets such tha t IJ E,(U,W) = T. From the impli­

cation mUAV(Ei(U,W)) < oo, / G N, IV C IV7, IV e W =4> m t / ^ L ^ U , IV)) *£ 
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mU}W(Ei(U,W)) we see that we can put Ei(U,^(U)) = E{(U,(p(U)), i G M. Hence 
m is of a^-finite (U, W)-semivariation. • 

If U G U, ip G $, and aF(Av^(U)) 1S the smallest local cr-ring of all sets of O-finite 
(U, (D(U))-semivariation (i.e. tlie following implication is true: if A G Aujip(u)-B G 
(7F(At/>¥,(t/)), then A C\ B G A f /^ ( t / )), then O F ( I - - I ^ ( [ / ) ) = 0(m t / jV,( t/)), where 
(9F(riit/,^(tj)) = {N e aF(AUMu))\rhUMU)(N) = ()}. 

Lemma 2.3. Let </)G$. If a ciiarge m is of a^-finite (U, W)-semivariation, then 
E = aF(AUMU)) for every U G U. 

P r o o f . Let U eU. The inclusion aF(AUjipU;)) C E is trivial. 
Let us show that aF(Au^(U)) D E. Let G G E. By the construction of E, there 

oo 

exist sets Gj G A, j G N, such that (J Gj = G. By the definition of the O-finiteness 

oo 

of the (U, (/p(U))-semivariation. there exist T\ G AVl^^,-), i G N, such that T = [J T;. 
7 = 1 

Clearly T{ n G,- G A/J^([/). We have G = T n G = ( jj T{) n ( G Gj) - U fen 
v / = i ' vj=i ' j=i v 

OO \ oo oo 

U ^ = U U (TiCiGj), i.e. G G OF(Af/^(t/)) and, therefore, aF(AUMU)) D E. 
z = l 7 J = l j = l 

D 

cr-additivity of measures in C.B.L.C.S. Let IV G W. We say that a charge 

[x: £ —> Y is a (W,a)-additive vector measure, if // is Ypy-valued (countable addi­

tive) vector measure. Note that if //: E -> Y is a (IV, O)-additive vector measure and 

W C IVi,IV, VVi G W, then u, is a (IVi,O)-additive vector measure. 

Definition 2.4. We say that a charge /.i: E -> Y is a (W, a)-additive vector-

measure, if there exists IV G W such that /i is a (IV, a)-additive vector measure. 

Let W G W. Let i^ : E -> Y, n G N, be a sequence of (IV, O)-additive vector 
measures. Recall the following notion. If for every e > 0, E G E, p\y(vn(E)) < oo 
and Ei e T,, E{n Ej = ®, i ^- j , i,j e N, there exists J0 G N, such that for every 

J ^ Jo, pw(vn( U ^ H E < e uniformly for every n G N, then we say that 
^ vf=j+i ' ' 

the sequence of measures i/n, /? G N, is uniformly (W. a)-additive on E, cf. [6], 1.1, 
Definition 14. Note that if a sequence i/n, n G N, of measures is uniformly (IV. O)-
additive on E, IV G W, then the sequence vn, n G N, of measures is uniformly 
(VVi,O)-additive on E whenever IVi D IV, IVi G W. 

Definition 2.5. We say that the family of measures vn : E —•> Y, n G N, is 
uniformly (W, a)-additive on E if there exists IV G W such that the family z/n, ?i G N, 
of measures is uniformly (IV, O)-additive on E. « 
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Let i p E $ . We say that a charge m: A -» L(X,Y) is a a ̂ -additive measure 

if m is of cr^-finite (U, W)-semivariation, and for every A G AUi<p(u), the charge 

m(A n -)x: E -» Y is a ((/?(U), O)-additive measure for every x G Xt/, U eU. 

If <p ^ V, <rV0 £ $> a n d a charge m: A -» L(X. Y) is a O^-additive measure, 

tlien in is a O^-additive measure. Indeed, the fact that m is of O^-finite (U, W)-

senhvariation follows from Lemma 2.2. The assertion that for every A G Au,w, the 

charge m(A n -)x: E —» Y is a (^(U), O)-additive measure for every x G Xty, follows 

from the inequality p4,(u)(y) ^ P<p(U){y), Y £ Y 

Definition 2.6. We say that a charge m: A -» L(X,Y) is a a-additive 

bornological (operator valued) measure if there exists <D G $ such that m is a O^-

additive measure. 

In what follows the charge m is supposed to be a O-additive bornological measure. 

3. AN INTEGRAL IN C.B.L.C.S. 

Basic spaces of functions. We use A4u to denote the space of all U-measurable 

functions, the largest vector space of functions f: T —» X with the property: there 
exists 17 G U such that for every U D R,U eU and S > 0 the set {t G T;pu{t{t)) ^ 
5} G E. In what follows we deal only with functions which are li-measurable, cf. [22], 
Definition 2.5. 

A function f: T -» X is called A-simple if f(T) is a finite set and f - 1 (x) G A 
for every x G X \ {0}. The space of all A-simple functions is denoted by S. For 

I 

(U, W) G U x W, a function f: T -» X is said to be A u,w-simple if f = ^ x ; YE,-
2 = 1 

where x?: G Xu,E{ G Aa,w,Ei n Ej = 0 for i ^ j , z,j = 1,2, . . . , / . The space 
of all AfLiy-simple functions is denoted by Su,w> A function f G S is said to be 
Au^v-simple if there exists a couple (U, W) G U x W such that f G «Stt,vy. The space 
of all A^5w-simple functions is denoted by Su,w> 

Two classical theorems. 

Theorem 3.1. (R. G. Bartle - N. Dunford - J. T. Schwartz) Let F be a a-
additive vector measure with values in a Banach space and defined on a a-algebra 
E. Then there exists a nonnegative real-valued a-additive measure 7: £ -» [0, 00) 
such that y(E) -» 0 if and only if \T\(E) -» 0; the measure 7 can be chosen so that 
0 ^ 7(F) ^ \T\(E) for all E G £. 

P r o o f . [6], Chap. 1.2, Corollary 6, p. 14. • 
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Note that the measure1 7 in Th. 3.1 can be chosen to be finite. Such a measure is 

constructed in [6], Chap. 1.2. the proof of Th. 4., p. 11. 

The following theorem is only a rewriting of the classical Egoroff theorem. 

T h e o r e m 3 .2 . (D. T. Egoroff) Let 7 : £ -> [0. x ) ho a a-additive measure and 

E G £ be a set of (a-) finite measure. If a sequence f,. G Mu,n G N, of functions 

(U,E)-converges to a function f G My, then the sequ(ince f,,,n G rU of functions 

(U, E)-converges 7-ahnost umformiy to f. 

P r o o f . Same as in [18], §21. Th. A. p. &%. For the case of E being of O-finite 

measure, cf. [18], §21, Exercise (3), p. 90. • 

C o n s t r u c t i o n o f t h e in tegral . For every E G £ and f G Srw, (U, IV) G U x W. 
/ / 

we define the integral by the formula JF f d m = ]V ni( EnEi)x;< where f = V] X; \ r , . 
/ = i 7 = 1 

x7 G X r , Ei G ^I^W.EIDEJ -- 0. / / j , i, j = 1.2 . . . . / . Note tha t for the function 

f, the integral f f d m is a (\\\ O)-additive measm !'<• 011 ._. 

T h e o r e m 3 .3 . If a .sequence ffl G £/Y.vv<l' G ; i '>/' functions U-converges to 

f G .AA;/. £fien there exfsts a re<d-vahied a-additive measure 7 : £ -> [0. 1] such rhat 

(a) the sequence fn,r, G N <)f functions U-COUM11^-, .-almost uniformly to f. 

;l)) for each -v-muL/ -r-t N G H, /,V fn d m = 0 /b. ."v. .- /? G N. 

P r o o f . There exists I? e: // such that tin1 -u-ijneuee V.O G N. of functions 

H-converges to the function f 

Consider fn G 5/^w,/ / G . i. i.e. there exist {('., M .,, : G t-l x W such that V G 

Sui^wn,u G N. For each .'/ G V, the integral f V d m is a (IV;i, O)-additive measure 

on £ . By Theorem 3.1 for "very n G N there exist nonnegative real-valued O-

additive finite measures =\r„.u.,,a on £ such that or,, ir„ ^(F1) —> 0 if and only if 

|/ff l d m l ^ w (E) -> 0. £ G D. Choose the measuios ar„ . i r„ ,n , '-• £ ' ^ so that 

0 ^ aUn.w„,n(E) ^ \l f " ( l m Jr„ . iv„ ( ^ f o r e v e r y E G ' :-
Construct the following set function ~ on S: 

(1) . ( ^ V i ^ ^ ^ . . T 6 S . 
-—-; 2 " 1 4- 07- .iy„ ,„( / ' 

It is easy to see that .̂ • £ — [0. I] is a O-additive measure on £ . 

(a) By Theorem 3.2. the sequence f,M n G N, of {unctions H-converges 7-ahnost 

uniformly to f. Hence, u cY-con verges 7-almost uniformlv to f. 

(b) The equality (1) implies that for each 7-null set X G £ , / v f,, d m = 0 for 

every ]i 6 N. ^J 
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Def in i t ion 3 .4 . Let f G Mu- For every m ^ w - n u l l set M , the function f • \ M 

is said to be m ^ v v - m ^ - The family of all m^vv-nul l functions will be denoted 

by V-u,w- For f G Mu and each m^.vv-rmll set M G E. define J £ f y M d m = 

/ U n i , f „ d m = 0 , £ e S . 

It is easy to see tha t the family Tiu.w is <t vector space. 

L e m m a 3.5 . Let (U, VV) G II x W. If a sequence <vn: O(Ar,w) -> Y , n G N, Is 

a family of uniformly (IV, O)-additive measures, then the W-semivariations | .vn | r ,w, 

ii G N, of these measures are uniformly continuous on O(Ar,w)' Le. 

lini | / /u | rMv(^) = 0. 
/•;->0 

IT G E. uniformly in n G N. 

P r o o f . Same as in [7]. cf. the note after Th. 1 in this paper. • 

L e m m a 3.6. Let Un C U. Wn C IV. U,Un G /I, WAVn G W, n G N. If 

A G Ar.iv- f» £ ^tlM,wr
;i, fI-tJ-- f/AA £ Sr.iv fbi' every // G N. 

P r o o f . Clearly. in\A- Ar„.w„ H A r , w - • Yw„ C Y i y . Since C/n C U C 

T/f V U = U, IVn n IV = JV„ A IV, we have Ar„,w„ n A ( M v C Ar7,uLl,w„nw C 

Ar'„v/'.u.IAW C ArMv^ i-c, f „ \ ,V Ar-.iv -> Yw- Q 

The proof of the following iomma is trivial. 

L e m m a 3.7 . Let (£/, W) G 14 x VV. If g G 5 r , w aiu/ G G r r (Ar ,w) , ti-W-

'.'--) PW( / g<-lm] ^ i|g||c;J/-l-VMr(G). 

T h e o r e m 3 .8 . Let m be a a-additive homological measure and f G Mu- If 

there exists a sequence fn G S^.iv< H G N, of functions such that 

(a) /I- iini fu = f m^yv-tf-f'-< 

(b) / fn d m , n G N, are uniformly (W.rr)-additive measures on E, 

f/jen fne iuiiit //(Is, f) = VV- lini fF f„ d m exIsts uniformly in E G E. 

P r o o f . Let E G E, £ > 0. 

By assumption, there exist U G / I , ( H , S ) G II x VV, and M G E such that 

m/r.s(AI) = 0 and lim pr(fn(t) - f(/)) = 0 for every t e T \ M. By Defim-
u->oo 

tion 3.4, J f , f \ A / d m = 0. Withou t loss of generality, suppose that the sequence f„, 

'/ G N. of functions U-convergos to f. 
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Since m is a alfl -additive measure for some <p\ G <I>. for U there exists W\ G W 
such tliat (f\(U) — W\. By assumption, there exists W-> G W such that the integrals 
J fn dm, n G N, are uniformly (VV2,O)-additive measures on E. Put <p(U) = IV = 
W\ VlV2. Then the integrals J f,, dm, n G N, are uniformly (IV, O)-additive measures 
on E and the measure m is also of (D-finite (U, W)-semivariation by Lemma 2.2. By 
virtue of O-^-finiteness of the (U, JV)-semivariation of m, there exist disjoint sets 

oo 

Aj G AUtW, such that \J Aj = T,je N. 
3=1 

Applying Definition 2.5, the uniform (IV, O)-additivitv of integrals J fn dm, n G N, 

on E implies that there exists i0 G N such that for every i ^ io, i G N, 

(3) <IW( [ f n dm| ^ • • ( / ' • • 

\JE\BI 

uniformly for every n G f̂ J, where B{ — IJ Aj. Put A — Bi{). Further, by Lemma 3.6. 
i = i 

fnXA 6 «SfI,W-

Let p G N. By Theorem 3.3 there exists a real-valued O-additive finite measure 7: 
E —> [0,1], a nondecreasing sequence of sets Fk G E, Fk. C A, k G N, and a 7-null set 

0 0 

N G E such that (J Ffc = A \ N, JN fn dm = 0, n G N, and the sequence fn, n G N, 
fe=i 

of functions (U, Fk)- con verges uniformly to f for every k G N. For a given e, there 
exists ?io G N such that for every n ^ no, n £ N, we have 

(4) | | fn-fn+P | |F, , r /^ 
mu,w(A) 

By Lemma 3.5, for a given 5 there exists ko G N such that for every k ^ ko,k £ N, 

(5) f„ dm (A\F,\N)<: 
u,w 

holds uniformly in n G N. 

Let n ^ no, k ^ ko- We have 

Pw ( / fn dm - / fn+p dm j ^ Pw { fn dm j + pnv ( / fn+p dm J 

+ PW( / ( f „ - f n + p ) d m ) +/;u-( / (fn - fn+p) dm ) ; 
XJEHAHN 1 \JEHA\N J 

by (3) and Theorem 3.3(b), 

^26 + 0 + pw\ / (fn -fn+p) d m ) +pw( / (fn - fn+p) d m ) ; 
VJEnFA. / \JEnA\Fk\N J 
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by Lemma 3.7, 

^ 2 • s + ||fn - fn + P | |EnF,, l l • mu,w(E D Fk) 

+ pw ( I ín d m + pw / fn+p d m ); 
'EnA\Fk.\N J \JEHA\Fk\N 

by (4) and (5), 

^ 2 • £ + ||fn - fn+p | |Ffc,í/ • mft,iy(A) 

+ / f -
d m (A\Fk\ N) + 

u+v 
/r..+,. d m (A \ Fk\ N) < 5£ 

t/\и' 

Since £ is an arbitrary positive number, E an arbitrary element in E, and Yw a 

complete space, the existence and the uniformity in E G E of the limit is proved. By 

Lemma 2.3, E = OF(At7,vV), f € W, IV = (f(U). The theorem is proved. • 

R e m a r k 3 .9 . From the proof of Theorem 3.8 we see tha t v(E, f) = v(T, f \ '# ) , 

Ee E. 

De f in i t i on 3 .10. A function f G .M/j is said to be Auyy-integrable, we write 

f G F/Y,vv, if there exists a sequence fn G 5<y,W: n G N, of functions such tha t 

(a) U- lim fn = f m^yy-a .e . , 
n—>oo 

(b) [E fH d m , n G f̂ J, are uniformly (VV, O)-additive measures on E. 

The integral of the function f G -Z .̂vv o n a s e t E G E is defined by the equality 

/ f d m = W- lim / f „ d m . 
JE П-*°°JE 

4. S O M E P R O P E R T I E S O F T H E I N T E G R A L 

T h e o r e m 4 . 1 . Let h, g G X//,w and F G E . 

If h + g = 0, then fE h d m + / E g d m = 0. 

P r o o f . Let h ( T ) C X ^ , g(T) C X ^ 2 , / h d m C Y ^ , / g d m C Yw 2 for 

some U!,U2 G ZJ, IVi,IV2 G W. (1) If Ui = U2, IVi - VV2, cf. [7]. (2) T h e case 

U! / U2 or IV! / IV2 is reduced to (1) as follows: take U = Ui V U2 and IV = y(U), 

where ip(U) = y?i(U) V IVi V IV>, 9 G $, where ^ i G $ is such that T is of O(/?1 -finite 

(U,ipi (U))-semivariation. D 
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T h e o r e m 4 .2 . Let u(E,f) = fEfdm, E G I). f E I ^ , w . TJieji i / ( . , f) : S -> Y 

is a (W, (j)-additive measure. 

oo 

P r o o f . Let F = [J F{, F, n _£,• = 0, E{, E3 G ^ . / ^ f i,j G N. By Definition 

3.10, there exists VV G W such that for every I G N and e > 0 there exists n0 G N 

such that for every n ^ n0, n G N, we have 

pw ( / f d m - / fn clm ) < 

(10) pw( / , f d m - / , f „ d m ) < e. 
\ J U #; J U Ei 7 

By the uniform (IV, O)-additivity of the integrals /' f„ dm, n G N, for every s > 0 

there exists I G N such that 

(11) Pw\ / f n d m - j fni 
\ J E J U E; 

(lm < 5 

uniformly for every n G f̂ J. Tlius (10) and (11) imply 

pw ( / f d m - / j f d m ) ^ pw I / fn d m - / . f?l d m 

i = i / = i 

+ Pw ( / f d m - / f;i d m ) + pw f / l fn d m - / 7 f d m ) < 3s. 

»• = i i = i 

D 

T h e o r e m 4 . 3 . Let f G Mu. The function f G T-UAV if and only if there exists a 

sequence fn G Su,w, n G N, of functions such that 

(a) it (U, E)-converges m^av-a .e . to f, 

(b) the limit W- lim L f„ d m = i/(E) exists 
71—> OO ^ 

for every F G S. In tJiis case / F f d m = *v(F) for fvcry set E G S and rIiis iimit is 

uniform on S . 

P r o o f . According to Theorem 3.8, we have to prove tha t the existence of the 

limit W- lim fp fn d m for everv E G S implies the uniform (W, O)-additivity of the 
n->oo ^ 
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integrals JE fn dm = vn(E), n £ N. Let E = (J £?:, £,- n .E* = 0, £7;, £fc G S , i / k, 
7 = 1 

i,k G N, then by the definition of the VV-senuvariation, 

(12) pw("n( U Ei))^Wn\w( IJ Ei 

If vn, n G N, is a given sequence of O-additive Yw-valued vector measures on 

E,IV G W, and lim ^n(-E) = iv(-E) € Yw exists for every set E G E, then the 
n—>oo 

semi variations |^n|vi/(-)? 71 € ^ a r e uniformly continuous on E. From this fact and 
(12) wre obtain the asserted uniform (W, <r)-additivity of integrals vn(-) = / f dm, 
n G f̂ J, as a corollary D 

The proof of the following theorem is easy. 

Theorem 4.4. (a) The family Xuyw
 JS a vector space. 

(b) For every E G S , the map JE(-) dm: J^,w —r Y is a linear operator. 

We can observe (analogously to [7]) that Theorems 3.3 and 3.8 hold when we 
replace sequences fn G Su,w, n G N, of functions by fn G Xu,w, n G N. So, we 
obtain the following theorems as corollaries. 

Theorem 4.5 (Theorem 3.8a). If a sequence of functions fn G J^,w> n G N , 

(a) U-converges to a function f G Mu,w % , w - a - e ^ and 
(b) / fn dm, 7i G N, are uniformly (W, O)-additive measures on E, 

fIieu f G Xu w, fir f dm = W- lim fn fn dm, E G E, and tin's limit is uniform in 

Ee V 

Theorem 4.6 (Theorem 4.3a). If a sequence of functions fn G Xu,w, n € N, 

(a) U-converges uiuyv-a.e. to a function f G Mu. and 

(b) the limit W- lim f„ fn dm = v(E) exists for every E G E, 

then f G Xu,w, JE f dm = *v(.E), K G E, and this HJi^ir is uniform in E G E. 

Theorem 4.7. TIie set J^.w JS ^2e smallest class of functions which contains 
$u,w and Theorem 4.6 holds. 
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