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All lattice ordered groups dealt with in the present paper are assumed to be
abelian.

Let G be alattice ordered group. The set of all sequential convergences on G will he
denoted by Conv Gj this set is partially ordered in a natural way. It was investigated
in the papers [1]-[4], [6]-[9]. For the sake of brevity, we shall say “convergence”
instead of “sequential convergence”.

The partially ordered set Conv G need not b, ir: general, a lattice. It possesses
the least element (the discrete convergence) which will be denoted by d(G). For
cach a € Conv @G, the interval [d(G). ] of Conv G is a complete Brouwerian lattice
(cf. 12]).

A convergence o € Conv G will be said to be principal if there exists a sequence
(x5,) in a such that, whenever o; € Conv G and (a,) € ay, then a < a;.

If « € ConvG and if the interval [d(G),a] is finite, then « is principal. In the
present paper the following results will be established:

(A) Let a € Conv (G, a # d(G). Assume that the interval [d(G), o] is finite. Then
[d(G), ] is a Boolean algebra.
(B) Let a be as in (A). Then [d(G),a] is a direct factor of the partially ordered
set Conv G.
(C) Let a € ConvG. Then the following conditions are equivalent:
(1) If a; € Conv @G, a; < a, then «; is principal.
(ii) The interval [d(G), a] of Conv @G is finite.
(B) generalizes a result of [4]. Some further results on Conv G will also be proved.

For instance, it will be shown that if d(G) < a € Conv G and if the interval [d(G), a]
of Conv G is a chain, then « is an atom of Conv G.
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For convergences in a lattice ordered group we will apply the same definitions and
notation as in [8], Section 1.
Let G be a lattice ordered group. If a is a principal convergence on G and if (., )

is as above, then «a is said to be generated by (v, .

1.1. Lemma. Let a € ConvG. Assume that the interval [d(G). o] of Conv (i is
finite. Then « is principal.

Proof. Put card[d(G).a] =n. We apply the mduction on n. First let n = 1
set a, = 0 for each n € N. Then a is generated by (). Next assume that n > 1.
There exists a; € Conv G such that a covers ay. Henee by the induction hypothesis
there exists (y,) in a; such that a; is generated by (y,,). Further. there exists
(zn) € a\a;. Put x,, =y, V2, for cach n € N. Then (@,) € a, thus there exists
6 € Conv G such that 4 is generated by (). We have ap < 8 < o because oy is
covered by o we infer that & = «. Hence a is principal. G

The fact that Conv G possesses the least element (((7) implies that when dealing
with direct product decompositions of Conv G it sutlices (without loss of generality)
to consider only such direct factors which are convex subsets of Conv G and contain
the element d(G); if X is such a direct factor and o € Conv G, then the component
of a in X is the element sup{3 € X: 3 < a}. (Cf. also [4].)

Proof of (A). Again, assune that the interval [d((7). o] of Conv G is finite. Since
d(G) < a, we have card[d(G),a] > 1. Hence the set of atoms of the lattice [d(G). ]
is nonempty; let this set be {a,az, ..., ax}.

In view of [4], the interval [d(G), ;] of Conv G is a direct factor of Conv G, Thus
there is a convex subset Z of Conv G such that

(1) Conv G = [d(G),a] x Z.

In view of (1) and of the fact that a; < a there exists 3 € Z such that
(2) a=a, V3, o AP =AG).

First assume that & = 1. If 3 > d(G). then the interval [d(G). 3] of Conv G is
finite and has a cardinality greater or equal to 2, thus there is an atom ~ of Conv &
with v < 3. Hence v < « and 5 # ay, which is a contradiction. Therefore 3 = ()

and thus according to (2) we obtain a = ay, whenee [d(G).a] = {d(G).a}. We
have verified that the assertion holds for & = 1.
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Let & > 1 and suppose that the assertion is valid for & — 1. If v is an atom of
the interval [d(G), 3]. then v € {a2,a3.....ax}. Conversely. let i € {2.3,... k}.
Then ap = a; Aa = a; A (o V 3). Since the lattice [d(G). ] is Brouwerian and
a; Aap = d(G) we infer that a; = a; A 3, hence a; < 3. Thus the set of all atoms
of the interval [d(G), B] is {az.agz,....ax}. Hence [d(G), 3] is a Boolean algebra
with 2°=1 elements. Next, the relations (2) yiold that the interval [d(G),q] is a
divect product [d(G), o] x [d(G),B]. Hence [d(G),a] is a Boolean algebra with 2*
clements. a

Let. X be a nonempty subset of G and let («,) € (GV)*. If there exists m € N
such that a,, € X whenever n > m, then we say that (a,) ultimately deals on X. In
such a case let m(0) be the least m with the property; we put a,[X] = A (0) 41— 1
for cach n € N.

Let H be a convex (-subgroup of G and a € Conv G. The set of all sequences
(¢,) € a such that (a,) ultimately deals on H will be denoted by agy. Then ay # .
Next. let agyy be the set of all sequences (an[H]), where (a,,) runs over the set ay.

For X' C G we put X? = {g € G: |g| A || =0 for cach 2 € X}.

1.2. Lemmma. Let o) be an atom of ConvG. Then there exists a uniquely
determined (-subgroup H = C'(ay) # {0} of G such that
(i) H is linearly ordered and it is a convex (-subgroup of G;
(i) oy Capy
(iii) if Z is as in (1) and v € Z. then each sequence belonging to Z ultimately
deals on H.

Proof. Thisis a consequence of [6], Theorem 4.7 (including the facts mentioned
in the proof of the quoted theorem). g

Proof of (B). Under the assumptions as in (B), let {a;.az, ..., ai} be the set
of all atoms of the interval d[(G).a]. It k = 1, then according to (A) we have o =
and thus the assertion under consideration holds in view of [6], Theorem 4.7.

Suppose that & > 1 and that the assertion is valid for A — 1. Let /3 be as in the
proof of (A). Then, in view of the induction hypothesis, [d(G), 3] is a direct factor
of Conv G. Hence there is a convex subset Z; of Conv G with d(G) € Z; such that

(3) Conv G = [d(G), 3] x Z;.
From (2) we obtain

(1) [d(G).a ] N [d(G), B] = {d(G)}.

=1
o
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The relations (1), (2) and (4) yield
(5) [d(G),aq]N Zy = [d(G), 1], [d(G),3]N Z = [d(G).B].

Since Conv G is connected, according to [5] the direct decompositions (1) and (3)
have a common refinement

Conv G = ([d(G). a1l N[d(G), B]) x ([d(C).ar] N Zy)
x(ZN[d(G),p]) x (ZnZ,).

Hence in view of (4) and (5) we get

Conv G = [d(GQ),a1] x [d(G), ] x (ZNZy)
=[d(G),a] x (ZNZ,.

completing the proot. d

1.3. Corollary. (Cf. [1].) Let a be an wcvin of ConvG. Then the interval
[d(G), a] is a direct factor of ConvG.

[V

In this section the assertion (C) above will be dealt with.

Again, let G be a lattice ordered group. A sequence (a,) in G will be said to he
strictly disjoint if a, > 0 for cach n € N and a,, A «,, =0 whenever n and m are
distinct positive integers.

The following two lemmas are consequences of [2]. Theorem 7.3.

2.1. Lemma. Let (a,) be a strictly disjoint sequence in G. Then there exists
« € Conv G such that « is generated by (ay).

2.2. Lemma. Lect I be a nonempty set and for cach i € I let «v; be a principal

convergence on G generated by a sequence (a},). Assume that for eachn,m € N and
for each pair of distinct elements i(1) and i(2) of I the relation M A a? =0 s

valid. Then a = V;¢j; does exist in Conv G.

2.3. Lemma. Let I, a; and (al) be as in 2.2. Assume that the set I is infinite.
Then « is not principal.
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Proof. By way of contradiction, suppose that « is generated by a sequence
(a,). Then Theorem 2.2 of [3] yields that for each subsequence (al,) of (a,) there is
a subsequence (a!’) of (a’)) having the property that there exists a finite subset I(1)
of I and a positive integer k such that

(6) <kY b, (i€l(1)

is valid for each n € N, where (b%) is an appropriately chosen subsequence of (a,)
for each 7 € I(1).
Let I' be the union of all sets I(1) which have the above mentioned property.

u:\/m (iel)

We distinguish two cases. First suppose that I’ # I. Thus there exists j € '\ I'.

Hence

Since (a)) € « and « is generated by (a,), then (again in view of [3], Thm. 2.2)
there exist subsequences (cf) (f = 1,2,...,m) of (a,), a subsequence (a?) of (al,)
and a positive integer &' such that

(T) m. A Z Cc, t—l,Q,...,n)

is valid for each n € N.

There exists a subsequence (n(1)) of the sequence 1,2,3,... such that for each
t € {1.2,...,m} the subsequence ((;’n(l)) of (c!) satisfies analogous conditions as
(a!') above. In view of (7),

J ) < A"Zc{lm (t=1,2,...,m)

holds for ecach member n(1) of the sequon('o (n(1)) under consideration. But accord-
ing to (6) we have c{, Aa?) =0 fort=1.2,... ,m, whence a/ = 0 for each n € N,
which is a Contrd(hctlon.

Further, suppose that I’ = I. Thus I’ is infinite.

Let us denote by S the system of all subsequences (a!’) of (a,) which have the
properties as above (cf. (6)). We construct a system (a!,) (k € N) as follows.

Let (a”,) be an arbitrary sequence belonging to S. Thus there exists a least finite
subset (1) of I such that

< kl(bz (11) .+ biz(k(l)’”)

nl

is valid for each n € N, where k; € N, k(1) € N, I(1) = {i(1,1),i(2,1),...,i(k(1),1)},
(X' is a subsequence of (a'"'V), ..., (5:*V) is a subsequence of (a1
view of the minimality of I(1) there exists n(1) € N such that

Ap(1yn A bi((lf)l) > 0.

725



Now, since [ is infinite. there exists (al,) in S such that (under analogous assump-
"
nl

tions and notation as in the case of (al,)) we have

ay, < sz(bi,(l':J +...+ bf}k(z)‘z)) tor cach n € N

n2
and i(1.m) ¢ I(1). By induction. for each m € N there is (¢!, ) € S such that

all o<k, J')ff"”" + ...+ bfl(k("”"”)) for each n € N

nm

and i(1.m) ¢ I(1)UI(2)U...Ul(m—=1): moreover. the minimality of 1(in) (analogons
to the minimality of /(1)) is satisfied.
For each m € N there exists n(m) € N such that

" i(1,m)
(8) ”u,(m),m A hn( >0

1s valid.
Let us consider the subsequence

" " "

(9) oy Anzy2s Gusyae
of (a,). Let (c,) be a subsequence of the sequence (9). Since the set {i(1.1).7(1.2).
i(1,3),...} is infinite. the relation (8) yields that (¢,) does not belong to S. which
is a contradiction. O

2.4. Lemma. Let o € ConvG, (a,) € a and suppose that (a,) is stricrlv
disjoint. Then there cxists oy € ConvG with o < « such that o fails to be
principal.

Proof. Thereexist infinite subsets I,,, of N (m = 1.2....) such that I,,N1,, (), =
¢ whenever m and m (1) ave distinct positive integers. For ecach m € Nlet (') be the
subscquence (a,,) consisting of those a, for which the relation n € I,, holds. Now.

by applving 2.2 and 2.3 we infer that there exists o, with the desired propertices.
Let us consider the following condition for an element a € Conv Gv:

(¢) There exist principal convergences a; and ¢ in [d(G).a] such that ap #

d(G) # ay and ay A as = d(G).

2.5. Lemma. Let o € ConvG. Assume that o contains a strictly disjoint

sequence. Then o satisfies the condition (c¢).

Proof. Let (a,) be astrictly disjoint sequence belonging to a. For caclhi n € i
put b, = azn_1. ¢,, = as,. Then (b,) and (¢,) belong to a as well. There exist
and ay in Conv G such that oy is generated by (0,) and as is generated by (¢,).
We have d(G) < a; < « for i = 1,2. Next, from [3]. Theorem 2.2 we obtain that
ap A ay =d(G). d
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2.6. Lemma. Let 0 < v € G be such that the interval [0.v] of G is a chain.
Let a € ConvG, (q,) ¢ d(G). qn € [0.0] for cach n € N. Let § be the principal
convergence on G generated by (qn). Then d is an atom of Conv G.

Proof. Since (¢,) ¢ d(G) we have § > d(G). Let o' € ConvG, d(G) < 6" < 0.
There exists (¢),) € ¢\ d(G). From [3]. Theorem 2.2 it follows that (¢;,) ultimately
deals on [0.v]. Put ¢ = [-nv,nv] (n = 1.2,...). Then C is a linearly ordered
subgroup of G next, both (g,,) and (¢},) ultimately deal on C'. Now from [2], Theorem
3.9 we obtain that 8" = 4. Hence d is an atom of Conv G. d

2.7. Lemma. Leta € ConvG, a > d(G). Assume that the interval [d(G).a] of

“onv G does not contain any atom. Then o contains a strictly disjoint sequence.

Proof. Since a # d(G), there exists (a,) € a\d(G). Without loss of generality
we can assume that a,, > 0 for cach n € N.

We distinguish two cases.

(a) First suppose that there exists (a,) as above such that, whenever n € N and
r, € GO0 < v, € ay, then the interval [0,v,] fails to be a chain. Hence there are
eloel e 000, ] such that 0 < ol < vy, 0 < v} < v, and v;, Av), = 0. Now by the
same method as in [9], Lemma 2.1 we can verify that there exists a strictly disjoint
sequence (b,) belonging to a.

(b) Next assume that there is n(1) € N having the property that there exists vy € GG
with 0 < ¢y < ay(p) such that the interval [0,v,] of G is a chain; let n(1) be the
least positive integer which has this property. For each n € N put ¢, = vy Ad,y(1)4,-
Then (q,) € a; let § be the principal convergence on G generated by (¢,). Since
[0.¢1] is a chain, in view of 2.6 either & = d(G) or § is an atom of ConvG. The
latter case is impossible, since & < a. Thus there is m € N such that ¢, = 0 for cach
i = m. If there exists a positive integer n(2) = n(1) + m such that [0,v2] is a chain
for an clement vy with 0 < v < a,(2). then we take the least element n(2) with this
property. Now either

(i) we can construct in this way a sequence (v,,) € «,
or
(i1) there exists A € N such that the sequence (ag4,) has the property investigated
in the case (a).
If (i) holds. then (v,,) is strictly disjoint. It (ii) is valid, then it suffices to apply (a).
O

2.8. Lemma. Let a € Conv G. Assune that the interval [d(G), o] of Conv G is
infinite and that oy Is an atom of [d(G).o]. Then « satisfies the condition (¢) and
there is o' € [d(G), o] such that o' is not principal.

=1
o
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Proof. Since [d(G),a] is infinite we have a; < a; next, a; is an atom of
ConvG. Hence according to [4], Theorem 4.7, the interval [d(G),a;] is a direct
factor of ConvG. Thus we have ConvG = [d(G),a ] x Z for a convex subsei Z of
Conv G with d(G; € Z. Let 8 and 7 be the components of a in [d(G), a;] and in Z
respectively. Then a = BV, Ay =d(G), f € {dG).a}. vy e Z. If 3 = d(G.
then oy = a3 Aa = ay Ay = d(G), which is a contradiction. Hence 8 = a,. If
v = d(G), then we would have a = aj, which is inpossible. Thus 7 > d(G) and
therefore a satisfies the condition (c).

Next, the interval [d(G),~] of Conv G is infinite. If this interval does not contain
any atom, then it suffices to apply 2.4 and 2.7. If [d((7).4] contains an atom a..
then we proceed by applying the same steps for v as we did for a above. In this wayv
either (1) we obtain a sequence () of distinct atoms of Conv G which are elements
of [d(G),a], or (ii) we arrive at an element 4" of Conv (7 such that d(G) < 7' < «
and [d(G),~'] does not contain any atom. In the case (i) for each a, (m € N) there

m
n

exists a sequence (a?') which generates a,,. Next. according to 1.2 there exists a

convex f-subgroup C,, of G such that C,, is linearly ordered and (a?') ultimately
deals on C,,. If m(1) and m(2) are distinct positive integers, then a,, (1) # (.2
and this yields that C,,(;) N C,, 2y = {0}. For cach n € N there exists a subsequence
(b) of (a) such that 0 < 0" € Cp,. In view of 2.20 the element a' = Ve a1y,
does exist in Conv G; moreover. according to 2.3 the clement o fails to be principal.
Clearly o’ < a. O

2.9. Corollary. Let a € ConvG and assume that the interval [d(G).a] of
Conv G is infinite. Then therc is o' € [d(G), a] such that «' is not principal.
Proof. Thisis an immediate consequence of 2.4. 2.7 and 2.8. O

Proof of (C). The relation (ii)=(i) is a consequence of 1.1. For the relation
(i)=>(ii) cf. 2.9. ]

We shall now apply the results of the previous sections to obtain some insight into
the structure of the partially ordered set ConvG.
Let us denote by F the set of all @ € Conv G such that the set [d(G), a] is finite.

3.1. Proposition. Let a and 8 belong to F. Then a V  does exist in the
partially ordered set ConvG and aV 3 € F.
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Proof. According to (B) there are convex subsets T1 and T of Conv G with
d(G) € T\ » T: such that the direct decompositions

(10) ConvG = |d(G), a] x Ty,
(11) ConvG = [d(G), 5] x T,

hold. Denote

[d(G).a] N[d(G), B = V1, A(G),a]NTy = V%,

TyN[dG), Bl =Vs, Th'nT, =V,
[n view of [5], the direct decompositions (10) and (11) have a common refinement
ConvG = V) x 15 x V3 x Vy.
For cach v € ConvG we denote by v(1;) the component of v in V;, where i €
{1.2.3.4}.

From the definition of V it follows that « A3 s thie greatest element in V7. Hence
tor cach 4 € Conv G we have (1)) = a A J A ~v. Thas, in particular,

(12) aVy) =a A p = p(W).

It is easy to verify that

(13 a(Vs) = p(Va) = a(V1) = B(Vy) = d(G).
There exists 4 € Conv G such that

(5(""1) =a/\/3, O(VZ) =(Y(V2),
6(Vz) = B(Vs), 6(Vy) = d(G).

The relations (12) and (13) yield that § = a V  is valid in ConvG. Next, the
cardinality of the set [d(G), d] is the product of the cardinalities of the sets [d{G), a A
B), [d(G), a(V2)], [(d(G), B(V3)]. Since a A 8 < a,a(V2) € a@ and B(V3) < B, all the
elements a A 8, a(V,) and B(V3) belong to F. Hence card[d(G),d] is finite. Thus
d € F, which completes the proof. a
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3.2. Corollary. The set I is a lattice (under the mherited partial order).

Thus if Conv G is finite, then Conv G = F and hence Conv G is a lattice: therefore
(A) yields

3.3. Corollary. (Cf. [2], Theorems (B) and (C').) If ConvG is finite and
card Conv G > 1, then Conv GG is a Boolean algebra.

Let us denote by A the set of all atoms of Conv (.

3.4. Proposition. Let 4 # 0. Then the olement ag = sup A does exist
in ConvG. Moreover, the interval [d(G), ao] is a completely distributive complete
Boolean algebra.

Proof. The existence of ag is a consequence of [5]. Theorem 2.2. Let d(G) #
a € ConvG, a < ag. Further. let A(a) = {a; € 4: a; < a}. From the fact that the
interval [d(G), ap] is Brouwerian, we obtain that a = sup A(a). If A(a) = A. then
a = ap; if A(a) # A, then the element sup(A \ A(n)) is a complement of a in the
interval [d(G), ag]. Thus [d(G).ap] is a Boolean algehra. It is complete according
to [1]. Moreover, being atomic. it is completely distributive. O

3.5. Remark. The first assertion of 3.1 (concerning the existence of a Vv i3) can
be deduced also from 3.4 and from (A).

For ) #Y C ConvG put Y = {a € ConvG: a A3 = d(G) for cach 3 € Y}.

3.6. Lemma. Assume that the set A is infinite. Then there exists o € A® such
that o # d(G).

Proof. There exists a sequence (., )men such that a,, € A for each m € N
and a,,(1) # Qu2) Whenever mi(1) and m(2) are distinct positive integers. For cach

r

a,, there is a sequence (a)'') in G such that this sequence generates «v, and ap' > 0
for each n € N. Next, in view of 1.2 there is a convex linearly ordered (-subgroup
C,, of G such that (a!') ultimately deals on C,,. Thus for each m € N there exists

n

n(m) € N such that a” ) € C',,. Consider the sequence (a™

n(m n(m)

)men ; this sequence is
strictly disjoint. Thus there is o € Conv G such that « is generated by (a:;l(m)),,,e-, .
Then clearly a # d(G). By applying Lemma 1.2 again we obtain that a A 3 = Jd(G)
for each 3 € A. Therefore o € A°. O

3.7. Proposition. Put Ay = AU {d(G)}. The following conditions are equiva-
lent:
(i) Conv @ Is finite.
(i) 45 = {d(G)).
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Proof. Assume that (i) holds. Then in view of 3.3 the relation (ii) is valid.
Conversely, suppose that (ii) holds true. By way of contradiction, assume that
Conv G is infinite. We distinguish two cases.

(a) Assume that Ao is infinite. Let a be as in 3.6. Then d(G) # a € A® = A,
which is a contradiction.

(b) Assume that Ag is finite. If A = @, then Ag = ConvG # {d(G)}, which is
impossible. Let A # @ and let ag be as in 3.4. Then [d(G), ap] is a finite Boolean alge-
bra. Hence according to (B) there is a direct decomposition Conv G = [d(G), ag] X Z.
Thus Z must be infinite and clearly Z C AJ: in this way we arrive at a contradiction.

]

The following result improves Corollary 3.3.

3.8. Proposition. Let cardConvG > 1. Then the following conditions are
cquivalent:
(i) Conv G is finite.

(i) Conv G is an atomic Boolean algebra.

Proof. The implication (i)=(ii) is expressed in Corollary 3.3. The relation
(ii)=-(i) follows from 3.7. O

3.9. Proposition. Let a € ConvG., a # d(G). Then the following conditions
are equivalent:
(1) « is an atom of Conv G';
(i1) the interval [d(G), o] of Conv G is a chain.

Proof. The implication (i)=-(ii) is obvious. Let (ii) be valid. First assume that
the interval [d(G), o] is finite. Then in view of (A) this interval is a Boolean algebra.
Now. because it is a chain, we have card[d(G), o] = 2, hence « is an atom of Conv G.
Next let us suppose that the interval [d(G), a] is infinite. Then according to 2.5. 2.7
and 2.8 the convergence a has the property (¢), whence [d(G). o] fails to be a chain,
which is a contradiction. O

The following questions remain open.

(1) Assume that Conv G has a greatest element 4 and that v is principal. Must
Conv G be finite?

(2) Let A # 0. Is the relation A% = [d(G),sup A] always valid?

(3) Let A #0. Is A% a direct factor of Conv G?
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