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Czechoslovak Mathematical Journal , 46 (121) 1996, P r aha 

PRINCIPAL CONVERGENCES ON LATTICE ORDERED GROUPS 

JAN JAKUBIK, Kosice 

(Received December 28, 1994) 

All lattice ordered groups dealt with in the present paper are assumed to be 

abelian. 

Let G be a lattice ordered group. The set of all sequential convergences on G will be 

denoted by ConvG; this set is partially ordered in a natural way. It was investigated 

in the papers [l]-[4], [6]-[9]. For the sake of brevity, we shall say "convergence1" 

instead of "sequential convergence". 

The partially ordered set ConvG need not bt, in general, a lattice. It possesses 

the least element (the discrete convergence) which will be denoted by d(G). For 

each a G ConvG, the interval [d(G).a] of ConvG is a complete Brouwerian lattice* 

(cf. [2]). 

A convergence a G Conv G will be said to be principal if there exists a sequence 

(xn) in a such that, whenever 0:1 G ConvG and (xn) G a\, then a ^ a\. 

If a G ConvG and if the interval [d(G),a] is finite, then a is principal. In the 
present paper the following results will be established: 

(A) Let a G ConvG, a ^ d(G). Assume that the interval [d(G),a] is finite. Then 
[d(G),a] is a Boolean algebra. 

(B) Let a be as in (A). Then [d(G),a] is a direct factor of the partially ordered 
set ConvG. 

(C) Let a G ConvG. Then the following conditions are equivalent: 
(i) If (Yi G ConvG, a\ ^ a, then ai is principal. 

(ii) The interval [d(G),a] of ConvG is finite. 

(B) generalizes a result of [4]. Some further results on ConvG will also be proved. 
For instance, it will be shown that if d(G) < a G Conv G and if the interval [d(G),a] 
of ConvG is a chain, then a is an atom of ConvG. 
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For convergences in a lattice ordered group we will apply the same definitions and 

nota t ion as in [8], Section 1. 

Let G be a lattice ordered group. If a is a principal convergence on G and if (./•,,. ) 

is as above, then a is said to bo generated by (xu ). 

1.1. L e m m a . Let a G ConvG. Assume that the interval [d(G).a] of ConvG is 

finite. Then a is principal. 

P r o o f . Pu t card[c/(G),a] = n. We apply the induction on n. First let H = 1: 

set xn — 0 for each n G N. Then a is generated by (./„). Next assume that // > 1. 

There exists G\ G ConvG" such that a covers Q[. Hence by the induction hypothesis 

there exists (yn) in oi such that o;i is generated by (yn). Further, there exists 

(zu) G a \ c\\. Pu t xn = yn V .:,, for each n G N. Then (xn) G a, thus there exists 

6 G ConvG such that d is generated by (xn). We have aL < S ^ a; because oi is 

covered by a we infer that 6 = a. Hence a is principal. G 

The fact tha t ConvG possesses the least element d(G) implies that when dealing 

with direct product decompositions of ConvG it suificos (without loss of generality) 

to consider only such direct factors which are convex subsets of ConvG and contain 

the element d(G); if X is such a direct factor and o G ConvG, then the component 

of a in X is the element sup{/^ G X: (3 ^ a } . (Cf. also [4].) 

P r o o f of ( A ) . Again, assume that the interval [d(G). a] of Conv G is finite. Since4 

d(G) < a , we have card[r/(G), a] > 1. Hence the set of atoms of the lattice [c/(G).a] 

is nonempty; let this set be {a j , a 2 , . . ., a^}. 

In view of [4], the interval [<7(G),ai] of ConvG is a direct factor of ConvG. Thus 

there is a convex subset Z of Conv G such that 

(1) C o n v G = [d(G),a{] x Z. 

In view of (1) and of the fact that a\ ^ a there1 exists 3 G Z such that 

(2) a = o'i V/3, a i A/i = d(G). 

First assume that k = 1. If 3 > d(G), then the interval [d(G)ji] of ConvG is 

finite and has a cardinality greater or equal to 2, thus there is an a tom ^ of ConvG 

with 7 ^ (3. Hence 7 ^ a and -) / 0:1, which is a contradiction. Therefore f3 — d(G) 

and thus according to (2) we obtain a — 0:1, whence4 [d(G),a] — {d(G).a\}. We 

have verified tha t the assertion holds for k = 1. 
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Lot k > 1 and suppose that the assertion is valid for k — 1. If 7 is an atom of 

the interval [d(G),ft], then 7 G {a2,a:^ a A-}. Conversely, let i G {2,3, . . . , k } . 

Then a i = a,- A a = a; A (a 1 V/ i ) . Since the lattice [d(G),/3] is Brouwerian and 

n, A a i = d(G) we infer that a, = a; A / j , hence a; ^ / j . Thus the set of all atoms 

of the interval [d(G),ft] is {a 2 , a 3 , . . ., 0:/.}. Hence [f/(G),/i] is a Boolean algebra 

witli 2A'~l elements. Next, the relations (2) yield that the interval [d(G),a] is a 

direct product [d(G),a\] x [d(G),ft]. Hence [d(G),a] is a Boolean algebra with 2A 

elements. • 

Lot. A' l)o a nonempty subset of G and let (an) G (GN ) + . If there exists m G ^ 

such that an G X whenever 11 ^ m, then we say that (an) ultimately deals on X. In 

such a case let m(0) be the least m with the property; we put a n[K] = am(0) + ; i_i 

for each n £ N. 

Let H be a convex ("-subgroup of G and a G ConvG. The set of all sequences 

((!„) G a such that (O,J ultimately deals on H will be denoted by an- Then a// 7̂  0. 

Next, let or//] be the set of all sequences (an[H\), where (an) runs over the set a/ / . 

For X C G we put Xs = {</ G G: \g\ A |.r| = 0 for each x G K}. 

1.2. L e m m a . Let a\ be an atom of ConvG. Then there exists a uniquely 

determined (-subgroup H = G((\\) =fi {0} of G such that 

(1) H is linearly ordered and it is a convex C-subgroup of G; 

(ii) 01 C an; 

(iii) if Z is as in (1) and 7 G Z. then each sequence belonging to Z ultimately 

deals on H. 

P r o o f . This is a consequence of [6], Theorem 4.7 (including the facts mentioned 

in the proof of the quoted theorem). • 

P r o o f of (B). Under the assumptions as in (B), let { a i , c \2 , . . . , a^} be the set 

of all atoms of the interval c/[(G), a]. If A: = 1, then according to (A) we have a = a i , 

and thus the assertion under consideration holds in view of [6], Theorem 4.7. 

Suppose that k > 1 and that the assertion is valid for k — 1. Let ft be as in the 

proof of (A). Then, in view of the induction hypothesis, [d(G),ft] is a direct factor 

of ConvG. Hence there is a convex subset Z\ of Conv G with d(G) G Z\ such that 

(3) ConvG = [d(G),ii] x Z{. 

From (2) we obtain 

(4) [ r f ( G ) . 0 l ] n [ < / ( G ) , / J ] - { ( / ( G ) } . 
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The relations (1), (2) and (4) yield 

(5) [d(G), a i ] n Z , = [d(G), <*i], [d(G), 3} n Z = [d(G)j5\ 

Since ConvG is connected, according to [5] the direct, decompositions (1) and (3) 

have a common refinement 

ConvG = ( [d (G) , a i ]n [d (G) ,0 ] ) x ([d(G).«i] 0 Zx) 

x(Zn[d(G)J}) x(Znzj. 

Hence in view of (4) and (5) we get 

ConvG = [d(G),a i ] x [d(G)ji] x{ZnZx) 

= [d(G),a\ x (ZnZ{\ 

completing the proof. • 

1.3. Corol lary. (Cf. [4].) Let a be an -itum oI ConvG. Then the interval 

[d(G),a} is a direct factor of ConvG. 

In this section the assertion (C) above will be dealt with. 

Again, let G be a lattice ordered group. A sequence {an) in G will be said to be 

strictly disjoint if an > 0 for each n £ N and an A an) = 0 whenever n and in are 

distinct positive integers. 

The following two lemmas are consequences of [2], Theorem 7.3. 

2 .1 . L e m m a . Let (an) he a strictly disjoint sequence in G. Then there exists 

a E ConvG such that a is generated by (an). 

2.2 . L e m m a . Let I he a nonempty set and for each i £ I let a{ he a principal 

convergence on G generated by a sequence (al
n). Assume that for each ?i, m EN and 

for each pair of distinct elements i(l) and i(2) of I the relation an A am' = 0 is 

valid. Then a = V i€/az- does exist in ConvG. 

2.3 . L e m m a . Let I, a{ and (ax
n) be as in 2.2. Assume that the set I is infinite. 

Then a is not principal. 
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P r o o f . By way of contradiction, suppose that a is generated by a sequence 
(On). Then Theorem 2.2 of [3] yields that for each subsequence (a'n) of (an) there is 
a subsequence (a'n) of (a'n) having the property that there exists a finite subset I(l) 
of I and a positive integer k such that 

(G) «' ,Ufcy_>;, ( . e / ( i ) ) 

is valid for each n G N, where (bn) is an appropriately chosen subsequence of (an) 
for each i G 1(1). 

Let I' be the union of all sets I(l) which have the above mentioned property. 
Hence 

a = \fat (iel'). 

We distinguish two cases. First suppose that I' ^ I. Thus there exists j G I \ I'. 

Since (an) G a and a is generated by (an), then (again in view of [3], Thm. 2.2) 
there exist subsequences (cn) (t = 1,2,..., in) of (On), a subsequence (O*̂ ) of (aJ

n) 

and a positive integer k' such that 

(7) < C < * ' £ < 4 (̂  = ^2, . . . ,n) 

is valid for each n G N. 
There exists a subsequence (n(l)) of the sequence 1,2,3,. . . such that for each 

t G {1,2,. . . ,7?i} the subsequence (c^,^) of (cn) satisfies analogous conditions as 
(O/'J above. In view of (7), 

< ( i ) ^ ' £ c U (t = l,2;...,m) 

holds for each member n(l) of the sequence (n(l)) under consideration. But accord­
ing to (6) we have cn A a*J = 0 for t = 1, 2,. . ., m, whence an

J = 0 for each n G N, 
which is a contradiction. 

Further, suppose that I' = I. Thus V is infinite. 
Let us denote by S the system of all subsequences (a'n) of (an) which have the 

properties as above (cf. (6)). We construct a system (a'nk) (k G N) as follows. 

Let (a'nl) be an arbitrary sequence belonging to S. Thus there exists a least finite 
subset I(l) of I such that 

a ^ ^ f c i ^ ^ + .-. + fc^1^) 

is valid for each n G N, where k! G N, k(l) G f̂ J, I(l) = {z(l, l ) , i (2 ,1) , . . . , i (k( l) , 1)}, 
(bn ) is a subsequence of (an ) , . . . , (bn

 (1) ,1)) is a subsequence of (al
n )• In 

view of the minimality of 1(1) there exists n(l) G r>J such that 

« « ( l ) . l A * K , > 0 . 
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Xow, since V is infinite, there1 exists (a"l2) in S such that (under analogous assump­

tions and notation as in the case1 of (a"lY)) we have 

< 2 ^ M ^ ( 1 - 2 ) + • . . + 6il
(fc(2)'2)) for "ach // G N 

and / ( l . ///.) ^ I(l). By induction, for each m G N there is (a"n)) G S such that 

ll s* I- !i(\,m\ , , j i(k( rn) .m) \ r i , - *\i 

antn ^ km\(>n + • * • + ^/i ) h>r each // G i\J 

and i(lcm) <£ I(1)UI(2)U. . .U I ( / / / - 1 ) ; moreover, the minimality of I(///) (analogous 

to the minimality of I(l)) is satisfied. 

For each m G N there exists //(///) G N such that 

(8) ' M , , ^ ^ 1 ' " ' ^ 0 

is valid. 

Let us consider the subsequence 

/n\ " ll ll 
(9) " . . ( 1 ) , P an{2)^ anCl);.C • 

of (an). Let (cn) be a subsequence of the sequence (9). Since the set {/(l, 1) . / (1 .2) . 

/ ( V 3 ) , . . . } is infinite, the relation (8) yields that (r„) does not belong to S. which 

is a contradiction. D 

2.4 . L e m m a . Let o G ConvG, (an) G a and suppose that (un) is strictly 

disjoint. Then there exists a\ G ConvG with c\\ ^ a such that aL fails to be 

principal. 

P r o o f . There exist infinite subsets Im of N (/// = L 2 , . . . ) such that ImC)Im{ n = 

0 whenever m and //l(l) are distinct positive integers. For each ///. G N let (a'}[
1) be the 

subsequence (an) consisting of those an for which the relation n G Im holds. Xow. 

by applying 2.2 and 2.3 we infer that there exists ni with the desired properties. D 

Let us consider the following condition for an element n G ConvG: 

(c) There exist principal convergences (*i and r.j in \d(G).a] such that aj ^ 

d(G) ^a2 and m A n . = d(G). 

2 .5 . L e m m a . Let a G ConvG. Assume that a contains a strictly disjoint 

sequence. Then a satisfies the condition (c). 

P r o o f . Let (On) \)c a strictly disjoint sequence belonging to a. For each // G ' i 

put bn = O2?l-i, cn = O2/i- TIKTI (b.J and (cn) belong to a as well. There exist o\ 

and ri2 in ConvG such that a) is generated by (//,,) and a2 is generated by (r„) . 

We have rl(G) < rv7- < a for / = V 2. Next, from [3]. Theorem 2.2 we obtain that 

o i A a2 = d(G). D 
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2.G. L e m m a . Let 0 < c G G be such that the interval [0,D] of G is a chain. 

Let a G ConvG, (qn) ^ d(G). qn G [0, D] for eacii n G N. Let (5 be the principal 

convergence on G generated by (qn)> Then S is an atom of ConvG. 

P r o o f . Since (qn) £ d(G) we have S > d(G). Let S' G ConvG, d(G) < S' ^ S. 

There exists (q'n) G S'\d(G). From [3], Theorem 2.2 it follows that (q'n) ultimately 

deals on [0, c]. Pu t C = (J[—nv,nv] (n = 1 ,2, . . . ) . Then C is a linearly ordered 

subgroup of G; next, both (qn) and (q'n) ultimately deal on C. Now- from [2], Theorem 

3.9 we obtain that S! = S. Hence S is an atom of ConvG. • 

2 .7. L e m m a . Let a G ConvG, a > d(G). Assume that the interval [d(G),o] of 
r\mv G does not contain any atom. Then o contains a strictly disjoint sequence. 

P r o o f. Since o ^ d(G): there exists (an) G a\d(G). Without loss of generality 

wo can assume that an > 0 for each // G N. 

We distinguish two cases. 

(a) First suppose that there exists (an) as above such that , whenever n G N and 

cn G G. 0 < vn ^ an, then the interval [0,i';)] fails to be a chain. Hence there are 

c'irc[[ G [0, cn] such that 0 < c'n < vn, 0 < vn < vn and v'n A v'7[ = 0. Now by the 

same method as in [9], Lemma 2.1 we can verify that there exists a strictly disjoint 

sequence (bn) belonging to o. 

(1)) Next assume tha t there is //(l) G N having the property that there exists v\ G G 

with 0 < cj ^ °n{i) such that the interval [0,Ui] of G is a chain; let //(l) be tin1 

least positive integer which has this property. For each n G N put qn = V{ f\(in(i) + n-

Then ((/,,) G a; let S be the principal convergence on G generated by (qn). Since4 

[0, vi] is a chain, in view of 2.G either S = d(G) or S is an atom of ConvG. The 

latter case is impossible, since S ^ a . Thus there is m G ^ such tha t qn = 0 for each 

// ^ ///. If there exists a positive integer n(2) = n(l) + m such tha t [0,U2] is a chain 

for an element v2 with 0 < i>2 ^ On(2)- then we take the least element n(2) with this 

property. Now either 

(i) we can construct in this way a sequence (vn) G a, 

or 

(ii) there exists k G N such that the sequence (a^+n ) has the property investigated 

in the* case (a). 

If (i) holds, then (vm) is strictly disjoint. If (ii) is valid, then it suffices to apply (a). 

• 

2.8. L e m m a . Let a G ConvG. Assume that the interval [d(G),a] of ConvG is 

infinite and that o i is an atom of[d(G),o]. Then a satisfies the condition (c) and 

there is a' G [d(G),o] such that a' is not principal. 



P r o o f . Since [d(G),a] is infinite we have oi < a; next, a\ is an atom of 

ConvG. Hence according to [4], Theorem 4.7, the interval [d(G),a\] is a direct 

factor of ConvG. Thus we have ConvG = [d(G),a\] x Z for a convex subset Z oi* 

ConvG with d(G) G Z. Let /J and 7 be the components of a in [d(G),a\] and in Z 

respectively Then a = /3 V 7, ,/i A 7 = d(G), (5 G {J v G) ,a i} . 7 G Z. If :i - </(G;. 

then a\ = a i A a = a i A 7 = J(G), which is a contradiction. Hence ,/i = 01 . If 

7 = d(G), then we would have1 a — a\, which is impossible. Thus 7 > c/(G) and 

therefore a satisfies the condition (c). 

Next, the interval [d(G),j] of ConvG is infinite. If this interval does not contain 

any atom, then it suffices to apply 2.4 and 2.7. If [J(G).7] contains an atom a 2 . 

then we proceed by applying the same steps for 7 as we did for a above. In this way 

either (i) we obtain a sequence4 ( a n ) of distinct atoms of ConvG which are elements 

of [d(G),a], or (ii) we arrive at an element 7' of Com- G such that d(G) < V < a 

and [d(G),j'] does not contain any atom. In the cas^ (i) for each am (m G N) there 

exists a sequence (a"1) which generates am. Next, according to 1.2 there exists a 

convex ^-subgroup Cm of G such that Cm is linearly ordered and (a™) ultimately 

deals on G m . If 777(1) and 111 (2) are distinct positive integers, then a m ( 1 ) ^ a,M;J) 

and this yields tha t G m ( i ) n Gm(2) = {0}. For each // G N there exists a subsequence 

(bm) of (am) such that 0 < b'^1 G Cm. In view of 2.2, the element a' = VmGf,n,,. 

does exist in ConvG; moreover, according to 2.3 the element a' fails to be principal. 

Clearly a' ^ a. • 

2.9. Corol lary. Let a G ConvG and assume that the interval [d(G),a] of 

ConvG is infinite. Then there is a' G [d(G),a] such that a' is not principal. 

P r o o f . This is an immediate consequence of 2.4. 2.7 and 2.8. • 

P r o o f of (C). The relation (h)=.>(i) is a consequence of l .L For the relation 

(i)=Kii) cf. 2.9. D 

We shall now apply the results of the previous sections to obtain some insight into 

the structure of the partially ordered set ConvG. 

Let us denote by F the set of all a G ConvG such that the set [d(G),a] is finite. 

3 . 1 . P r o p o s i t i o n . Let a and (3 belong to F. Then a V (5 does exist in the 

partially ordered set Conv G and a V (3 G F. 

728 



P r o o f . According to (B) there are convex subsets T\ and T2 of ConvG witli 

d(G) G T\ n T2 such that the direct decompositions 

(10) ConvG = [d(G),a] x Tx, 

(11) ConvG = [d(G),/i] x T2 

hold. Denote 

[d(G),a] n [</(G),/J] = V, [d(G),a] n T2 = V2, 

Tin[f/(G),)9] = V3, T ! n T 2 = V4. 

In view of [5], the direct decompositions (10) and (11) have a common refinement 

ConvG = Vi x V2 x V'3 x V4. 

For each 7 G ConvG we denote by j(V{) the component of 7 in V, where / G 

{1 .2 .3 ,4} . 

F o i n the definition of V'i it follows that a Ad is the greatest element in V'i. Hence 

for each -, <E ConvG we have , (\\) = a A /i A ->. Thus, in particular, 

(12) a(V1)=aAj3^iJ(\\). 

It is easy to verify that 

(13) a(V3) = fi(V2) = a(V\) = (3(V4) = d(G). 

There exists 6 G Conv G sucli that 

6(V\)=aAP, 6(V2)=a(V2), 

6(V3)=f3(V3), 6(V4) = d(G). 

The relations (12) and (13) yield that 6 = a V ft is valid in ConvG. Next, the 

cardinality of the set [d(G), 6] is the product of the cardinalities of the sets [d(G), a A 

f3],[d(G),a(V2)],[(d(G),(3(V3)]. Since a A /3 ^ a,a(V2) <: a and 0(V3) ^ /?, all the 

elements a A (3,a(V2) and f3(V3) belong to F. Hence card[d(G),o~] is finite. Thus 

6 G F, which completes the proof. • 
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3.2 . Corol lary. The set F is a lattice (under the inherited partial order). 

Thus if ConvG is finite, then ConvG = F and hence ConvG is a lattice; therefore 

(A) yields 

3 .3 . C o r o l l a r y . (Cf. [2], Theorems (B) and (C).) If ConvG is finite and 

card ConvG > 1, then ConvG is a Boolean algebra. 

Let us denote by A the set of all atoms of Conv C. 

3.4 . P r o p o s i t i o n . Let A ^ 0. Then the element o 0 = sup A does exist 

in ConvG. Moreover, the interval [d(G),ao] is a completely distributive complete 

Boolean algebra. 

P r o o f . The existence of a 0 is a consequence1 of [5], Theorem 2.2. Let d(G) ^ 

a G ConvG, a ^ a 0 . Further, let A (a) = {a2- G A. a, <; a } . From the fact that the 

interval [d(G),a0] is Brouwerian, we obtain that o = s u p A ( o ) . If A(a) = A, then 

a = a 0 ; if -4(a) 7-= A, then the element sup(A \ -4(a)) is a complement of a in tlio 

interval [cl(G),ao]. Thus [cl(G),ao] is a Boolean algebra. It is complete according 

to [1]. Moreover, being atomic, it is completely distributive. • 

3 .5 . R e m a r k . The first assertion of 3.1 (concerning the existence of a V ̂ ) can 

be deduced also from 3.4 and from (A). 

For | / y c ConvG put Y6 = {a G ConvG: a A ;i = d(G) for each 0eY}. 

3.6. L e m m a . Assume that the set A is infinite. Then there exists a G Ad such 

tlmta^d(G). 

P r o o f . There exists a sequence ( a ? n ) m G ^ such that am G A for each m G N 

and a m ( i ) 7̂  a m ( 2 ) whenever m(l) and 771(2) are distinct positive integers. For each 

a m there is a sequence (a][l) in G such that this sequence generates am and ci'T[l > 0 

for each n G N. Next, in view of 1.2 there is a convex linearly ordered (-subgroup 

Cm of G such tha t (aJJ1) ultimately deals on Cm. Thus for each m G N there exists 

77(777) G N such that a][\m^ G Cm. Consider the sequence (a"\ n))meN ; this sequence is 

strictly disjoint. Thus there is a G ConvG such that a is generated by (oQ m ) )me ' , • 

Then clearly a ^ d(G). By applying Lemma 1.2 again we obtain that a A /3 = d(G) 

for each /i G A. Therefore a G Arf. • 

3.7. P r o p o s i t i o n . Pur A() = A U {J(G)}. TLe following conditions are equiva­

lent: 

(i) Conv G is finite, 

(ii) 4 = {d(G)}. 
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P r o o f . Assume that (i) holds. Then in view of 3.3 the relation (ii) is valid. 

Conversely, suppose that (ii) holds true. By way of contradiction, assume that 

Conv G is infinite. We distinguish two cases. 

(a) Assume that A0 is infinite. Let a be as in 3.6. Then d(G) ^ a G A6 = Ag, 

which is a contradiction. 

(b) Assume that A0 is finite. If A = 0, then A6
0 = ConvG 7- {d(G)}, which is 

impossible. Let A 7- 0 and let a 0 be as in 3.4. Then [d(G),a0] is a finite Boolean alge­

bra. Hence according to (B) there is a direct decomposition Conv G = [d(G), a 0 ] x Z. 

Thus Z must bo infinite and clearly Z C A0: in this way we arrive at a contradiction. 

D 

The following result improves Corollary 3.3. 

3.8. P r o p o s i t i o n . Let card ConvG > 1. Then the following conditions are 

c(liiivalont: 

(i) ConvG is finite. 

(ii) ConvG is an atomic Boolean algebra. 

P r o o f . The implication (i)=>(ii) is expressed in Corollary 3.3. The relation 

( i i )^ ( i ) follows from 3.7. D 

3.9. P r o p o s i t i o n . Let a £ ConvG, a 7- d(G). Then the following conditions 

are OquivaJenfc: 

(1) a is an atom of ConvG ; 

(ii) the interval [d(G),a] of Conv G is a chain. 

P r o o f . The implication (i)=>(ii) is obvious. Let (ii) be valid. First assume that 

the interval [d(G), a] is finite. Then in view of (A) this interval is a Boolean algebra. 

Now, because it is a chain, we have card[cl(G), a] = 2, hence a is an atom of ConvG. 

Next let us suppose that the interval [d(G),a] is infinite. Then according to 2.5. 2.7 

and 2.8 the convergence a has the property (c), whence [d(G),a] fails to be a chain, 

which is a contradiction. D 

The following questions remain open. 

(1) Assume tha t ConvG lias a greatest element 7 and that 7 is principal. Must 

ConvG be finite? 

(2) Let A 7- 0. Is the relation A66 = [d(G),sup/i] always valid? 

(3) Lot A / 0. Is A66 a direct factor of ConvG? 
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