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0. INTRODUCTION

In this paper some topological properties which are preserved by nearness between
operators and which have significant applications in the existence theory of solutions
for differential equations are studied. Before explaining shortly the content of cach
part of the paper, we shall give the definition of near operators and the basic theorem
on isomorphism (Cf. [C,]).

Let U be aset and B a Banach space normed with || ||. Let A, B be operators
between U and B.

Definition 0.1. We say that A is ncar B if there exist two positive constants a
and A, with A € (0,1). such that we have

(0.1)  B(ar) = Blaa) — ald(ey) = Al S K|B(ry) = Bla2)ll, Vo € 1.

Theorem 0.1. Let A be near B. If B is a bijective operator between X and B.
then A is bijective between .\ and B, too.

We recall that the theory of near operators was introduced in [Cy] for stadying the
existence and regularity of solutions for nonlincar non-variational elliptic systems.
Subsequently. it was also applied to nonlinear parabolic systems ([Ca]. [T]). The
theory of near operators is connected with the monotone operaror theory (see for
example [Cy]).

In §1 we shall prove some preliminary results about topological properties of op-
crators @, between B and B, that are ncar I (identity map on 5). Theorem 1.1 in
§1 requires some further remarks. It establishes that if &: Q) — B is near [ and if
2 is open in B then Q5 = ®(2)) is open in 5. Consequently. Theorem 1.1, when B

has a finite demension., is a particular case of the following topology theorem.
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Theorem 0.2. Let B be an n-dimensional manifold, §; openin B, ®: Q; = B a
bijective continuous map between Qy and Qy = ®(Qy). Then. if Q; is open in B, 2,
is open in B, too.

(The proof of this Theorem is not easy and requires homology theory, see §18
of [G].)

Theorem 0.2 fails in finite dimension, even if we ask for stronger hypothesis on @.
for example Lipschitzianity (sce Remark 1.1). Then Theorem 1.1 is one of possible
generalizations of Theorem 0.2 to infinite dimension. It is easy to prove that if @ is
near Ip then & is injective and Lipschitzian.

In §2 it is proved that if A is near B then

(i) If B(X) is open in B, A(.\') is open in B, too.!

(ii) If B(X) is dense in B, A(.Y) is dense in B, too.

In §3 proposition (ii) is used to prove local existence of a solution for the following
nonlinear elliptic system:

Z Aij(z,u)Diju(z) = f(x).

i,j=1

We observe that the results of §3 can be generalized, by easy modifications of
hypotheses, to the systems

a(x,u, H(u)) = f(2),

where H(u) = {Diju}i j=1, .-

Consequently, the theory of near operators, up to now applied to systems in which,
for every &, a(z,u, ) is bounded in u (cf. [C3]), can be extended, by Proposition (i).
to systems in which a(x,u,£) has a linear growth in u.

Up to now the theory of near operators has met with some difficulties to be
applied to hyperbolic problems, perhaps owing to spaces on which these problems
work. Proposition (ii) can be a useful tool to overcome these difficulties. In fact in
§4 proposition (ii) is used to prove an existence theorem of a periodic solution of the
following second order non linear equation in Hilbert spaces:

Au(t) + " (t) + F(t,u'(t)) + cu(t) = g(t).

This equation has been also studied with other techniques by many authors, see
for example [HA] (abstract case) or [P1], [P2], [R] (some concrete cases). The results
obtained here can be compared with [P;] (see Remark 4.1).

VA(X) = {y € B: 3z € X such that y = A(z)}. The same definition can be given for
B(X).
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Nevertheless, we observe that the above solved problem is only a first approach,
for the theory of near operators, to hyperbolic problems. In fact, nonlinearity of the
equation does not concern the principal part of the operator as it i» the case instead
when this theory is applied to elliptic or parabolic problems.

1. OPERATORS NEAR IDENTITY

Let B be a Banach space normed with || ||, €, a open subset of B and ®: Q; — B.
We set 2, = ®(Q).
We say that ® is near Ig, identity on B, if 3a > 0 and I € (0,1) such that

(1.1) ly1 = y2 — a[®(y1) — 2(v2)]ll < Kllys — w2, Yy1,y2 € Q.

Lemma 1.1. Let (1.1) hold. If0 € Q; and ®(0) = 0 then there exists a oy > 0
such that S(0.01) C Q.2

Proof. Proving this lemma is equivalent to prove that YV y € S(0,0,) 3u € Q,
such that ®(z) = y. Let r be a positive number such that S(0,r) C Q;. We choose
y € S(0,0), with 0 > 0 and consider T: S(0,7) = B, a map defined in the following
way:

T(z) =y —[a®(x) -], x&S(0,r).

T possesses the following properties:
i) 7(S(0,7)) € S(0,7). In fact

IT@ = lly = [e®(@) = 2]l < llyll + lla[®(x) = 2(0)] = (z - 0)]|.

From this estimate and from (1.1), we obtain that there exists I € (0,1) such that

IT@ <yl + Kl|lz)| <o+ Kr <r for o < (1= K)r.
i) || T(x1) = T (z2)|| € K|y — 22|, V21,22 € S(0,7). In fact, by means of (1.1) we
obtain || T(z1) = T (@2)|| < |layr — a2 —a[®(ay) — D(22)]|| € K||lo1 —22]] (0 < KX < 1).
O

It follows from i), ii) and the theorem of contractions that there exists a unique
x € S(0,7) such that 7(z) = 2, that is y — a®(z) + v = .

Finally, Vy € S(0,0) (with o < (1 = K)r) 3, = € S(0,7) such that y = a®(x).

We obtain that Vy € S(0,0,) with 6; = a/a, there exists a unique z € S(0.r)
such that y = &(z).

Theorem 1.1. Let (1.1) hold. If Q; is open in B, then 2, is open in B, too.

25(0,01) ={y € B: [lyll < o1}
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Proof. We prove that for every yo € Q2 3S(yp.01) C Q. Let a9 € Q) be such
that yo = ®(xg). We set

Q={:€eB:z=a—uxp,2€ Q} =Qp — 2o,

0, = ceBrz=y—yo,y € Q) =Dy~ yo,
&)(Z) =®(z+29) — Plxg), z€Q.

It is obvious that & §~21 — b, (22 = &J((N)l), S~21 is open. 0 € ﬁ, . &)(0) = 0. Moreover.
® verifies hypothesis (1.1) and the same is true for &. In fact. for every =1,z € 0,
we have

21 = 22 = a[®(z1) = D(=2)]]]
= H(Zl + .’l’()) — (22 +x9) — O’[‘I)(Zl +29) — P(z0 + 170)”[ < [\'“;’1 — :3“

We get the hypothesis of Lemuna 1.1 for 0y and . consequently 35(0,0,) C 0, and
so there exists a S(yo,0) C .. O

Remark 1.1. Theorem 1.1 fails if we assume for ¢ only injectivity and Lip-
schitzianity. Example:
oo ) oo .
B = {;1?: r={Tu}uen,tn € R, D 22 < +oo} normed with |||z = ( > .1';1>
n=1 n=1
Ql = B;
Qo ={z:2 € B,a, =0}
() = P(xy, 20,y 0y ) = (0,21, 00,000y, ).

1/2

d is a isometry, ) is open. while €, is not. On the other hand, ® is not near I3
because estimate (1.1) fails at points y; = (21,0,0,...) and y» = (0,0,.... 0....) for

every a and k.

Theorem 1.2. Let (1.1) hold. If Q is dense in B then 25 is dense in B, too.

Proof. Fixy € B - Q. let {yn}tnen C Qi be such that y, — y in B. In
particular {y, }n,en is a Cauchy sequence in B. We obtain from this and supposing
® near Iz that {®(y,)}nen is a Cauchy sequence in B. In fact

1 . 1
”(p('l/u) - q’(i‘/m)” g ZH.’/n —Ymn — O’[q)(yn) - q’“/m,)”l + ;H'I/n - ?/nL“

l\f 1

g s ”yll - l.(/m” VIL nm e N

o\

Then we set

- P (y) if y €,

1.2 ¢ =
( ) (!/) lim q)(yn) it i ¢ Q[

n—00
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¢: B — Bis a well defined map, because if {§,},er 1s another sequence in
which converges to y, as ® is near I we obtain

1 1 i
”‘I)("l/”) - Q)(g”)” EHU” D” - al[(b(yﬂ) - <I)(gn)]” + E”yn - yn”
k+
< “yn - Jn“ Vn € N,
so that lim @®(g,) = lim q)(y”) = 3(y). g

n-ro0 n—oo

We shall now prove that ® is near Is. Vy,z € B let {yn}nen and {z,}nen be two
sequences in 2 which converge respectively to y and z. As ® is near I, we obtain
the followig estimate

ly == — [(I) ]“ ”!/ — Yull + |z = 3n” + ”i‘/n —Zn (Y[(I)(yn) - (I)(:”)]“
+al|@(yn) = B + all®(zn) — B(2)]]-

We get from this and from the definition of @ the following estimate: Ve > 0
ly = = — afB(y) - Bl < 201 +a + ke + klly = =11

It follows that @ is near I55. so we get from Theorem 0.1 that @ is a bijective map
hetween B and B. If we fix w € B, we can find an @ € B such that ®(z) = w. Let
{ru}nen C Q) be such that lim @(x,) = ®(x). If we set w, = &(x,) we get that

n—0Q

{wntnenw C Qe and w, — w, so N, is dense in B.

2. SOME TOPOLOGICAL PROPERTIES PRESERVED BY NEARNESS
BETWEEN OPERATORS

Let 2V be a set and B a Banach space normed with || ||. Let A, B be operators
between U and B.

Lemma 2.1. If A is near B then
A(ry) = A(xe) if and only if B(xy) = B(xy), Yoy, € Y.

Proof. Let B(x;) = B(xrs). Then from hypothesis of vicinity between A and
B (sce definition (0.1)), we get

lao[A(rr) = A(e2)]l] = [|B(x1) = B(aa) —a[A(v) — A(e2)]ll < K||B(zy) = B(aw)|| = 0,
hence A(wy) = A(xz). Conversely, if A(x;) = A(ry) then
1B(e1) = Baa)l = I1B(a1) = Blaz) — alA(n1) = Al < K1 B(x1) — Bl

from which [|B(xy) — B(a2)|[(1 — ) < 0, hence B(ry) = B(ry) because k € (0.1).
O
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Consequently, from Lemma 2.1 we obtain the following corollary:

Corollary 2.1. If A is near B, then A is injective if and only if B is injective.
Now we define ®: B(Y) — A(X) as follows:

(2.1) Yy € B(X) weset ®(y) = A(x) with x € B™(y).

® is well defined by (2.1) because it does not depend of the choice of x € B~ 1(y).

In fact Vi, 22 € B~!(y) one has B(x1) = B(a). so that by Lemma 2.1 it follows
that A(z,) = A(xz).

The map @, defined by (2.1), can be described cquivalently as follows:

(2.2) ®(y) = AB~'(y)  Vye B(\).

Lemma 2.2. A is near B if and only if ® is necar to Ip.
Proof. Lety,y2 € B(\X') and x1,x2 € X be such that B(x)) = y;. B(xa) = ya.
We have
lye = y2 — a[@(y1) — 2(y2)]l
= ||B(z1) = B(xs) ~ o[AB~ ! (y1) — AB™! ()]l
= ||B(x1) - B(x2) — afA (11) = Al < (by (0.1))
< K| B(xy) — B(x2)|| = kllys — vl

Then @ is near Ip. Conversely, if ® is near I we obtain the following estimate:
| B(z1) = B(22) — afA(z1) — A(z2)]|l
= ||B(x1) = B(x2) — a[AB™' (1) — AB~ (w2)]ll
=lyr — y2 — a[®(y1) — (v2)]ll
< Ky = y2|l = k|| B(xr) — Bla)]|.
Then A is near B. O
Theorem 2.1. Let A be near B.

i) If B(X) is open in B then A(X) is open in B.
ii) If B(X') is dense in B then A(X') is dense in I5.

Proof. We set
®(y) = AB'(y), Vye B(\),
Ql :B(/Y),
= A(X).
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We observe that 2, = ®(02)) and that, by virtue of Lemma 2.2, ® is near I,
because A is near B by the hypothesis. It follows that ® satisfies the assumptions
of Theorems 1.1 and 1.2.

Then we obtain the assertion of 1), provided Q; is open in B by virtue of Theo-
rem 1.1. while we obtain the assertion of ii) provided §; is dense in B by virtue of
Theorem 1.2. 0

3. ON THE EXISTENCE OF A SOLUTION OF A NON LINEAR ELLIPTIC SYSTEM

In this part we shall give an example of application to elliptic systems of the
topological properties we proved in the previous section, that is the open range
property (Theorem 2.1 (i)).

Let 2 be a bounded convex open set in R, with C? boundary. Let z € Q, u € R",
N2>1,¢= {fij}i,j:l,m,m &j € RN for ,)=1,...,n.

n
Let a(z,u, H(u)) = 3, Aij(x,u)D;ju, with A;;(z,u) an N x N matrix, defined
ij=1
on Q x RV measurable in z, continuous in u, with the following properties:

Condition (A). There exist three positive constans a, v, 6, with v +§ < 1,

such that V¢ € RN

Zfii - Z Aij(x,0)&;
=1

i,j=1

Z i

i=1

(3.1) SEllnzn + 6

N

N
Vre Q3
There exists M > 0 such that:
”A” (l‘, ‘U,) - Aij (;1.‘, l,‘)”Nz g M”’lt - ’U“N,
(3.2) Vi,j=1,...,n, Ve € Q, Yu,v e RY.
Theorem 3.1. Let n < 3. If {Aij}ij=1...n satisfies (3.1) and (3.2) then there

exists a ¢ > 0 such that, for every f € L*(Q.RY) with I fllL2(e.rv) < o, the following
system has a unique solution

u € H2N H(Q, RN),
> Aij(z,u)Diju = f(x) on Q.

,j=1

(3.3)

31t is known that if the operator a(x,0, H(u)) satisfies Condition (A) then it verifies
the following ellipticity condition: 3v > 0 such that Z?J=1 Aidj(Aij(z,0)n | )N 2

UH/\“%HT)“%, VA € R, Vn € RV, Vz € R™. Moreover, Condition (A) is equivalent to the
Cordes condition when the operator is linear, cf. [C4].
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We prove the theorem by using of Theorem 2.1. by sctting

X, ={uec H*nHYQRN): |jull;2 < o}t
B = L*(Q.RN),

=Y Aij(2,0)Diju,

ii=1
B(u) = Au.
C(u) = Z Aij(x,u)Djju.
ij=1

Before passing to the proof proper we state the following lemmas.
Lemma 3.1. A is near B (as operators between .\, and B. Vo > 0).
Lemma 3.2. B(.\,) is open in B, Yo > 0.

Lemma 3.3. C is near A (as an operator between X, and B, Vo < & =
Eﬁ:—iﬁ where ¢, is Sobolev’s constant, ¢, is such that |Jullg2 < eaf] Aull; ..
Yu € H?> N HL(Q,RY).)

Proof of Theorem 3.1. If follows from Lemmas 3.1 and 3.2, that A is near B
and B(Y,) is open in B3, Vo > 0. Therefore, by Theorem 2.1 (i), we also obtain that
A(X,) is open in B, Vo > 0. NMoreover, by Lemma 3.3, (" is near A (as an operator
between X, and B, Vo < ) and so C(X,) is open in B. Vo < &, by Theorem 2.1(i).
Consequently, we observe that ('(0) = 0 and so we have Yo < 5 35(0,0) C L2(Q.R™)
such that Vf € S(0, o) there exists a unique’® u e A, such that C(u) = f, that there

exists a unique « € H' N HZ (2. RY) such that Z Aijlrou)Diju= f(x), r€e Q. O

i,j=1
Now we shall prove the above lemmas.

Proof of Lemma 3.1. It is not difficult to prove that B: X, — B. Moreover.
A: X, = B because (3.1) implics

[l Aull < /qui%womwdw—/mmwl
i,j=1
2
<—2r iju (11+——(H-l /HA“H dur,
(43

ij=1

*In particular, it is clear that v € O, RYY and |lul|l~ < cillullzz by virtue of the
Sobolev immersion theorem, since n < 3.
> Uniqueness of the solution follows from the injectivity of .\ and B and from Corollary 2.1.
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Yu € H* U H}(Q,RY), in particular Vu € X,. Finally it is easy to prove that A is
near B. as an operator between H2N H} (2, RY) and B, and consequently also as an
operator between X, and B, because =1 Aij(x,0)&;; satisfies condition 3.1 O

Prootf of Lemma 3.2. We fix a ¢ € B(X,) and prove that there exists a 7 > 0
such that, Vg € L2(Q,RY) s ) < 7, there esixts
a v €.\, such that Av = ¢g. Let v € H?> N Hé(Q, RN) and w € X, be such that
Av = g and Aw = ¢. The following estimates hold:

ol e < llw = vlluz + llwllnz < |A(w = v)|| L2 + o]l g2
= lle = gllez + llwlln: <7+ lwlinz,
and hence v € X, for every 7 > 0 such that 7 + |[w||y2 < 0. O
Proof of Lemma 3.3. For every u,v € X, the following estimates hold:
(3.5)
|4(u) = Aw) = [C(u) = C()]I1%

/ Z Ai;(2,0)D;5(u — v)

7,j=1
n 2
— [ Z Ajj(x,u)Diju — A,‘j(.l‘,?’)Dij'U] du
ij=1 N
< / <' Z Aij(x,0)Djj(u —v) — Z Ajj(e,u)Dij(u — v)
1,j=1 i,j=1 N
n 2
+ l Z [:Aij (r,u) — Ay (a, v)] Dijv ) dw
ij=1 N

2

(by hypothesis (3.2))
+ lu —o||% Z D;;v

< 24\1")/ <|11||N >(.r
ij=1 N

<27 (. [ S 1Dy — ol de = ol [ 5 D50l )

Z Di;(u —wv)

=1

1,5=1 z;—l
< 200%ne, (uun‘i,: [ S 10— ) e + e ol [ 5 uD,,u) I ).
h 1,j=1 S J=1

n

“Since [, A —v) —a 3. Aij (e, 0)Djj (0 — 1)”‘/2\ de < (7 + 8)? Jo 1A (u — l')”f\ du,
i,j=1
cf. [Co] or [Cy].
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From the above estimates and considering that
llv = vll2 < c2ll Alw = 0)]]2
we obtain that VYu,v € X

(3.6) [A(u) — A(v) = [C(u) = C()]||E < 4m*ncicio? /Q 1A —v)||% da.

The second member of (3.6) verifies the inequality”

o2
(37 /“A u—"v “Ndl\[—i_—_’y—}—T]z ,1 ., 0 U(U—’U) d&lv.
From (3.6) and (3.7) we conclude
n 2
1A() = A(v) = [Cu) = CO)IE = k2 / S 450,00 Diy(u—v)|| da
Q

ij=1

= k2l A(u) = Aol

If k, = 2MC1C20'\/—1 < 1, this estimate implies the assertion of the lemma.

a

(v+96)

4. ON PERIODIC SOLUTIONS OF A NON LINEAR ABSTRACT DIFFERENTIAL
EQUATION OF SECOND ORDER IN A HILBERT SPACE

Let V', H be real and separable Hilbert spaces with " C H, V dense in H, with a
continuous immersion map, and |Ju||g < ci]jullv. We denote respectively by V* and
H* the dual spaces of V and H. We identify H with its dual H*, then V. C H C 17*.
We denote by (,) duality between V and V*, while (,)i, (,)u, || |lv and || ||z are
respectively the scalar products and norms in V and H.

Let A: V — V* be a linear and symmetric operator with the property

4.1) Jv >0 such that (Av,v) > v|v||} Yv e V.
\

L3.(X) is the space of measurable and T-periodic functions that are defined on R
with values in the Hilbert space X, normed by

T 1/2
llellz.x) = (/ llu(®)I% dt) :
0

" This follows in the usual way from Lemma (3.1), see for example [Cy].
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H7(X) is the space of functions between R and X whose distribution derivatives up
to the order m belong to L3.(X) normed by

lluall 22z ( (/Tf:npfu(t |]th) /2.

7=0

In this section we shall use Theorem 2.1(ii) to solve the following problem.

Problem 4.1. Let g € L4(H) be given. We look for u € L4(V) N H}.(H) such
that®

(4.2) A+u" + F(t,u') +cu=g,

where F(t,u) is a map between R x H and H, measurable in ¢, continuous in « and
satisfying the following hypotheses:

(4.3) t— F(t,u) is T-periodic Yu € H.

(4.4) t— F(t,0) € L3(H).

(4.5)  There exist real numbers a > 0, k ¢ (0,1), a # 0 such that:
la(uy —uz) — a[F(t,u;) = F(t,u)|lln < El|la(ny —u2)||n, Yur,us € H,
vt € R.

In order to solve this problem, let us first observe that, using the above results
concerning near operators, for the equation

(4.6) Au(t) + u”(t) + a u'(t) + cu(t) = g(t), teR,
the following theorems hold:

Theorem 4.1. Let ¢ # —\,,,° Vn € N and a # 0. If g € L%(H) then equation
(4.6) has a unique solution u € L4(V) N HL(H).'°

Theorem 4.2. Letc# -\, Vn€Nanda#0. Ifg € HL.(H), then the solution
u of the equation (4.6) belongs to L%(Dom A) N H2(H), where Dom A = {v € V:
Av e H}.

 That is the same as to say that Vo € L%(V) N HL(H) fOT (Au, ) — (', 0" )y +

(F(uu'), @)1 + c(u, ) dt = [ (9,0)pr dt.
® {An}nen C RY is the eigenvector sequence of A.

10y € L3 (V)NHA(H) is a solution of (2.2) if Ve € L3(V)NHA(H), [ (Au, @) — (u', ')+
a(u', @) g +c (u,9) g dt = [y (g,¢)dt
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The proof of these theorems can be found in [HL] (Theorem (4.2)(1) and (7.3)(1).
respectively).

We use the notation of §2 and set:

Au=Au+u" + F(t,u') + cu.
Bu=a(Au+u")+au + acu.
X ={u:ue L3(DomA) N Hj(H)},
B=L7(H).

We first state some lemmas to he used for solving Problem 4.1.

Lemma 4.1. Vu € V. the following estimate Lolds:

T T
/ la(Au + ") + au' + acul3; dt > o* / [led||3 dt.
0 Jo

Proof. Vu € A we obtain the estimate
T B T 5 B B
/ la(Au + ") + au' + acul|}; dt > / la(Au+ u" + cu) |3 + a®||u’||3; dt.
0 0

because, as a consequence of T-periodicity of u. the following equations hold:

T T T
/ (Au,u'y dt = 0; / (u",u") g dt = 0: / (u,u')y dt =0,
0 Jo

J0

Lemma 4.2. A is ncar B.

Proof. We shall first prove that A maps .U into B. As a consequence of (4.3).
Au is T-periodic Yu € .\'. Movcover, Au € L%.(IT) because F(t.u') € L3(H). and
from (4.4), (4.5) we obtain

T T
/ | F(t ' ()1l dr<2/ (|F(t, /() — F(.0)[13 + [|[F(t,0)F; dt
0 0
kv T . Y
<2(1Hh) / ()11, + [E(E0) 13 dt.
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Finally we prove that A is near B. Vu,v € X' we have

IB() = B(v) = alA(u) = AW
- / oA — o) + ala” — ") + afu’ ) + actu — )
— alA(u = v) = (" = 0") + F(t ') = F(t,') + cu - )|} dt
. /T la(u’ = ') = alF @) = PO dt

(by means of (4.5))

T
<k / lla(u' —o")||3, dt
Jo

(by means of Lemma 4.1)

"
< A? / lvA(u — o) + a(u” = ") + a(u' —v") + ac(u — v)||3 dt
Jo

= k*||B(u) = B(v)[l7;-

Lemma 4.3. B(XX) is dense in B.

Proof. We observe that HL(H) is dense in L%.(H) and that HL(H) C B(.Y).
In fact. from Theorem 4.2 we get that for every g € HR(H) there exists a unique
u € X' such that B(u) = g. a

Lemma 4.4. A(\V) is dense in B = L3.(H).

Proof. The result follows from Lemmas 4.2, 4.3 and Theorem 2.1 (ii). O

Theorem 4.3. If F verifies hypotheses (4.3), (4.4), (4.5) and ¢ > —v/c, then
Problem (4.1) has a unique solution u € L3.(V) N H}.(H).

Proof. Let g € L3(H). We know, by virtue of Lemma 4.4, that there exists
a sequence {uy, bpen C A such that A(w,) — g in L3(H). Then {A(u,)}ner is a
Cauchy sequence in L%.(H) and it follows that {B(u,,)}.er; is a Cauchy sequence in
L3-(H), too.

In fact, by Lemma 4.2, B is near 4 and hence we get the following estimate:
~ Q
(1‘) ”B(”n,)—B(“m)“” < '1—_Z“A(“n)_A('“‘m)“H»
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This together with Lemma 4.1 implies that {u), },en is a Cauchy sequence in L2.(H).
Let gn,gm € L2(H) be such that B(um) = g and B(u,) = g,. From the equation

Aun = um) + (u, = w,) + a(u;, — ur,) + c(tn = Um) = gn — gm,

multiplying by (un, — un) and integrating between 0 and T', we obtain

T
(4.8) / (A(Un = Um), Un — Um) + cl[tn — um||F; dt
0

T
- / (G~ Grar e — )t + [ty — a1 .

Consequently

T T
v C1

(4.9) (C + C—) / ”Un - Um“%—l dt < / ”gn - gm“i] dt
1 0 0

v+ cey

T
+o / !, — w13 dt.
0

From (4.9), using (4.7) and the fact that {u},}.en is a Cauchy sequence in L%(H),
we get that {u,}nen is a Cauchy sequence in L3(H), and then it is so in H}(H),
too: let u € HL(H) be its limit. From (4.8) and (4.9) it follows that u,, — u in
L2(V). Finally we observe that u € LZ(V) N HL(H) and that it is a weak solution
of the problem (4.1), that is, Vo € L3(V) N HL(H),"!

(9,9)5 = lim (A(un),¢)s

n—oo
T

= lim (A, @) — (U, @V + (F(t.u)), @) n + c(un, @) g dt

n—o0 0

T
/ (Au, ) = (W', ") + (F(tu').0) i + c(u, @) dt.
0

11 1n fact this follows from hypothesis (4.3):

T > T
k 1\2 .
[ R = P de < (FE2) 0 [ ol - o'l e
0 «@ J0
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Remark 4.1. Let Q be a bounded open set in R™, let v(z, t,p) be a map defined
between 2 x R x R and R with the following properties:

(4.5)(a) t— ~v(x,t,p) is T-periodic Vp € R, a.e. in Q.

45)(b) t—=y(z,t,0) € LE[0,T] x Q)

(4.5)(c) Im, M >0 such that

< v(z,t,p) — (2,1, q)
pP—q

<M, vViteR,Vp,ge Rp#gq, ae. in(.

We shall consider the following problem:

{ u € L7 (Hg (@) N HE(L2(2)),

(4.5)(d) 02

ou
Au — ﬁu + r’(I,t, a) = g(.’l?,t)

where g: @ x R = R is T-periodic in ¢ a.e. in Q, with g € L2([0,T] x ), and A is
the Laplace operator.

The problem (4.5)(d), which was studied in §2 of [P;], is a particular case of
Problem (4.1). In fact, we set H = L?(Q), V = H}(R) with the usual norms,
moreover Au = —Au, F(t,u) = v(z,t,u), and we observe that hypothesis (4.5) is
satisfied by virtue of (4.5)(c) witha=1,a= {fz, k=1~ %2; because the following
estimates hold Yuy, us € L2(Q) (cf. [C3)):

”ul — Uz — ’Y(m»tvul) - 7(‘177 tv u?)]“%‘[

m
el
= /Q lup —ug — —-['y T, t,uy) —y(z, t,uz)])? do
= /Q {(ul —up)? + %['y(z,t,ul) - 7(x,t,u2)]2

- %(ul —u2)[y(x, t,u) — V(x’t’W)]} dz

(by (4.5)(c))

(1 - i /(u1 — ug)*dz.

We conclude the study of the equation (4.2) with the following results concerning
regularity, uniqueness and continuous dependence on data.
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Theorem 4.4. Under the hypotheses of Theorem 4.3. if u € L%(V) N H%(H) Is
a T-periodic solution of the equation (4.2) then u € C*(R. V)N CYR, H).

Proof. Let us consider the following test functions:
(4.10) p(t) = 0i()wi(t),  i=1.2.

where v; € L*(0,7,V) N H'(0.T,H) are such that ¢ (T) = 0 and 4(0) = 0:
U; € C%([0,T), R) are such that 0 < J;(t) < 1, i = 1.2. Moreover

di(t)=0 if te[0.7/4], Ua(t) =1 it tel0.7/2],
Ii(t) =1 if te[T/2.7], Da(t) =0 if te[3/47T.7).

If we write the equation (4.2) in the weak form on [0. 7] and choose test functions
as in (4.10), we obtain

oL

T
(4.11) /0 (AWiu), 0i(1)) = (W), i) dt = /” (@i (), 4i(t)) n dt.

Vo, € L*(0,T, V)N HY0,T, H) such that ¥, (T) = 0 and ©2(0) = 0, where we set
D;(t) =V:(t)(g — cu— F(t,u')) + 20 + 9Yu. From (4.11). setting v;(t) = 0;(¢)u(t).
it follows that v; € L2(0,T.V )N HY(0,T, H) for i = 1.2. Morcover, vy, vy solve the
following Cauchy problems:

Aoy + o =0 (¢), Avy + 0 = Do(t),
(412) (&1 (0) = 0. l!Q(T) = ().
v1(0) = 0. vh(T') = 0.

Hence, from the assumptions on g and F, it follows that &; € L*(0,T.H): then
we obtain, owing to the results of [BA] (§4) applied to problem (4.12), that v; €
c([0, 7, V)nCY[0,T),H), i = 1,2. Then u € CO[I/+. T V)N CYT/LT.H) and
u € C°([0,3/4T),V) N C'([0.3/4T), H), and the asscrtion of the theorem is proved.

O

Theorem 4.5. Let the hyvpotheses of Theorem 4.3 concerning A and F he satis-
fied, let gy, g2 € L3.(H) be given and let respectively uy . uy € COURAN)YNCHE.H)
be the T-periodic solution of the equation (4.2). We have the following estimates:

T ) T
@[ =l e [ -l
T I 4
(4.14) / iy = ws|li At < eo(vyeier,a,a0k) / oy = 2|3 dt.
JO 0
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Proof. u; —uy € CO(R, V)N CHR, H) satisfies the equation
(4.15)  A(up —u2) + (uy —u2)" + ¢ (uy —u2) = g1 — g2 — [F(t,u1) — F(t,up)).

If we make use of the classical energy equality on [0, T] for the equation (4.5) (scc

for example [BA] or [LM]), and if w; — uy is T-periodic we obtain

» -
(4.16) / (F(t,u}) — F(t,uh), a(u) —uh)) gy dt = / (91 — g2, a(uy —uy)) g dt.
JO JO

The following estimate can be obtained by a standard procedure from hypothesis
(4.5) on F (sce for example [C3] §3)

-k

T T
1 , .
(4.17) / (F(t,uy) — F(t,uh),aluy —uy)) g dt > a’ / |} — ub||3; dt.
Jo Jo

Now (4.16) and (4.17) imply (4.13).
To prove (4.14) we take a weak form of (4.15) with u; — us as a test function

obtaining the equation

T
(1.13) / (A(ur — ug),uy — us) + clluy — ual3
0
[ B
= / (91 = gosun = wn) i + Jluf — wb||F; dt
0

T
- / (F(t,u)) — F(t,uy), (uy — ug))p dt.

0

From this equality, taking into account (4.5) and (4.13), we obtain: Vo € (0.1]

T T
v / luy — wall3 dt + (¢ = |c|o) / [luy — wy|3; dt
Jo Jo
2

1 o 14+Ak\2 1 & .,
< ( . : ) — gl dt.
QI(-IO- + a2(1 — ]‘)2 + (1 _ ]‘.) 2|(,|0, ‘/() H.(/l g21171 ¢

This implies (4.14).
From (4.13) and (4.14) we obtain the following corollary: a

Corollary 4.1. Under the hypotheses of Theorem 4.3, there exists a unique T-
periodic solution u € C°(R, V)N CY(R, H) of cquation (4.2).
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