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MATEMATICKO-FYZIKALNY CASOPIS SAV, 16, 2. 1666

CYCLES IN A COMPLETE GRAPH ORIENTED
IN E QUILIBRIUM

ANTON KOTZILG, Bratis ava

Throughout this paper we shall call a complete graph with w vertices.
oriented i equilibrium, a o(m)-graph. (According to [1] a graph is oriented
in cquilibrium i for ecach of its vertices the following holds: the number of
cdges outgoing from the vertex » is equal to the number of edges incoming
at the vertex ¢)) If we use the terminology introduced by Berge in |21,
a o(m)-craph is a complete antisymincetrie grabh whercin cach vertex has
an cqual inward demi-degree and outward demidegree. Since according to
definition a o(m)-graph is complete and oriented in equilibriwm, it must be

a regular graph of an even degree and thus we have m -~ 1 (mod 2).
Remark I It would seem that with 5 given. all o(2n - 1)-graphs ave
isomorphte. This is the case onlyv with » 1 and » = 2. Fig. 1 represents

Kig. 1.

three different Kinds of o(7)-graphs. We can caslv prove that any o(7)-graph
i~ isororphic with exactly one of these three graphs. The answer to the follow-
ing problem is not known to the author of the present paper: How many

different mutually non-isomorphic o(2n | 1)-graphs do there exist for each
given - 3!
Let & be any vertex of a ¢(2i -+ 1)-graph (. We shall use the symbol ()

(or O(e)) for denoting the sets ot those vertices from ¢f from which in the
araph (7 the edge is incoming at the vertex . (or outgoing from it, respectively):
Ly ) or Q) resp. we shall denote the number of its clements. Tt follows



divectly from the definition of a o(2n + 1)-graph and the sets P(x). Q(x) that
for any vertex x we have: |P(r)] = 1Q(r)] = n.

Theorem 1. Let (7 be any o(2n - 1)-graph and b aniy of its edges. o the graph
there exists at least one 3-cycle containing the edge h.

Proof. Let the edge & in (7 be oriented from its vertex o into its vertex .
Let W be the set of all vertices of ¢/ not belonging into ju, »}. We obviously
have Pu) < W; Q(v) << W and since [Wi =2n — 1. -Pu) = n, Q) —n,
then necessarily P(w) N Q(v) / 0.

Then, however, there is at least one vertex w e 117 belonging both to P(u)
and @Q(v). The vertices w, v, w together with the edges joining these vertices
form the 3-cvele of ¢ containing h. This proves the theorem.

Theorem 2. Lot v be any vertex of a o(2n + Vy-graph (. Tlie wwiiber of Aifferent

) o1
2 ondoe of [ Y y s exietl t .
3-cycles of graph (1. containing v, is e /(flj;( 2 )

Proof. Let us denote by 2 (or @ resp.) the complete subaraph of the graph 4
containing all vertices and only vertices of the set P(») (or the set Q). resp.)
and all the edges joining these vertices. Let i be any vertex of the graph X
(where X e {2, P,Q}). Let us denote by oy(= w) the number of edges in
X incoming at w and by ay(iwe =) the number of edges in X outgoing from .
Since [P@) = Q) - n. we have: the number of edges of both 2 and )
. (n,‘
i () -

2
/

Whenee it follows:

> op(a )

xel

~ ool ) ‘_\_, ao(r =) = N gl ) = ( i ) .

pa - )
el

aeQ) re@) =
Jesides we have: og(r ) =oe(->wx) =» for any vertex » =6 Thus
it follows that:
Z ae(-- ) =
el
and since there is no edge oriented from the vertex » into a vertex of (1),
we necessarily have: the number of edges of ¢ oriented from some vertex

- . . N 1] . .
of Q(v) at a vertex of P(v), is n? - ()) = (' _) ' ) . Each of these edees and

only such an edge together with v and the two edges incident at it form a 3-cvele
containing ». This proves the theorem.

The subsequent corollary follows directly from Theorem 2:

Corollary Y. [n any o(2n -+ V-graph the wuwmber of dijferent 3-cycles is
1

(210 + Ly(n + 1)n.



i
Remark 20 We obtain the vesult (20 + 1) (n -+ D)n so that the number

N ‘) i<

. . n
of the 3-cveles containing the chosen vertex, .e. the number(
multiplied by the number of vertices and divided by three. Berge in [2],
p. 145, Theorem 3 gives a more general formula for computing the number
of 3-cveles no orientation in equilibrium is required. In the special case of the
o(2n | I)-graph its formula acquires the form given in Corollary 1.

)

Remark 3. While the number of 3-cyeles in an o(2n 4 1)-graph is not
dependent with » given — on the choice of the o(2n 4~ 1)-graph. this does

o. 1 the number

not hold for 4-cveles. Thus in the grapns (44, /2, G5 given in Fig
of 4-cveles is 23,28, 21, though cach of these three graphs is a o(7)-graph.

Let (7 be any evele of the o(2n -+ 1)-graph (. By the symboi S((*) denote
the set of vertices defined as follows: the vertex @ e (4 belongs to S(C') if ant
only if it does not belong to €' and when in the graph ¢/ there exist two such
cdees that one of them is oriented from a vertex of (" into @ and the other
from @ into a vertex of ('. By the svmbol P(C') (or Q(("). resp.). denote the
st of the vertices from ¢/ that do not belong to " and have the property:
any edge from (7 joining a vertex from P(C) (or a vertex from Q(C'), resp.)
with the vertex of (s incoming at (or outgoing from) the vertex of (.

Lemma L. Let (" be any r-cycle of « o(2n -+ 1)-graph (/ wheye < 2n ¢+ 1
and let e be any vertex from S(C). In the graph G there is at least one (r - 1)-
cycle " containing both the vertex w and all vertices from (.

Proof. According to the definition of S(€)) there is in (/ an edge (denote
it by A) oriented from a vertex v; of (" into w. Denote the other vertices of ¢
Dy rmaeg. .. vy in the order in which
we pass through them by proceeding
along the evele (Min the direction of the 0e® IS
orientation of its edges, starting from vy . .’
From the definition of S(C) it also follows .
that among the vertices vo, v3. ..... 0y .
there exists such a vertex that the edee
joining it with o is outgoing from .
Let oy be the one from among such ver-

tices that has with the given notation
the smallest index. Then we necessa- °
rilv: have: there exists an edge of (¢ . o’

Fig. 2.



oriented from vy | into w and an edge 7 of (7 oriented from «w into e Iin ¢
we replace the edge oriented from oy into ¢ by the edges fog and by the

vertex o we get a (1 4 D)-cvele (7 of (7 having the required properties (sce
Ya. 2 1e edges from (7 are accentuated).
Ihg. 2 tl lges from ,

Drefinition. We shall say that the cycle C7 from Lennma U arose by o j-extewsion
of the cycle O through the vertex .

Lemma 2. Lel (" be any r-cycle of «a o(2n - V-graph where v 20 anid ot

ey be any vertex frome Colet e be iy verter from the set P(CY O QY. Tn (7 Ther
is at least oie (r - 2)-cyele € contaliuing 1w and all vertices from C and iy (7
there exists « (r b D)-cyele CF containing w and all certices from (' cpcepl T
verter vy

Proof. Denote the vertices of the evele ¢ - others than the vertex . by
the symbols oo where 7 (12000007 - T} so that we proceed along the evele
in the direction of the orientation of its edges through its vertices in the
following order: ey, oo, tr1, v Lot Ay be the edge from ¢ joining the
vertices e and v According to Theorem 1 there is in (7 at least one 3-cyvele
containing the edge ;. Let @ be the third vertex of such a evele henee let o
be the vertex for which the following holds: w - w7 ey,

According to the assumption « Dbelongs to () o Q). Al edaes
Iy cho oo hy therefore are incoming at the vertex e or they are outgoing
from the vertex . Hence for all i e {1,200 7} we have: ay does not belong
to (. If e belongs to P(C') then the sequence w.o vy v oo Ppop.edy o UIves
the order in which we pass through the vertices of a (» -+ 2)-cvele (7 it we
proceed along it in the direction of the orientation of its edges, The sequence
0o . vr 1, 21 determines in the given way a (» - 1)-cvele (% The
eveles (70 C% obviously have the required properties. It » belongs to Q09
then the required eyele €7 is given by the sequence w.wy, ey ... 0 and the
cvele (F by the sequence w. oy, v, ... 0 (see Fig. 3). Henee the eveles €7
and C* with the required properties exist. Q.19.D.

g —

X r—q

we Q(C)
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Definition. We say that the cycle ¢ from Lemma 2 arose from the cyele (°
by « u-extension through the vertex w. and we say that the cycle C* from the same
lewima arose from C through a v-cxtension through the vertex w with « simultancons
replacement of the vertex vy,

Theorem 8. Let voy be any two vertices of a o(2n -+ V)-graph ¢ and let L be
awy wamber from the set (3.4, ... 20 -+ V). In G there s at least one k-cycle
containing both wvertices v and y.

Proof. According to Theorem 1 there is in (f a 3-cycle containing an edge

joining the vertices v y. Hence for £ 3 the theorem holds. Let us prove
the following: If the theorem holds for & r (where » is a natural number.
3 r0 20), then it holds also for £ - ;1. Suppose that in (7 there is an

r-evele (U containing the vertices v, y. 1 S((") is a non-empty set, then. according
to Lemma |owe shall obtain by a Z-extension of the cyvele (F through any its
vertex an (1 0 D-evele containing the vertices ., y. Let S(¢) = € and w be
any vertex of the set P(C) U Q(C). Since » 2= 2, we have in (" a vertex (denote
it by ) for which a2 o 54 i According to Lemma 2 we get by a v-extension
of the evele ¢ through the vertex w with a replacement of the vertex vy an
(v De-evele (" containing the vertices x, y. Hence if the theorem holds for
I r. it holds also for kb - »r 1 << 20 -- 1. Thus the theorem holds for
k3. hence it also holds for all ke (3.4, ... 20 - 1},

The following corollary is a direct consequence of Theorem 2:

Covollary 2. Kach o(2n —+ Dy-graph wih aiy wetwral v contoins a Haoniltonian
cycle.

Lemma 3. Let roncs be natural wwmbers. where 2 <2 s <2 p <2 20 and et
Croton ... ve bo mutually different vertices of « (20 + V)-graph (. If there
s i A r-cyele contuining all vertices of the set I

= {v1, v2. ..... s} then for
cach k= 2 bor 20000 2p b 1 there s in G also a k-cycle containing all
rertices from V.

Proof. Let there be in graph (' a p-cycle (g containing all vertices of the
sct 1. The evele Cg may be successively extended by A-extensions and v-exten-
sions through suitably chosen vertices into the eveles . Col o) (00 .
where Ciis the (p + 7)-cycle containing all vertices from V. 'This can be done
so that in case of S((5) =0 at the y-extension of cycle )i into cycle Oy,
through a certain vertex with the replacement of the vertex o, from
we must chose for o where (» = p - t) always such a vertex from C; that
does not belong to V. Since such a cyele always exists with » - ¢ > s, the
lemma evidently holds.

emark 4. In Fig. 4 we have a o(9)-graph with the following property:
In the graph there does not exist a 4-cyele containing the vertices u, v, w though
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there is in the same graph a 3-cyvele with such vertices. Whenee it follows that
the condition s = » must not be omitted from Lemma 3.

Fig. 4.
Lemma 4. Let n, p be natwral numbers and let C'he the 2p-cyele of the o(2:0 - -
graph C contarning all vertices of a set V. then for any b = 2p 1. 2p = 2. ..

2n -+ 1 there s in (I @ k-cycle containing all vertices of the set ).

Proof. The cycle (' contains according to the assumption an even number
of vertices, thercfore necessarily S(C') + 6 (in the reverse case we would have
[P(CY] = QC) = 12n + 1 —2p), which is impossible as () must he
an integer). But then it is possible to extend the cyele (" by a Z-extension
through a vertex from S(C') into a (2p -+ 1)-cveie containing all vertices from 1.
If we put r =2p -+ 1, s = |Vi, then s << and the validity of Lemma 5
follows from Lemma 3.

Remark 5. The difference between Lemma 3 and Lemma 4 is that in the
case of an even s we may have »r = s, henee in the case of an even 'V T” may
be the set of all vertices of the cycle (.

Lemma 5. Let (" be any (2p -+ 1)-cycle of a o(2n = V)-graph ¢ (p -2 ) azd
let V be the set of all vertices of the cycle C. Let k be any nwmber from the st
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2p ot B02p f 4o 20 b VY then there evists in graph G such a k-cycle
that contains all vertices from V.

Proof. 1t S((") is a non-empty sct. then the cyvele ¢f may be extended by
a Z-extension through a vertex of S(€)) into a (20 - 2)-cvele €7 which, apart
from all vertices of the set V' contains only one other vertex from S(C). If'rom
the existence of the evele (7 there follows according to Lemma 3 the existence
of a k-cyvele containing all vertices of the set Vo oalso for all ke [2p 4- 3.
2p 0 oo 2 4 L

If.S(") - € then there is in ¢fat least one vertex w belonging to 2(C) n Q(C')
and we get by a up-extension of the cycle ¢ through the vertex e according
to Lemma 2 a (2p -+ 3)-cycle (" containing alt vertices from V.

The validity of Lemma 5 then i« evident from Lemma 3.

Lemma 6. Let (! be a o(2n - 1)-graph and let 'V be the set of certain of its
rovertices, where 2 <2 r << 2n 4 1. Lel p be any natwral wumber for which we
have V< p << v If there is in (f such a cycle (" that contains apart from certain
poeerlices from Voat least one vertex not belonging to 'V, then there is in (f also
a cycle Cconlaining at least p -+ 1 vertices froni Voand besides at least one veriex
nol belonging lo V.

Proof. Let (" be a cycle containing p vertices from V' and at most one
vertex not belonging to V. We shall consider the following three possible

Canes

LIPSy # ¢

20 P S(C) = €, ¢ containing only vertices from 1.

3.1 N SO) (r, (' containing one vertex — denote it by v, -~ not
belonging to 1.

In the first case we get a A-extension of the c¢vele € through any vertex
from "N N(") a cvele with the required properties: in the second case we
get such a eyele by a g-extension of the cveie ¢ through any vertex from the
set i/ P (P n@Q(C)) and in the third case
evele ¢ through a vertex from 37 with the replacement of the vertex vy .

by a r-extension of the

This proves the lemma.

Theovem 4. Let (L be any o(Zn —+ V)-graph and let 'V be the set of certain i ver-
Lices of (2 <2 <2 20 A 1) I f there is nol tn G an r-cycle containing all vertices
Jrom Vo thew there exists in G an (v - 1)-cycle contavning all vertices from V.

Proof. Let there not be in (f an r-cycle containing all vertices from V and
fetw - gy beany vertices from V. According to Theorem 1 there is in ¢f a 3-cycle
(" containing the vertices @, y. Hence there is in ¢ a eycle (" which, with the
exception of certain p vertices from V(p e {20 31) contains at most one vertex
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not belonging to V. But then. according to Lemma 60 in case when p

S
there is in (¢ a cycle (' containing at least p -

I vertices from 17 and at most
one vertex not belonging to V. According to Lemma 6 the cvele €7 can be
successively extended through the vertices from 17 so that the number of
vertices of the cyele not helonging to Vonever exceeds one. After a tinite
number of steps we shall find such a cyele that contains all vertices from I
and besides at most one vertex not belonging to 1.

Such evele according
to the assumption must be an (r 4 I)-cvele. The Lemma follows,

The following corollary is a direct consequence of Lemma |,

Corollary 3. Let (7 be iy oi2n

b D-graph and let Vobe the set of cortain roror-
tices from ( where 2 <2

< 2n. Af there s ot in O an (r o Dy-cyele containing
all vertices from V- then there is in (f an r-cycle containing «ll rertices from V

Theorem 5. Let n, r be natwrad wumbers 2 -0y 20 50 = 1 and et (7 D
any o(Zn -t Y)-graph. Let R o o 2pcb Ly and LtV be any st
of r vertices from (. In (O there ts « cycle containing Wl certices from Vo cither
Jor «ll ke R, all for all ke R with the cxception of k— roor for ko= R oith the
cxception of k -y | 1.

Proof. If in ¢/ there are both an r-cycle and an (¢# ¢+ )-evele containing
all vertices from 1. then there is. according to Lemma 3 in (4 a b-evele con
taining all vertices from V for every Le R

t.
I there is in ( no (7 4+ D-evele containing all vertices from 17 then (see

Corollary 3) there is in (/an r-eveie containing all vertices from 17 and aceording
to Lemmas 4 and 5 there exists such a b-evele also for every £
ko 2n 4 1.

s 1.

Finally: I there is not in (7 an r-cyele containing all vertices from 170 then.
according to the theorem, there is in (7 an (r D-cvele containing all vertices
from 1. According to Lemma 3 such a evele exists for all A

k= IR owith one
exception only: & - . This proves the theovem.

REFERENCER

1] Kotzig A O rosmovdine orientorangeh konecwijele grafoch, Casop. pestov. mat, 8/

(1959), 31 45,

121 Bevae Co, The theory of graphs and dts applications. London  New York 1962,
Received March 6, T965.

KNeatedra wumericke] matematihy a matematichej Statistiky
Privodovedecke] fakulty
Univerzity Komenskcélo, Bratisliora

182
D=



		webmaster@dml.cz
	2012-07-31T15:48:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




