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DISCONNECTING SETS AND DECOMPOSITION THEORIES
MICHAEL C. GEMIGNANI
Purdue University-Indianapolis, Indianapolis, Indiana, U.S.A.

A subset A of a topological space X is said to be disconnecting if X — A is disconnected;
A 1s a minimal disconnecting subset of X if A is a disconnecting subset of X, but A does
not, properly contain a disconnecting subset of .X. The first three sections of this paper
deal with properties of disconnecting subsets. The fourth section abstracts from the
topological situation to define a decomposition theory; it is shown that a topology is
“naturally” associated with a decomposition theory, and decomposition theory with

a topology, but that a topology and its associated decomposition theory are not cquivalent
concepts.

I. Minimal disconnecting subsets of disconnccting sets

In certain topological spaces no disconnecting subsets contain a minimal disconnecting
subset.

Example 1. Let N be the set of natural numbers with the topology containing ¢
and all complements of finite sets. Since N is connected and any infinite subset of N is
homeomorphic to N, it follows that only finite subsets of N which contain at least two
points are disconnected. Therefore the only disconnecting subsets are non-empty opon
sets which fail to contain at least two points of N. But if U is such an openset andp € U,
then U — {p} is a proper subset of U which also disconnects N; therefore U contains
no minimal disconnecting subset.

The following theorem gives a partial answer to the question: When does a discon-
necting subset contain a minimal disconnecting subset ?

1

Proposition 1. If X s a locally connected space and A is a disconnecting subset of X
such that X — A has some component U whose frontier does not properly contain the frontier
of any component of X A, A is closed, and A° (the interior of A) is empty, then A
contains a minimal disconnecting subset.

Proof. Since 4 is closed and X is locally connccted, each component of X — 4 is
open; morcover, since A4° 0,

U {C1W | W is a component of X — 4} = X.
Let

K — {x € Fr U | some neighborhood of xr meets only C1U}.
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Then

X - (¥rU—K) (UUK)UExtU,

U v K is open and connected, and Ext U is open; therefore ¥r U — K disconnects \X.
‘We now show that Fr U — K is a minimal disconnecting subset.

Case 1. Ext U is connected. Suppose w € Fr U — K. If U U K U {w} isrclatively
opn in (X — (Fr U — K)) U {w}, then some neighborhood of w fails to meet Ext U,
which, in turn, implies w € K, a contradiction. On the other hand, if Ext U U {w} is
relatively open in (X — (Fr U — K)) U {w}, the some neighborhood of w fails to meet U;
heneo w ¢ Fr U, again a contradiction. Therefore Ext U U (U U K U {w}) is connected ;
henco ¥Fr U — K is a minimal disconnecting subset.

‘ase 2. Ext U is not connected. Let V be a component of Ext U; then 17 is open.
Therefore Fr V € Fr U — K < Fr U. This implies K ) since Fr V7 is not a proj cr
subset of ¥Fr U. Therefore Fr U = Fr V' for each component V of Ext U. This, in turn,
imphies that Fr U is a minimal disconnecting subset. Since U is open, ¥r U < A4.

The following example shows that a space can be homeomorphic to a compact, locally
connccted, connected subspace of R3, yet still fail to have the property that every dis
connecting subset contains a minimal disconnecting subset.

Example 2. Let
Xu —[0,1/n] X [0,1], n 1,2,3,...,

whe o each interval has its usual topology and cach X, has the product topology. Let Y
be the identification space formed by identifying the points of the form (v, 0) with the
same first coordinate in each X, and by identifying each point of the form (0, y) with (0, 0).
Then Y is compact, connected and locally connected, and is easily embedded in I23.
However, the subset {(z, 0) | 0 < x < 1/2} disconnects Y, but fails to contain a minimal
dis¢ nnecting subset.

By “glueing” [0, 1] onto Y by identifying 0 with (0, 0) in Y, we obtain a space n
which the subset {(x, 0) | 0 < x < 1/2} fails to satisfy the hypotheses of Proposition 1,
but which still contains the minimal disconnecting subset {(0, 0)}.

I1. Some properties of disconnecting subsets

In this section we investigate the following properties:

A. Every disconnccting subset contains a closed disconnecting subset.

B. Every disconnecting subset contains a minimal disconnecting subset.

(. Every minimal disconnecting subset is closed.

Proposition 2. Ior an arbitrary topological space X, the only tmplication which Iolds
betu een the properties A, B, and C is A mplies C.

Proof. Example 2 shows that A does not imply B. The space W {1, 2, 3} with,
topology {0, W, {1, 2}, {2}, {2, 3}} demonstrates that B implies neither A nor C. The
space of Example 1 shows that C fails to imply A. Proposition 3 below tells use that
the space of Example 2 satisfies A, but not B. If a space X satisfies A and K is a minima
disconnecting subsot of X, then K contains a closed disconnceting subset. But by the
mmimality of K, this subset must be K itself; hence K is closed. Therofore A implies C.

The following proposition proved in [2] implies that overy completely normal <pace
has property A.

Proposition 3. Let X be a completely normal space. If a set If separates every pair of s ts
belonging to the system A, ..., An, then E contains a closed set F' with the same property.
IT1. Irreducible disconnections
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Definition 1. If K is a subset of a space X and <7 is a non-trivial partition of X — K
wnto subsets which are relatively open in X — K, we call the ordered pair (K, o7) a dis-

connection of K.
Given two disconnections (K, ) and (K’, &/’), we say that (K, &) < (K’, &Z’)

if K’ Kand {UN(X —K)|Ue '} = .
It is easily confirmed that < is a partial ordering of the set 4 of all disconnections

(n,a)sua,a)/ a={vn-g)vss

Fig. 1

of X. A maximal elemoent of 4, < is said to be an irreducible disconnection.
While a disconnecting subset necd not contain a minimal disconnecting subset, tho

following theorem shows that in many instances a disconnection is related to an irreduc-

ible disconnection.
Proposition 4. If A is a closed disconnecting subset of X, A° = 0, and (A, o7) is a dis-
connection of X, then there is an trreducible disconnection (B, #) such that (4, ) < (B, %).

Proof. For each U € 27, set
U CU-Clu{V|V+£U, Ves}),

B=X-U{U |Ues},

ard
B —{U}, Ues.

Claim 1. (B, #) is a disconnection of X. Each U’ is open. For it follows from tho

ass imption that A° = @ that
CLUVUCI(U{V |V £ U,
«nd,hence U’ — X — CI(U{V | " % U, V e }). Also Bisclosed. Now U {C1 V | }V
Ve s ClUU{V |V = U, Vesl}) so that U <= C1U — U{Cl V|V # U, e},
trom which it follows that U' N V' = @ for any U and V in &7; therefore (B, %) 1s
a disconnection of X. Since U < U’ for all U e o and B < 4, we also have (4, &7) <

Ves)) — X,
U,

(B, B).
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Claim 2. (B, %) is irreducible. First, if x € B, then « is in the closure of at least two
members of /. ¥or if xe BN ClU for just U € &7, then x has a neighborhood which
meets U and this neighborhood then fails to meet U {V | V 3 U, V € &7}, which implies
2z € U’. On the other hand, 4° = @ implies that each neighborhood of x meets some
Ue /.

If (B, #) is not irreducible, then there is a disconnection (B’, #’) with (B, %)
< (B, #’). We may consider £’ = {U"”}, Ue«/, with U < U’ < U”. Now U” is
open in X — B’; hence there is an open set H such that (X — B')NnH ur. 1If
xe U” — U’, then H meets at least two members of 27, which, in turn, leads to a con-
tradiction of (4, &7) < (B’, #’).

Corollary. If (K, ") is a disconnection of X and K is closed, then there is an irreducible
disconnection (B, #) such that (K, ") < (B, #).

Proof. Let A = Fr K and &/ = o U {K°}. Then (K, ") < (4, &Z). By Proposition 4,
there is an irreducible disconnection (B, #) with (4, /) < (B, #); hence (K, X")
< (B, %).

_The techniques of Proposition 3 can be used in conjunction with Proposition 4 to
prove:

Proposition 5. If X is completely normal and (A4, s7) s a disconnection of X such that
SZ 18 finite, then there is an irreducible disconnection (B, #) for which (4, 7) < (B, .4),
and for which B is closed.

The next proposition gives another characterization of the set U’ in the proof of
Proposition 4.

Proposition 6. Let the hypotheses and notation be as in Proposition 4 and its proof.
Then for each U € o,

U=uU{W|We@, UcW, (4, ) <(@D,2)}.

Proof. Let H=U{W | We2, Uc W, (4, &) < (D, D)}. Since (4, ) < (D,Z)
and U < U’, U’ < H. Wenow show H < U’. Suppose « € H. Then z € W where U < 1I',
4, 7) < (D,2), and WeZ. We will show zeClU — Cl(U{V |U #= I, Ves}).
If x‘¢ U, then z € 4. In that case, there is an open set ¢ which contains 2 and meects
only U since x€ W = (X — D) G for an appropriate open set (. Consequently,
z¢ Clu{V |V # U, Veg}). But then each neighborhood of ¥ must meet U or 4
would not be empty. Therefore xe Cl1U — C(U{V |U # V, Ve}) — U

In the previous section we proved that a minimal disconnecting subset need not be
closed. We now discuss conditions under which a disconnecting subset associated with
an irreducible disconnection is closed.

Proposition 7. If (4, &) is an irreducible disconnection of X, then A is closed if and
only if 4° = @.

Proof. Suppose A° £ 0, but 4 is closed. Set B=A4 — 4° and # = o7/ U {4 |.
Then (B, #) is a disconnection with (4, &) < (B, #), contradicting the maximality
of (A4, ).

Suppose now that A is not closed. Then there are U,, U, € & such that U, — V', N
N(X —A)and U, =V, (X — A), where V, and V, are opensets and @ # V, NV, =
< A°. For if such V, and V, fail to exist, then for each U; € &7, we can find V;, an open
set. such that U; = Vi (X — A)forwhich VN V;, = 0,1 #¢.Take B=X — U 4l’;
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and Z  {V;}. Then (4, o7) < (B, 4), contradicting the maximality of (4, .o7). Therefore
A° # .

Corollary. If X is Tz and (A, &) is an irreducible disconnection of X, then A s closed.

Proof. If A is not closed, then A° 3= 0. Take « € A°. There is a neighborhood 1 of a
such that xe V= ClV < 4°. Set B=4 —ClV and 4 = &/ U {4° — Cl VV}. Then
(4, &7) < (B, #), contradicting the maximality of (4, &7).

If (4, &7) is a disconnection and 4 is a minimal disconnecting subset, then (4, o7)
is necessarily irreducible; consequently, any minimal disconnecting subset is always
associated with some irreducile disconnection. As a second corollary of Proposition 7
we may therefore conclude:

Corollary. If X is Ts and A is a minimal disconnecting subset of X, then A is closed.
IV. Decomposition theories

The general structure of the partially ordered family of decompositions of a topological
space may be abstracted to give a structure which occurs in more than just topological
contexts.

Definition 2. A collection A of ordered pairs (A, &) is said to be a decomposition theory
Jor a set X if: 1) (4, &Z) € A implies A = X and o7 is a partition of X — A. 2) (4,
{X—A}) € A for each A= X. 3) 1f (A, &) and (B, &) are in 4, then (AU B, {UNV|U
e, Ve .@}) e A. 4) If (A, ) € 4 and o', is a partition of X — A such that o7 refin-s
', then (A, o7') € A.

Let A be a decomposition theory on the set X. We say that (4, &) is a disconnection
of X if &7 contains at least two non-empty subsets of X. If (4, »7) and (B, #) arc any
two elements of 4, welet (4, ) < (B, #)if B Aand {UN(X — A4)|UeHB} = .
Then < i3 a partial ordering of 4. A disconnection which is maximal in 4, <, is said
to be wrreducible.

Example 3. Let X,z be a topological space. Then 4, = {(4, )| 4 € X, & is
a partition of X — 4 into relatively open subsets}
is a decomposition theory for X. Also

Jde = {(4, ) e A, | o is finite}

is a decomposition theory for X.
The following is casily proved.

Proposition 8. If {4:}, 7 € I, is a non-empty family of decomposition theories on a set X,
then M1d; is also a decomposition theory for X.

Corollary. Suppose [ is a family of ordered pairs (A, /) such that A = X and <7 is

a partition of X — A. Then there is a unique minimal decomposition theory A_§ such that
S S 4y

Proof. The family ¢ is at least a subset of the discrete decomposition thcory
{(4,7)| A4 = X, o is a partition of X — A}. Then 44 is the intersection of all decoma
position theories for X which contain .

We now give further examples of decomposition theories.

Example 4. Let G, # be a group and & be any family of subgroups of G. Then
there is a unique minimal decomposition theory which contains {(#, G/H | H € &}.

Example 5. Let 7z be the Euclidean plane and nr and @z, be the two sides of any
linc L of n. Then {(L, {nL, n1}) | L is a line of n} generates a decomposition theory for z.
A decomposition theory generates a topology in the following manner.
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Definition 3. Let 4 be a decomposition theory for X. For each (A, Z)e A and 1 € o7, set
UV)=u{W|We%, (B,B)ed, V<V, (4 )<(B,%B)).

The family of all such U(1") obtained from all members of A serves as the subbasis for
a topology on X; we denote this topology by 4.

We may think of 74 as the coarsest topology = on X for which 4 < A4,.

While a topology generates two decomposition theories, and a decomposition theory
generates a topology, the concepts do not appear to be interchangeable. The following
example shows that for a topological space X, 7, r and 74, need not be related by inclusion.

Example 6. Let X — {1, 2,3} with = — {X, 0, {1, 2}, {2, 3}, {2} }. In this instance,
e — (X, 0, {1}, (3}, {L 3} }.

The next propositions are concerned with relationships between 7 and 74,.

Proposition 9. Let X, = be a topological space and & be the subbasis for ta  described
in Definition 3. Then if U is a member of such that ¥r U disconnects X, U € .

Proof. If Fr U disconnects X, then (Fr U, {U, Ext U})e 4;, Fr U is closed, and
(Ir U)° = @. It therefore follows from Proposition 6 that U’ ClU — Cl(Ext U)
=Ue%.

Corollary. If X has a basis of neighborhoods whose frontiers disconnect X, then t < t4,.

Lemma 2. The space X, = has a basis of open sets whose frontiers disconnect X if and
only if each point of X has a neighborhood whose frontier disconnects X.

Proof. Clearly if X has such a basis, then each point has a neighborhood w hose frontier
disconnects X. Assume now that each point x has some neighborhood V whose frontier
disconnects X. Then if U is a neighborhood of z, then U N V is a neighborhood of 2 v ho<e
frontier disconnects X and which is a subset of U. Consequently, there is an open neigh-
borhood system, and hence a basis for 7, which consists entirely of open sets whose
frontiers disconnect X.

In any 7',-space X of morc than onc point, every point has a neighborhood whose
frontier disconnects X. We can therefore state:

Proposition 10. If X, 7 is Ty, or is not connected, then T S ta;.
The following example shows that = may be a proper subset of ta;.

Example 7. Let X = {1, 2, 3,4, 5,6, 7}, and 7 have as basis % {{1, 2, 3}, {3, 4, 5},
(5,6, 7}, {1}, {3}, {6}, {7}}. Each point of X 1s contained in a member of .4 whose
frontier disconnects X ; hence v = 74,. But from the member ({3, 5}, {{1, 2}, {4}, {6, 7} )
of A;, wo find {1, 2} € 47, but not in =.

Proposition 11. If X, 7 has the property that for every disconnection (4, .»/) there
oxists (B, #) € 4; with B closed such that (4, &7) < (B, 4), then 74, < 7.

Proof. We may restrict our attention to those members (4, .27) of A for which .1 15
closed, and thus for which the elements of &7 are open sets. It follows then that tle
subbasis elements for 74, are all members of 7; hence 73, < 7.

Using Proposition 5 together with Proposition 11, we can prove:

Proposition 12. If X, v is completely normal, then 3, < . Since 3, S t4, Proposi-
tions 11 and 12 give:

Proposition 13. If X, v is completely normal, then %, — 7.

Corollary. If X, v is metrizable, then 3, = t.
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