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DISCONNECTING SETS AND DECOMPOSITION THEORIES 

MICHAEL C GEMIGNANI 

Purdue University-Indiаnаpolis, Indiаnаpolis, Indiаnа, U.S.A. 

A subset A of a topological space X is said to be disconnecting if X — A is disconnected; 
A is a minimal disconnecting subset of X if A is a disconnecting subset of X, but A does 
not properly contain a disconnecting subset of X. The first three sections of this paper 
deal with properties of disconnecting subsets. The fourth section abstracts from the 
topological situation to define a decomposition theory, it is shown that a topology is 
"na turally" associated with a decomposition theory, and decomposition theory with 
a topology, but that a topology and its associated decomposition theory are not equivalent 
concepts. 
I. Minimal disconnecting subsets of disconnecting sots 

In certain topological spaces no disconnecting subsets contain a minimal disconnecting 
subset. 

Example 1. Let N be the set of natural numbers with the topology containing 0 
and all complements of finite sets. Since N is connected and any infinite subset of N is 
homeomorphic to N, it follows that only finite subsets of N which contain at least two 
points are disconnected. Therefore the only disconnecting subsets are non-empty open 
sets which fail to contain at least two points of N. But if U is such an open set a n d p G U, 
then U — {p} is a proper subset of U which also disconnects N; therefore U contains 
no minimal disconnecting subset. 

The following theorem gives a partial answer to the question: When does a discon­
necting subset contain a minimal disconnecting subset? 
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Proposition 1. If X is a locally connected space and A is a disconnecting subset of X 
such that X — A has some component U whose frontier does not properly contain the frontier 
of any component of X A, A is closed, and A° (the interior of A) is empty, then A 
contains a minimal disconnecting subset. 

Proof. Since A is closed and X is locally connected, each component of X — A is 
open; moreover, since A° 0, 

U {C1W | W is a component of X - A} = X. 

Let 

K — {x £ Fr U | some neighborhood of x meets only C1U}. 
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Thf n 
X - (Fr U - K) (U u K) u Ex t U, 

U U K is open and connected, and Ex t C is open; therefore Fr U — K disconnects A'. 
We now show that Fr U — K is a minimal disconnecting subset. 

Case 1. Ex t U is connected. Suppose w G Fr U — K. If U U K u {*v} is relatively 
opt n in (X — (Fr U — K)) U {w}, then some neighborhood of w fails to meet Ext U, 
which, in turn, implies w E K, a contradiction. On the other hand, if Ext U U {iv} is 
relatively open in (X — (Fr U — K)) U {w}, the some neighborhood of iv fails to meet U; 
hence iv ^ Fr U, again a contradiction. Therefore Ex t U U (U U K U {w]) is connected; 
henco Fr U — K is a minimal disconnecting subset. 

Cas© 2. Ex t U is not connected. Let V be a component of Ex t U; then V is open. 
Therefore Fr V c Fr U - X c Fr U. This implies K 0 since Fr V is not a proi or 
subset of Fr U. Therefore Fr U = Fr V for each component V of Ext (7. This, in turn, 
implies that Fr U is a minimal disconnecting subset. Since U is open, Fr U cz A. 

The following example shows that a space can be homeomorphic to a compact, locally 
connected, connected subspace of R3, yet still fail to have the property that every dis 
connecting subset contains a minimal disconnecting subset. 

Example 2. Let 

Xn - [0,1/w] X [0,1], n 1 ,2 ,3 , . . . , 

who o each interval has its usual topology and each Xn has the product topology. Let Y 
bo the identification space formed by identifying tho points of the form (x, 0) with the 
same first coordinate in each Xn and by identifying each point of the form (0, y) with (0, 0). 
Then Y is compact, connected and locally connected, and is easily embedded in R3. 
However, the subset {(x, 0) | 0 < x < 1/2} disconnects Y, but fails to contain a minimal 
disc nnecting subset. 

By "glueing" [0, 1] onto Y by identifying 0 with (0, 0) in Y, we obtain a space in 
which the subset {(x, 0) | 0 < x < 1/2} fails to satisfy the hypotheses of Proposition 1, 
but which still contains the minimal disconnecting subset {(0, 0)}. 
11 . Some properties of disconnecting subsets 

In this section we investigate the following properties: 
A. Every disconnecting subset contains a closed disconnecting subset. 
B . Every disconnecting subset contains a minimal disconnecting subset. 
C Every minimal disconnecting subset is closed. 

Proposition 2. For an arbitrary topological space X, the only implication which 1 olds 
betveen the properties A, B, and C is A implies C 

Proof. Example 2 shows that A does not imply B. The space W {I, 2, 3} with, 
topology {0, W, {I, 2}, {2}, {2, 3}} demonstrates that B implies neither A nor C The 
space of Example 1 shows that C fails to imply A. Proposition 3 belowT tells use that 
the space of Example 2 satisfies A, but not B. If a space X satisfies A and K is a minima 
disconnecting subset of X, then K contains a closed disconnecting subset. But by the 
minimality of K, this subset must be K itself; hence K is closed. Therefore A implies C 

The following proposition proved in [2] implies that every completely normal space 
has property A. 

Proposition 3. Let X be a completely normal space. If a set E separates every pair of s ts 
belonging to the system Ax, ..., An, then E contains a closed set F with the same property. 
I I I . Irreducible disconnections 
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Definition 1. If K is a subset of a space X and s/ is a non-trivial partition of X — K 
into subsets which are relatively open in X — K, we call the ordered pair (K, s/) a dis­
connection of K. 

QWen two disconnections (K, s/) a n d (K', s/'), wo say t h a t (K, s/) < (K', s/') 
if K' c K a n d {U n (X - K) \ U G s/'} = s/. 

I t is easily confirmed t h a t < is a par t ia l order ing of t h e set A of all disconnections 

X-fì 

(fìß)<(Bß) a={vn(x-fí)lve/$} 

Fig. 1 

of X. A max ima l e lemen t of A, < is said to be a n irreducible disconnection. 
While a disconnecting subset neod not conta in a min imal disconnect ing subset , tho 

following theorem shows t h a t in m a n y instances a disconnection is related to a n irreduc­
ible disconnection. 

Proposi t ion 4. If A is a closed disconnecting subset of X, A° = 0, and (A, s/) is a dis-
connectio?i of X, then there is an irreducible disconnection (B, &) such that (A, s/) < (B , 3$). 

P roo f . F o r e ach U es/, set 

U' ClU- C 1 ( U { V | V J- U, Ves/}), 

B =- X - \J{U'\ Ues/} , 

ai (I 

.% _ {U'}, Ues/. 

C l a i m 1. (B,&) is a disconnection of X. E a c h U' is open. For i t follows from tho 
ass imption t h a t A° = 0 t h a t 

CI UUC1(U{V| V ^ U, lres/}) - X, 

c nd, hence U' — X - C1(U {V \ V ^ U, V e s/}). Also B is closed . N o w u {CI V | V U, 
Ves/} ^ C1(U {V | V 7-: U, V e t*/}) so t h a t U' c CI U - u {CI V | V ^ U, V e s/}, 

f iom wh i ch i t follows t h a t U' C\ V = 0 for a n y H a n d V in JS / ; therefore (B,&) is 
a disconnection of X. Since U ^ U' for all Ues/ a n d £ S i , we also have (A , <s/) < 

(B , ^ ) -
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Claim 2. (B, 38) is irreducible. First, if x E B, then x is in the closure of at least two 
members of s/. For if x e B n CI U for just £7 e ja/, then x has a neighborhood which 
meets U and this neighborhood then fails to meet U { V | V ^ U, V e s/}, which implies 
x e U'. On the other hand, A° = 0 implies that each neighborhood of x meets some 
Ues/. 

If (B, &) is not irreducible, then there is a disconnection (B', &') with (B, 3$) 
< (B',&'). We may consider 28' = {£7"}, Ues/, with U ^ U' ^ U". Now £7" is 
open in K — B'; hence there is an open set H such that (X — B') n H £7". If 
x e U" — U', then H meets at least two members of s/, which, in turn, leads to a con­
tradiction of (A , s/) < (B', &'). 

Corollary. If (K, Jf ) is a disconnection of X and K is closed, then there is an irreducible 
disconnection (B, &) such that (K, Jf) < (B, &). 

Proof. Let A = Fr K and s/ = X U {K°}. Then (K, Jf ) < (A, J30. By Proposition 4, 
there is an irreducible disconnection (B,&) with (A, s/) < (B,&); hence (K, CtC) 
< (D ,^ ) -

The techniques of Proposition 3 can be used in conjunction with Proposition 4 to 
prove: 

Proposition 5. If X is completely normal and (A, s/) is a disconnection of X such that 
s/ is finite, then there is an irreducible disconnection (B, t%) for which (A, s/) < (B, <J), 
and for which B is closed. 

The next proposition gives another characterization of the set U' in the proof of 
Proposition 4. 

Proposition 6. Let the hypotheses and notation be as in Proposition 4 and its proof. 
Then for each UES/, 

U' = U { W | W EQ), U^W, (A, s/) < (D, Q)} . 

Proof. Let H = u {W | W EQI,U ^ W, (A, s/) < (D, £))}. Since (A, s/) < (D,&) 
and U ^ U', U' ^ H. We now show H ^ U'. Suppose XEH. Then XEW where U ^ IV, 
(A, s/) < (D, 3>), and W e ®. We will show XEC\U - C1(U {V | £7 ^ V, V e s/}). 
If x £ U, then x E A. In that case, there is an open set G which contains x and meet s 
only U since x E W = (X — D) n G for an appropriate open set G. Consequently , 
x $ C1(U {V | V # U, V E s/}). But then each neighborhood of x must meet U or A 
would not be empty. Therefore XEC\U — C1(U {V \U -£ V, V E S/}) - U'. 

In the previous section we proved that a minimal disconnecting subset need not be 
closed. We now discuss conditions under which a disconnecting subset associated with 
an irreducible disconnection is closed. 

Proposition 7. If (A, s/) is an irreducible disconnection of X, then A is closed if and 
only if A° = 0. 

Proof. Suppose A° ^ 0, but A is closed. Set B = A — A° and @ = s/ U {A }. 
Then (B,33) is a disconnection with (A, s/) < (B,&), contradicting the maximally 
of (A, s/). 

Suppose now that A is not closed. Then there are Ux, U2E s/ such that Ur — Vx n 
n (X — A) and U2 = V2 n (X — A), where V± and V2 are open sets and 0 # Vx n V2 ^ 
c= A.°. For if such V! and V2 fail to exist, then for each £7* e s/, we can find Vi, an open 
set. such tha t Ui = Vi n (X - A) for which Vt n V*, = 0, i # i'. Take B = X — U ^Vt 
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and 38 {Vi}. Then (A, s/) < (B, 38), contradicting the maximality of (A, s/). Therefore 
A° ^ 0 . 

Corollary. If X is T% and (A, s/) is an irreducible disconnection of X, then A is closed. 
Proof. If A is not closed, then A° 7- 0. Take x e A°. There is a neighborhood V of a 

such that x e V ^ CI V ^ A°. Set B = A - CI V and ^ = j * / u {A° - CI V}. Then 
(A, JS/) < (B, 33), contradicting the maximality of (A, s/). 

If (A, <£/) is a disconnection and A is a minimal disconnecting subset, then (A, s/) 
is necessarily irreducible; consequently, any minimal disconnecting subset is always 
associated with some irreducile disconnection. As a second corollary of Proposition 7 
we may therefore conclude: 

Corollary. If X is T3 and A is a minim,al disconnecting subset of X, then A is closed. 
IV. Decomposition theories 

The general structure of the partially ordered family of decompositions of a topological 
space may be abstracted to give a structure which occurs in more than just topological 
contexts. 

Definition 2. A collection A of ordered pairs (A, s/) is said to be a decomposition theory 
for a set X if: 1) (A, s/) e A implies A E= X and s/ is a partition of X — A. 2) (A, 
{X —A}) e A fo>* each A .= X. 3) If (A, s/) and (B, 3§) are in A, then (A u B, { U n V | U 
e s/, V E 38}) E A. 4) If (A, J3/) G A and J3f', is a partition of X —A such that s# refirrs 
stf', then (A , s/') E A. 

Let A be a decomposition theory on the set X. We say that (A, s/) is a disconnection 
of X if J # contains at least two non-empty subsets of X. If (A, srf) and (B, ^?) are any 
two elements of A, we let (A, s/) < (B, 38) if B c A and {U n (X — A) | £7 G 33} = j / . 
Then < is a partial ordering of zl. A disconnection which is maximal in A, < , is said 
to be irreducible. 

Example 3. Let X, T be a topological space. Then AT = {(A, s/) \ A ^ X, s/ is 
a partition of X — A into relatively open subsets} 
is a decomposition theory for X. Also 

AT = {{A, s/) eAT\s/ is finite} 

is a decomposition theory for X. 
The following is easily proved. 

Proposition 8. If {Ai}, i e I, is a non-empty family of decomposition theories on a set X, 
then P>jAi is also a decomposition theory for X. 

Corollary. Suppose J^ is a family of ordered pairs (A, s/) such that A <= X and s/ is 
a partition of X — A. Then there is a unique minimal decomposition theory A J^ such that 
f ^A? 

Proof. The family £ is at least a subset of the discrete decomposition theory 
{(A, s/) I A <= X, s/ is a partition of X — A}. ThenA^ is the intersection of all decom* 
position theories for X which contain £'. 

We now give further examples of decomposition theories. 

Example 4. Let G, 7̂  be a group and Sf be any family of subgroups of G. Then 
there is a unique minimal decomposition theory which contains {(0, GjH \ H e £f}. 

Example 5. Lot n be the Euclidean plane and TIL and TIL be the two sides of any 
line L of 71. Then {(L, {TIL, TIL}) I L is a line of n} generates a decomposition theory for n. 

A decomposition theory generates a topology in the following manner. 
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Definition 3. Let A be a decomposition theory for X. For each (A , s/) e A and V e s/, set 

U(V) = u {W | W G 38, (B, 38) G A, V c W, (^l, j . / ) < (B , 38)} . 

T h e fam i ly of all such U(V) obta ined from all members of A serves as t h e subbas is for 
a topology o n X; we denote this topology b y TA . 

W e m a y think of TA as the coarsest topology T on X for wh ich A c Ar. 

Wh i le a topology generates two decompos i t ion theories, a n d a decompos i t ion theory 
generates a topology , t h e concepts do not appear to be interchangeable. T h e following 
example shows t h a t for a topological space X, T, T a n d TAT need not be related b y inclusion. 

Examp l e 6. Le t X - {1, 2, 3} w i t h T - {X, 0, {1, 2}, {2, 3}, {2}}. I n th is instance, 
TAT- {X,0, {1}, {3}, {1 ,3}}. 

T h e next propos i t ions are concerned w i th relationships be tween T a n d TAT. 

Proposition 9. Let X, T be a topological space and 3f be the subbasis for TAJ described 
in Definition 3. Then if U is a member of such that F r U disconnects X, U e &'. 

P r o o f . I f F r U d isconnects X, t h e n (Fr U, {U, E x t U}) eAr, F r U is closed, a n d 
(Fr U)° = 0. I t therefore follows from Propos i t ion 6 that U' CI U — Cl(Ext U) 
= [ / G / 7 . 

Corollary. If X has a basis of neighborhoods whose frontiers disconnect X, then T S= T^T. 

Lemma 2. The space X, r has a basis of open sets whose frontiers disconnect X if and 
only if each point of X has a neighborhood whose frontier disconnects X. 

P r o o f . Clearly if X ha s such a bas is, then each po in t has a neighborhood w hose frontier 
d isconnects X. Assume now t h a t each po i n t x has some ne ighborhood V whose frontiei 
disconnects X. T h e n if U is a neighborhood of x, t h e n U r\ V is a neighborhood of x w ho^e 
frontier d isconnects X a n d wh ich is a subset of U. Consequen t ly , there is a n open neigh­
borhood sys tem, a n d hence a bas is for T, wh ich consists entire ly of open sets whose 
frontiers d isconnec t X. 

I n any T2-space X of more than ono po in t , every po in t has a neighborhood whose 
frontier d isconnec ts X. W e can therefore s t a t e : 

Proposition 10. If X, T is T2, or is not connected, then T C TAT. 
The following example show7s t h a t T m a j be a proper subse t of TAr. 

Examp le 7. Le t X = {1, 2, 3, 4, 5, 6, 7}, a n d T have as basis 38 {{I, 2, 3}, {3, 4, 5}, 
[5, 6, 7}, {1}, {3}, {5}, {7}}. E a c h po int of X is conta ined in a member of ^ whose 
frontier d isconnec ts X; hence T <= TAT. B u t from the member ({3, 5}, {{1, 2}, {4}, {G, 7} ) 
of Ar, wo find {1, 2} G TAT, b u t not in T. 

Proposition 1 1 . If X, T has the proper t y t h a t for every d isconnect ion (A, s/) the re 
ex ists (B, 38) e AT w i th B closed such t ha t (A, sf) < (B , 38), t h e n TAT C T. 

P r o o f . W e m a y restr ict our a t t e n t i o n t o those members (A , stf) of A for which A is 
closed, a n d thus for wh ich the e lemen t s of stf are open se ts. I t follows then t ha t tl o 
feubbasis e lements for TAT are all members of T ; hence TJT <=! T. 

Us ing Propos i t ion 5 together w i th Propos i t ion 11, we can p rove : 

Proposition 12. If X, T is completely normal, then T J T ^ T. Since TJV C TA, Proposi­
t ions 11 and 12 give: 

Proposition 13. If X, T is completely normal, then T J T — T. 

Corollary. If X, T is metrizable, then T2T — t-
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