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SOME MORE REMARKS 
ON CERTAIN ALGEBRAIC IDENTITIES 

JOSEF KAUCK^, Bratislava 

1. 

at (i = 0, 1, ..., n) 

*i (i = 1, 2, ..., m) 

be given complex numbers, the ai are distinct while Xj are arbitrary. 

If we put 
n 

(ai — xi)(at — x%) ... (at — xm) 
(1) S(m, n) = 

(at — a0) . . . (at — ai-i)(ai — a í+i) ...(«< — a я ) 

tnen 
г=0 

(2) s(w + i, n) = 2 OІ—2 жь 
ѓ=0 ;=1 

(3) /S(w, ?г) = 1, 

(4) S(m, n) = 0, m < n. 

Three proofs of these formulas are known: one by induction ( B a r t o s [ l]) r 

one using the calculus of residues ( K a u c k y [1]) and one by means of the 
Lagrange interpolation formula ( C a r l i t z [2]) 

By the method used in the last two proofs we can evaluate also the sums 
S(n + 2, n), S(n + 3, n),... 

I n this article I am going to show that the formulas (2), (3) and (4) are simple 
consequences of certain well-known relations. 

For this purpose we denote 
/ m 

f(x) = (x — xi)(x — x2) . . . (x — xm) == 2 ( —l)*o*tf»-*. 
k=0 
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I f 

(5) Л(a0, a ь ..., an) 
1 a\ ... a\ 

1 an ... an

n 

is the Vandermonde's determinant, then according (to [3], p. 9) 

1 a0 

n 

kj=0 
k>l 

(6) S(m, n) = 

1 a0 ... an~г f(a0) 

1 a\ ... an 

1 an ... à: n-\ 

Л«i) 

/(«») 

zJ(a0 j a i , ..., an) = 

= 2 (--)*«-• 

1 a 0 . . . a| 
1 ai . . . an 

n-l „m-k 

n-1 „m-k 

1 an ... al ,n-l nm-) 

k=0 A(a0, a\, . . . . an) 

From this equation we derive immediately the formulas (4) and (3). I n fact 

if m < n, all the determinants in numerators vanish because they have in the 

last columns the numbers 

a

0 ? a \ ? • • • a

n 

where 0 ^ I ^ n — 1. So we get the formula (4). 
If m = n, then obviously 

S(n, n) = a0 = 1 

and this is formula (3). 

Now we still have to prove equation (2). However with the use of a further 

well-known formula ([3], p. 9) 

(7) 

1 a0 

1 a\ ... an n-\ nn+l 

1 an ... ar­

ticle equation (6) gives 

A(a0, aľ, ..., a л ) = 2 au 

n+l 

S(n + 1, n) = 2 a% — o\ = 2 ai — 2 xi 
i=0 i=0 j=l 

which is the formula (2). 
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3. 

As we have already pointed out it is possible to calculate easily for example 
with the help of the calculus of residues the sums S(m, n) also for m > n + 1. 
In reference to the method desccribed in the above paragraph this does not 
hold good. To demonstrate this let us calculate the value of the sum S(n + 2, n). 

As we can see from equation (6) we must know the value of the quotient 

(8) 

Por n 

a0 

a_ 

„n+2 

r.n+2 

n.n+2 1 an 

1 the value of the quotient is 

1 

A(a0, a_, . . . , an) 

a% 
(ai — a0) = ag + a0ai + af. 

For n = 2 it is also easy to show that 

1 a0 a* 
1 a_ a\ : (a2 -- a_)(a2 -- a0)(ai -• a0) 
1 a2 a_ 

= a2, + a\-\- a\-\- a0a± + a0a2 + aia2 

We may therefore assume tha t the quotient value (8) will be 

n n 

(9) 2 «f + I Wi 
i=0 i, ?=0 

i<j 

which can be proved by induction. 
We have just shown that for n = 1,2 this statement is correct. Let us 

therefore assume that statement holds also if (n — 1) is inserted in place of n. 
We subtract now in the determinant in the numerator of (8) the first column 

times an from the second, from the third column the second times an, etc. 
until from the nth column the preceeding column also multiplied by an. 
Finally we subtract from the last column the last but one multiplied by an. 

Thus we obtain a determinant with the numbers 

1 0 . . . 0 0 

in the last row. The remaining rows are as follows 

1 a0 -- an a0(a0 — an) ... a^2(a0 — an) al\a\ -<) 
1 a_ -- an a_(a_ — an) ... al~2(a_ — an) an~\a\ -<) 

1 a„_i — an an-_(an-_ — an) . . . a ^ a ^ - i — an) a%_\(al__ — al) 
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Expanding this determinant according to the elements of the last row and 
reducing the quotient by the product 

(an — a0)(an — ai) . . . (an — an-_) 

we see that the quotient (8) has been reduced to 

1 a0 

1 ai ... aí 

„n-2 „ n - l / „ 2 

,n-2 „n-1 
< K + a0 an + an) 
an~1(a\ + a_ an + an) 

1 an- <-ì aľïK-i + an-ian + an) 

: A(a0, a_, ..., an-_) 

The above quotient may be decomposed into three parts. The first 

1 a0 

1 ai 

nn-2 nn+l 

a0 a0 
nn-2 nn+l 

1 aK_! . . .< ; f á£\ 

A(a0, a±, . . . , an-_) 

has by assumption the value 

The second part 

n-l n-1 

2 aï + 2 aw 
І=0 І, j=0 

i<j 

1 a0 

1 ai 
.. an an 

A(a0,a_, ..., aw_i) 

1 n sin-2 n n 

l an-_ ... an_1 an 

has in accord with formula (7) — if n is replaced by (n — 1) — the value 
n-l 

an^at. 
i=0 

And finally the third part has evidently the value an. 
Summing up all these results we see that the quotient (8) really has the 

value (9). 
Having put down, further, for the sake of simplification, 

n+l 

g(x) = (x — a0)(x — ai) . . . (x — an) = 2 (—l)*T*a*+1-*, 
k=0 

we see that expression (9) is equal to 

T2. 

Thus we have now everything to enable us to find the value of the sum 
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S(n + 2, n). According to formula (6), in which we replace m with (n + 2),s 

the following holds 

S(n + 2, n) = r\ — T2 — c/in + cr2 = a* + n ( r i — c/i) —• T2. 
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