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ON A CLASS OF DARBOUX FUNCTIONS FROM 
A TOPOLOGICAL SPACE TO A UNIFORM SPACE 

BELOSLAV RIECAN, Bratislava 

Let X be a topological space, Y be a uniform space, 38 be a base of open 
connected sets in X,J( be a base of the uniformity of Y. We shall say that 
a function / : X-> Y belongs*'to D'Q\33) if and only if there are no U e33, 
V eJf, A, B <z Y such that f(U) = A u B, A =\= 0, 5 * 0 , A x B ^ Y x 
X Y \ V. The family D"0(33) does not depend on the choice of a base J( of the 
uniformity of Y. If Y is a metric space then / e Do(3S) means that for any 
U e 33,f(U) cannot be written as a union of two non-empty sets with a positive 
distance. 

We prove first that D"0(33) is closed under the limits of uniformly con­
vergent sequences. If Y is moreover an abelian topological group, X is regular 
and 33 fulfils an additional condition (1*) (see Lemma 2), t h e n / -f- g e D'0(33) 
for any /, g e D"0(38) such that in any point x e l a t least one of /, g is con­
tinuous. 

The families D(33) (resp. Do(33)) of all real-valued functions with the Darboux 
property (resp. with the Darboux property in the Radakovitch sense) on a to­
pological space were introduced and studied by L. Misik ([3], [4]). In [1] 
J . F a r k o v a introduced two similar families D'0(33), D'(33) from a topological 
space X to a metric space Y. By Farkova's definition, f e D'0(33) if and only 
iff(U) is connected for any U e 3. 

Clearly D'0(33) — D'0\33) if Y is the real line. But in the general case (when 
only D'0(33) C: D'0(33)) the family D"Q(33) seems to be more convenient since 
for D'0(33) the above mentioned theorems do not hold.*) Of course, our family 
D'Q(33) has a meaning only if the range space Y is uniform. In a certain sense 
we extend Farkova's results in two directions: we consider a larger class 
of range spaces Y and a larger class of functions D"0(38). 

Theorem 1. Let {fn} be a sequence of functions belonging to D"0(33) and con­
verging uniformly on X to a function f. Then f e D'0\33). 

*) The corresponding results of Farkova contain some additional assumptions and 
follow from our theorems. 
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Proof . Assume that f 6 D0(3#). Then there are i , B c Y, P e l , V eJt 
such that A X B a Y x Y \ V, f(U) = AyjB, A 4= 0, £ 4- 0. Pu t C = 
= {a e L7 :/(*) EA}, D = {X E U :f(x) E B}. For S, T EJi denote by SoT, 
as usually, the set {(x, y): there is z e Y such that (x, z) e £, (z, y) E T}. Then 
there is IV eJt such that IV o IV o IV cz V (See r2]5 chapter 6). Choose n such 
that (fn(x)J(x)) E IV for all XEX. 

Clearly 0 * 0, 2) + 0. We assert tha t fn(C) x /n(Z>) c Y X Y\W. In the 
reverse case there are XEC, IJED such tha t (fn(x),fn(y)) EW . But then 
(f(x),fn(x)) E W, (fn(x),fn(y)) E W, (fn(y)J(y)) E IV a n d (f(x),f(y)) E IV o IV o IV cz 

cz V. But f(x) E A, f(y) E B, hence A x B n V ^ &, which is a contradiction 
with the property of V stated above. 

Hence fn(C) x fn(D) cz Y x Y\W for a sufficiently large n, which is 
a contradiction with the assumption fn E D"0(3H). 

The corresponding result of Farkova follows from Theorem 1 and the follow­
ing lemma. 

Lemma 1. If f E D'0(3tf) and there is a compact set C such that f(X) cz C, 
thenfED'0(3ft). 

Proof . Yff$D'0(3ft), then f(U) = A U B, where A, B are disjoint, non-void 
and moreover compact. Hence there is V EJ{ such that A x B cz Y x Y\V, 
the re fo re /^ D"0(3ft). 

Corrolary ([1], Theorem 1). If {fn} converges uniformly to f, fnED'0(3ft) 
(n = 1, 2, ...) and there is a compact set C such that f(X) cz C, then f E D'0(3ft). 

Proof . Clearly D'o(0S) cz D"0(@). Then f E D'0(&), according to Theorem 1 
and/eZ>Q(^) according to Lemma 1. 

Let Y be now an abelian topological group. I t is well known that Y be­
comes a uniform space in wThich the family of all sets of the form {(x, y) : 
: x — y E IV}, where W is an open neighbourhood of the zero element 0, is a 
base of the uniformity. Hence f E D'0(&) if and only if there are no U E£8, 
A, B cz Y and no neighbourhood W of 0 such tha t A — B a Y\W,*)~f(U) = 
Av B, A 4= 0, B + 0. 

In the following we shall use the following lemma due to J . Farkova in [1]. 

Lemma 2. Let X be a topological locally connected space, 3ft be a base of open 
connected sets satisfying the following property: 

(1*) To any open F, any E E 33 and any x EF C\E there is C E 33 such that 
C cz F nE, XEC. 

Let F E 3ft, F = C U D, where C, D are disjoint non-void sets. 

*) While A \ B means the set theoretic difference, AL — B = {u : u -= x — y, x e AL, 
yeB}. 
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Then there is xoE C n D such that to any neighbourhood V of xo there is U e £8, 
U c V, x0eU, U = (U n C) u (U n D), and U nC, U n D are disjoint 
non-void sets. 

Theorem 2. Let X be a regular topological space, & a base consisting of open 
connected sets fulfilling (1*). Let Y be an abelian topological group, f,ge DQ(&) 
and any x e X is a point of continuity of at least one of the functions f, g. Then 
f+geDl(<%). 

Proof . Let / + g $ Dl(38). Then there are F e 2%, A, B <= Y and a neigh­
bourhood W of O such that A — B cz Y \W, f + g(F) = A u B, A #= 0, 
B =f= 0. Let T be such a symmetric neighbourhood of 0 tha t T + T + T + 

+ T c W. _ 
Put C = F n (f + g)~HA), D = F n (f + g)-*(B). Then C nD = 0, C, D 

are non-void and F = C u _D, Let xo be an element of C n D having the 
properties stated in Lemma 2. Let e . g . / b e continuous in xo. As X is regular, 
there is an open neighbourhood V of xo such that f(u) — /(#o) e T for all 
% e F . Finally, let C have the properties stated in Lemma 2 with respect 
to this set V. 

Let xeU nC,yeU nD. T h e n / + g(x) - / + gr(y) £ W bu t / ( a ) - /(y) = 
= /(*) - / ( * o ) + /(%) ~ / ( y ) eT7 + T7. If ?(*) - flr(y) ^T + T t h e n / + £(*) -
- / + g(y) = f(x) - f(y) + g(x) - g(y) eT + T +_T + T cJV, which is 
impossible. Therefore g(x) — g(y) $ T + T for all x e U n C, y e U n D, or by 
others words g(U) n C) — g(U n D) c y\(T + T). 

For K, L cz Y, K =f= 0, £ #= 0 write o(/f, £) > 0, whenever there is 8 eJf 
such that K X L cz Y x y\tf. We have just proved g(g{U n C), g(U n Z>)) > 
> 0. The proof will be complete if we prove that Q(K, L) > 0 implies o ^ , Z) > 

> 0. Indeed, we get Q(g(U n C), J(UWDJ) > 0, hence gr([7) = g(Un~C) U 

Ur/(C7 n /)), where g(U n C), g(U n D) are nonvoid disjoint sets of "positive 

distance" therefore g $ D'^gfl). 
But the implication Q(K, L) > 0 => o(iT, Z) > 0 can be proved easily 

as an exercise. Indeed, Q(K, L) > 0 implies the existence of a neighbourhood 
Z of 0 such that K — L cz Y\Z. Take a symmetric neighbourhood R of 0 
such that R + R + R cz Z. We prove Z - Z c 7\I?. In the reverse case 
there are x e K, y e L such that x — y e R. Then also there are u e K, v e L 
such that u e R + y, v e R + x. Therefore u — veR + R + RczZ, which 
is a contradiction to the inclusion K — L cz Y\Z. 

By proving the last implication also the proof of Theorem 2 is complete. 

Corrolary 1 ([1], Theorem 2). Let X be a regular topological space, & a base 
of open connected sets fulfilling the condition (I*). Let Y be the real line. Let 
f,ge D'0(&) and any point of X is a point of continuity of either of g. Then 
f+geD'0(a). 
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Proof follows immediately from Theorem 2, because D'0(S$) = D'0 

in this case. 

Corrolary 2 ([1], Theorem 3). Let X, & fulfil the assumptions of the previous 
Corrolary. Let Y be a linear metric space. Let f,ge D0(&) and any point of X 
is a point of continuity of either f or g. Let there exist a compact set C such that 
f+g(X) c C.Thenf+geD'0(@). 

Proof follows from Theorem 2 and Lemma 1. 
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