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Summary. This paper is concerned with existence and uniqueness of solutions of the 
three-point mixed problem ti"' = f(t,u,u'yu")> u(c) = 0, u'(a) = u'(b), u"(a) = u"(b)y 
a -̂  c ^ 6. The problem is at resonance, in the sense that the associated linear problem has 
non-trivial solutions. We use the method of lower and upper solutions. 
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1. INTRODUCTION 

In this paper we are concerned with the existence and uniqueness of solutions of 
the three-point mixed problem 

(i.i) u'"=mufu',u") 
(1.2) u(c) = 0, u'(a) = u'(b), u"(a) = u"(fc), a^c^b 

where —oo < a ^ c ^ 6 < +oo and / satisfies the local Caratheodory conditions on 
(a ,6 )xR 3 . 

The two-point mixed problem for the second order differential equation was solved 
by V. Lakshmikantham and S. Hu in [15]. They obtained the existence results under 
the assumption that / is continuous, nonincreasing in its second and third argument 
and satisfies a certain one-sided condition of the Lipschitz type, and that there exist 
lower and upper solutions for this problem. In [2], A. R. Aftabizadeh, J. M. Xu 
and C. P. Gupta considered the three-point problem for the third order differential 
equation where the boundary condition had the form 

(1.3) «'(0) = u'(l) = «0.) = 0, 0 < / x ^ l . 
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Further, C. P. Gupta in [12] studied the questions of existence and uniqueness of 
solutions of the equation 

(1.4) -ti'" - TTV + g(x, ti, ti', ti") = e(x) 

or 

(1.5) ti'" + * V + g(x} ti, ti', ti") = e(x) 

satisfying (1.3). The existence of a solution for the resonance problem (1.4), (1.3) 
was obtained provided e is a Lebesgue-integrable function with 

1 

e(x) sin ҡx dx = 0 

o 

i 

/ 

and g is a Caratheodory function, bounded on [0,1] x B2 x R (for every bounded B 
of R) and 

(1.6) g(x, ti, v, ti;) • v ^ 0, x £ [0,1], ti, v, w G R. 

For the existence of a solution for (1.5), (1.3) g, in addition, has to satisfy 

g(x,u.v.w) . n 9 hm sup y v ' ' ' ; =/?<3?r2 . 
|ar|-++oo V 

These results were proved by means of the method using second-order integro-
differential boundary value problems and the Leray-Schauder continuation theorem. 

In contrast to this, here we define lower and upper solutions for (1.1), (1.2) directly, 
not transforming (1.1), (1.2) into an integro-differential problem. We obtain similar 
conditions for the existence as in [12], but our sign condition (corresponding to (1.6)) 
has the form (3.4), i.e. it has to be fulfilled for t; = r\, r2, ti; = 0 only. Instead of the 
boundedness of g, we assume the one-sided growth condition (3.1). Our method can 
be applied to problems (1.1), (1.3) and (1.4), (1.3) as well. 

For other authors considering various third-order three-point boundary value prob­
lems see for example [1, 3-11, 17-25]. 
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2. NOTATION AND DEFINITIONS 

In what follows let p,g G [l,+oo], where J + j = 1, J = [a,6] C R, C m (J) 
and I^(J) have the usual meaning and j4Cm(J) = { / : J —> R. /(m> is absolutely 
continuous}. 

We say that some property is satisfied on D if it is satisfied for a.e. t G J and for 
t 

all x ,y,z € R. Let sU82 G C(J), «i(0 < *2(0> Si(t) = / s , ( r )dr , for f G J , t = 1, 2. 
c 

We put 

D(sus2) = {(*,*, y,*) G D: \z\ > 1, * i (0 ^ y < s2(t)y 

min(5i (0 ,5 2 (0) < * < max(5i,52)}. 

We say that / : D —* R satisfies the local Caratheodory conditions on D (f G 
Car(D)), if 

*/(•> x, y, z): J —• R is measurable on J for each x,y,z € R, 

/(J, • , - , ) : R3 —• R is continuous for a.e. t G J 

and 
sup{ | / ( t , s ,y ,z) | : |x| + |y| + \z\ ^ p) G L V ) for a n y /> € (0,+oo). 

A function u G AC2(J) satisfying (1.1) for a.e. t G J and fulfilling (1.2) will be 
called a solution of BVP (LI), (1.2). 

Let (Ti,cr2 € AC2(J) m = min{cri,<72}, M = max{<ri,cr2} on J, 

' m(t) for m(t) > x 

(2.1) a(t, s ) = I x for m(t) ^ x ^ M(t) 

k M(t) for M ( 0 < x. 

Functions <7i, <T2 will be called lower and upper solutions to (1.1), (1-2), respectively, 
if 

(2.2) [a? - /(*, a(t, x), a\, a'/) ( -1) ' ^ 0 

for a.e. t 6 J and each x G R, 

(2.3) (Tj(c) = 0, ofto) = «rj(6), [a?(a) - «rj'(fc)] ( -1) ' ^ 0, . = 1,2. 

For j = 0, 1, 2 we denote 

(2.4) c,- = max {\o%\t)\ + |^>(*) | : a < f < b) • 
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3. MAIN RESULTS 

Theorem 1. Let <r\ be a lower solution and <r2 an upper solution ofBVP (1-1), 
(1.2) and let <r[(t) ^ <r2(t) for each t £ J. Let on the set D(<r[,<r2) the inequality 

(3.1) / ( t , x, y, z) sign z < u(\z\)gi(t, x)h(y))(l + |z |) i 

be satisfied, where h G Lq(—ci,ci), g G Car(J x R) are nonnegative and u> G 
C(0, +oo) is a positive function with 

(3-2) /-£- = +00. 

Then BVP (1.1), (1.2) has a solution u such that 

(3.3) <r[ ^ u' ^ <r2, min{<Ti,cr2} ^ u ^ max{0T,tr2} on J. 

Let us recall that c\ is defined by (2.4). If <r[ = <r2 on J, then <r\ = <r2 on J and 
BVP (1.1), (1.2) has a solution u = <rx = <r2. 

N o t e . Let there exist ri, r2 € R such that r\ < r2 and 

(3.4) / ( t , a ( t , x ) , n , 0 ) ^ 0 , / ( t , a ( t , x ) , r 2 , 0 ) ^ 0 for a.e. t G J and each x G R. 

Then <r\ = r\(t — c), <r2 = r2(t — c). (For a(t,x) see (2.1), where 
m(t) = min{r\(t — c), r2(t — c)}, M(t) = max{r\(t — c), r2(t — c)}.) 

E x a m p l e . Theorem 1 is applicable for example to the functions: 
1) /(*, x, y, z) = e* (y3 + ib(t)) ( l + z2) g(t) + ze*, where y, Jfc G C(J), y ^ 0. 
2) / ( t , x, y, z) = y(t, x) (y5 + k(t) + z2) + yt'*z, where * G C(J) and y G Car(J x 

R) is a nonnegative function bounded on each compact in J C R. 
We can see that the existence results hold for arbitrarily rapid growth in the 

nonlinearity / . For such / the existence theorems of [2] or [12] do not work. 

Now we will consider uniqueness. 

Theorem 2. Let there exist a positive function h G Ll(J) and constants a, /?, 
7 > 0 satisfying 

(,5) „(^)) 3
+ / J ( 2 (^)) ' + T (^) < 1 , 

such that on D the inequalities 

(3.6) f(t, x, y, z) - f(t, x, y, z) + h(t)\z - z\ > 0 for y>y, (x- x) sign(t - c) > 0 
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and 

(3.7) \f(t, x, y, z) - f(t, x, y, z)\ ^ a\(x - *)| + 0\(y - y)\ + y\(z - z)\ 

are satisfied. 
Then BVP (1.1), (1.2) has at most one solution. 

The Lipschitz condition (3.7) can be omitted if the sign condition (3.6) is changed 
as follows. 

Theorem 3. Let there exist a nonnegative function h 6 LX(J) such that for a.e. 
t € J and for each z, z G R, <p, <p € C( J) the following condition is fulfilled: 

<p(t) > m =-> f(t,Tip,<p,z) - f(t,T<p,<p,z) + h(t)\z - z\ > 0, 

t 
where [Tu](t) = Ju(s)ds. 

e 

Then BVP (1.1), (1.2) has at most one solution. 

4. LEMMAS 

Lemma 1. [13, Theorem 256, p, 219]. If f € -4C(ti,t2), / ' € L2(tx,t2) and 
/(to) = 0, where —oo < t\ ^ to ^ t2 < +oo, then 

Jf^)dt^\^i^Yjnt)dt. 
u u 

We will need a certain generalization of the Predholm Alternative Theorem: 

Lemma 2. [16, Theorem 2.4, p. 25]. Let hi G L(J), i = 1,2,3 and let g be a 
function ofCax(D) and let the equation 

(4.i) «'" = £ MO^HO 
i = l 

have only the trivial solution satisfying (1.2). If there exists h € Ll(J) such that 

\9(i^,y,z)\^h(t)onD, 

then the equation 

(4.2) ti'" = £ ht(t)ul'-l\t) + g(i, ti, ti', n") 
t=sl 
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has a solution satisfying (1.2). 

Lemma 3 (On a priori estimates). Let r i ,r 2 € R, rx < r2, g € Car(J x R), 
A € Lq(r\, r2), and iet a; € C(0, +00) be a positive function satisfying (3.2). 

Then there exists r* € (1, +00) such that for any function u € AC2(J) the condi­
tions (1.2), 

(4.3) n ^ u'(t) ^ r2 for every t 6 J, 

(4.4) ti'"sign u" ^ u>(\u"\)gi(i, «OM«0(1 + \u"\)Uor a.e. t 6 J, |ti"(t)| > 1, 

imply the estimate 

(4.5) |ti"(y)| < r* for every t € J. 

P r o o f . Let G be the set of all functions t; € AC2( J) satisfying (1.2) and (4.3), 
Then 

(4.6) \v(t)\ ^ <r, where tr = (6 - a)max{|ri| , |r2|} . 

Therefore gQ(t) = sup{|^(t, v(t))\: v £ G) € Lx(J). Let us put 

(4.7) *0 = %f||LF(J)||fc|U.(rlir>) 

and 

(4.8) n(*) = / - A - f o r * € R . 
0 

Prom (3.2) and (4.8) it follows that Q is an odd function, Q(R) = R and the inverse 
mapping fi-1 exists. 

Let ti e AC2(J) satisfy (1.2), (4.3) and (4.4). By (1.2), there exists a0 € J such 
that 

t*"(ao) = 0. 

Let us suppose that there exists t\ G (<*o> 6] such that 

(4.9) |u"(fi)| > ku 

where 

(4.10) *1 = tV1(Q(l) + * B ) . 
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Let [ai,6i] C [ao,6] be the maximal interval containing tx in which |ti"(*)| ^ 1* ̂ e t 

*i € (ai,6i] be such a point that |ti"(*i)| = <?i = max{|ti"(t)|: ax ^ t < 61}. 'Then 
(4.4) yields 

* - . . . . . , v * -

/w !^/' iw* ( , ' (« l t«v 

In the case u"(t) > 1 on [ai,«i], using the Holder inequality, we can obtain Q(<ri) -
Q(l) ^ Jb0, which implies, by (4.7), (4.10), 

(4.11) ^ 1 ^ * 1 . 

Inequality (4.11) contradicts (4.9). Similarly, supposing u"(t) < — 1 on [ai,*i] we 
can get Q(—<Ti) - ft(-l) ^ - t o and 80 - <r\ ^ -Jbi, which also contradicts (4.9). 
Therefore we .have 

(4.12) |ti"(t)| ^ kx for each t G [a0,6] and |u"(a)| ^ kx. 

Now, let us auppose that there exists t2 G (a, ao) with 

(4.13) K(t2)|>r*, 

where r* = fi""1 (£2(1) + 2*0). Let [02,62] C [a,(*o] be the maximal interval contain­
ing t2 in which |t*"(i)| ^ Jbi. Let s2 G (02,62) be such that 

W(s2)\ = (T2 = max{|u"(OI: a2 ^ r ^ 62} . 

Then (4.4) yields 

yv^osig 
y wflti" 
03 

ttw(t)signtt"(0 
(01) 

dť < Jb0. 

In the same way as in the first part of the proof we get either 0*2 ^ r* or — ̂ 2 ^ — r*. 
Both of the inequalities contradict (4.13). Hence 

(4.14) \u"(t)\ ^ r* for every t G [a, a 0 ]. 

From (4.12) and (4.14) the estimate (4.5) follows. • 
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5. AUXILIARY EXISTENCE RESULT 

Proposition. Let <T\ be a lower solution and <r2 an upper solution ofBVP (1.1), 
(1.2) and <r[(t) ^ <r2(t) on J. Let there exist ho € Ll(J) such that on D the function 
f satisfies 

(5.1) \f(t, x, y, z)\ ^ h0(t) for <r[(t) < y ^ <r'2(t). 

Then BVP (1.1), (1.2) has a solution u satisfying (3.3). 

Proof . Let us choose m £ N and put (on D) 

w\(t, x, y, z) = -m(y - <r[) \f(t,<T\,<T[,<T'{) - f(t, a(t,x),<r[, z) - — 1 , 
t mJ 

w2(t, x,y,z) = m(y- ai,) \f(t,<r2,a'2,o%) - f(t,a(t,x),a,,*)+—], 
i mJ 

í C\ 1 
f(t,<r\,<T[,<T'{) for y ^ <T[ 

m m 

f(t, a(t, x), <т'ъ z) + w\ foг <т[ < y < <т[ 
m 

(5.2) fm(t,xlУ,z)={ f(tMh^),y,z) for <г[ ^ y ^ <ŕ2 

f(t,a(t,x)1<r'2)z) + W2 fova'2 <y<<r'2 + — 
m 

C\ 1 
f(t, <r2, <T'2, <r'2') + — for y ^ <r'2 + —, 

m m 

where c\ is defined by (2.4) and oi(t,x) by (2.1). 
From (5.1), (5.2) it follows that 

\fm(tix,y,z)\^hQ(t) + ^ on D. 
m 

Let us consider the differential equation 

(5.3) « ' " = - + / m (. , «,«',«"). 

According to Lemma 2, BVP (5.3), (1.2) has a solution um. We shall show that um 

satisfies 

(5.4) <(t)-^$«m(t)ś<r2(t) + ^ 
m 
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for every t € [a, 6]. Put 

„(<) = (-iy ҝ.(ť)-<r;(ť))-m-

for < € [a,b] and i € {1,2} . Then, by (1.2), (2.3), 

(5.5) v(a) = v(b), v'(a) > v'(b). 

Let t>(<) > 0 for every < e [a, b]. Then, by (2.2) and (5.2), we have 

v"(t) = ( -1 ) ' « ( < ) - < ' ( < ) ) 

= (-1)< ( ^ + •*-<*• " - <•' <> - ^ W ) > ^ ^ + m > JS-" 

for a.e. t € (a, 6). Thus v'(6) - v'(a) > i~r^, which contradicts (5.5). Therefore 
there exists toi € (a, 6) such that 

(5.6) v(*0) < 0. 

First, suppose that (5.4) is not satisfied on (*o,6), i.e. there exists t* G (*o,6) such 
that 

(5.7) v(im) > 0. 

Let (a,/?) C (t0,6) be the maximal interval containing t* in which v(t) > 0. Then 
v(a) = 0, v'(a) ^ 0 and 

(5.8) v"(t) > — for a.e. t G [a,/?]. 

If /J < 6, then v(p) = 0 and v'(/?) ^ 0. On the other hand, by (5.8), v'(/?) > *£=£* > 
0, and we get a contradiction. Therefore /? = 6 and, according to (5.5), 

v(6) > 0, v'(6) > 0, v(a) > 0, v'(a) > 0. 

Let (ayao) C (<Mo) be the maximal interval in which v(t) > 0. Analogously as above 
we can prove a0 = to and v(t0) > 0, which contradicts (5.6). Consequently, 

(5.9) v(t) <£ 0 for every t G [to, 6]. 

In view of (5.5) and (5.9) we have v(a) ^ 0. 
Now, suppose that (5.4) is not satisfied on (a,to), i.e. there exists t* G (a,to) 

fulfilling (5.7), and let (a,/?) C (a}to) be the maximal interval containing t* in which 
v(t) > 0. Analogously as above we get v(t0) > 0 which contradicts (5.6). Hence 

(5.10) v(t) <£ 0 for every t G [a, t 0] . 
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From (5.9) and (5.10) it follows that u'm satisfies (5.4). Therefore 

(5.11) K,(<)| < C! + - for every t € [a, ft]. 
m 

Hence, by (1.2), 

(5.12) |tim(<)| < (b - a)(ci + - ) for every t € [a, 6]. 
m 

Integrating (5.3) from i to oo, where ao € (a, ft) is such that u"(ao) = 0, we get 

(5.13) \um(t)\ <. r0 for every t € [a, ft], 

where r0 = (£)(ft - a)(cx + £ ) + (£)(* - a)) + / A0(0 <ft. 
a 

From (5.11), (5.12) and (5.13) it follows that the sequences (tim)~=1 , («m)m«i»-
and (tijjj)^.-! are uniformly bounded and equi-continuous on [a, 6], and by the Arzela-
Ascoli Theorem, without loss of generality, we may suppose that they are uniformly 
converging on [a, 6]. By (5.2), (5.3) and (5.4), the function u(t) = lim um(t) on 

ffl-r*O0 

[a, 6] is a solution of BVP (1.1), (1.2) and satisfies (3.3). D 

6. PROOFS OF THEOREMS 

P r o o f of Theorem 1. Without loss of generality we may suppose Ci > 0. Let 
r* be the constaant found by Lemma 3 for r\ = —ci, rj = ci. Let us put 

po = r* + co + c i+c 2 , 
f 1 for 0 ^ 8 .^ po 

X(po,s)= { 
8 

2 for po < * < .tøo 
PQ 

{ 0 for 8 ^ 2#>, 

(6.1) »(*,«,y,*) = x(po,W + M + W)/(«,«,»,*i)«iA 

and consider the equation 

(6.2) u'" = iKM,t*',ti''). 

Since max{|<r,(t)| + |<r<(i)| + |<rj'(t)|: a ^ t < 6} < po for i = 1,2,<ri is a lower solu­
tion and <r2 an upper solution of BVP (6.2), (1.2). Further, \g(t,x,y,z)\ ^ g*(t) on 
.D, where 

g*(t) = sup {|/(t,*, y, - ) | : |*| + \y\ + |* | ^ 2po) € I l ( J ) . 
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Thus, by Proposition, BVP (6.2), (1.2) has a solution u satisfying (3.3). Conse­
quently, u fulfils (4.3) for r\ = - c i , r2 = c\. 

According to (3.1), (6.2) we have 

ti"'signu" = x (po, J > ( 0 W l ) /(t,ti,ti',ti'')signti" 

^u(\u"\)gHt,u)h(u')(l + \u"\)i 

for a.e. t G (a, 6), |ti"(<)| ^ 1. Therefore, by Lemma 3, u satisfies (4.5). Consequently, 
according to (1.2), (4.3), (4.5) we get 

(6.3) K«) | + |ti'(OI + |ti"(t)| < Po • for every t G J. 

In view of (6.1)-(6.3), u is a solution of BVP (1.1), (1.2). • 

P r o o f . ofTheorem2. Let tii, u2 be two solutions of (1.1), (1.2). Put v = txi—1*2. 
Then 

(6.4) t;(c) = 0, v'(a) = v'(b), v"(a) = v"(b). 

By (6.4) there exists to G (a, b) such that 

(6.5) v"(t0) = 0. 

Now, suppose that v'(t) > 0 for every t G [a, 6]. Then v(t)- sign (t — c) ^ 0 for every 
* € [a, 6], and (3.6) implies 

(6.6) v'"(t) + h(t)\v"(t)\ > 0 for a.e. t G (a, 6). 

Inequality (6.6) can be written in the form 

(6.7) [ (exp / h(s) ds) v"(t) J > 0 for a.e. t G (a, 6), 

where h(t) = h(t) • sign t/'(t). Integrating (6.7) from a to to and from t0 to 6 we get 
v"(a) < 0 and v"(b) > 0, which contradicts (6.4). So there exists t\ G (a, 6) such 
that 

(6.8) t/(*i) = 0. 

Put a = (}(v'")2(t)dtf. Then, by Lemma 1, ||t;"||L3(J) ^ a • ^ ^ , |K| |L , ( J ) ^ 

«r(---^--)2
) ||»||L»(j) < <r(2it2l)3. Therefore we can find from (3.7) 

^ f ,2(6-- a ) . , a , 2 ( 6 - a ) x 2 . 2 ( 6 - a ) , ] 
ff<<r a ( J ^ _ Z ) 3 + / ? ( J ^ _ i ) - + 7 (J^__Z) . 

L 7T 7T TC J 

Consequently, by (3.5), <r = 0. Thus v(t) = 0 for each t G [a, 6]. • 
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P r o o f of Theorem 3. Let v be the function from the proof of Theorem 2 and 
let us suppose that there exists i G (a,6) such that v'(i) > 0 and (a,/?) C (a,6) is 
the maximal interval containing i with v'(t) > 0 for each t G (a,/?). From the first 
part of the previous proof we can obtain (a, /?) ^ (a, 6). 1. Let a > a, /? < 6. In this 
case the inequality (6.7) is fulfilled on (ay0) and 

(6.9) v'(a) = i/(/?) = 0, «"(<*) ^ 0, *"(/?) < 0. 

Therefore there exists ax G (<*,/?) such that v"(ai) = 0. Integrating (6.7) from a to 
ax and from ax to /?, we get v"(a) < 0 and v"(/?) > 0, respectively. This contradicts 
(6.9). 2. Let a > a, 0 = 6. Then (6.7) is satisfied on (a, 6) and 

(6.10) v'(a) = 0, v'((3) > 0, v"(a) ^ 0. 

If v"(b) ^ 0, then there exists 6i G [a, 6] such that v"(6i) = 0. Supposing bx > a 
and integrating (6.7) from a to 6i, we get v"(a) < 0—a contradiction to (6.10). 
Analogously, supposing 6i < 6 and integrating (6.7) from bx to 6, we get v"(6) > 0— 
a contradiction to (6.10). If v"(b) > 0, then from (6.4), (6.10) the inequalities 

(6.11) v"(a) > 0, v'(a) ^ 0 

follow. According to v'(a) = 0, we have ai G (a, a) such that v'(a<i) > 0, v"(a2) = 0, 
v'(t) > 0 on (a, 02). Thus (6.7) is also satisfied on (a, 03) and integrating of (6.7) 
from a to a2 we have v"(a) < 0 which contradicts (6.11). 3. The case a = a and 
0 < 6 can be proved similarly. Thus we have proved v'(t) = 0 on [a, 6] and, in view 
of (6.4), v(t) = 0 on [a, 6]. The uniqueness is proved. • 
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