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Abstract. Various new:criteria for the oscillation of nonlinear neutral difference ‘equations
of the form

AMan =z, ) HgnlzacelSsgnza =0, =123 andc>0,

are established,
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1. INTRODUCTION

Tet N* be the set of all non-negative intergers, and let A\ be'the first order forward
difference operator; Az, = Zpt1 — Ta; 1€ N For i > 1, let A’ be thei-th order
forward operator; Alz, = A(A*’“lxn).

Consider the neutral difference equations

(E) A = Toon) o [Taop|S 80T, =0, $=1,2,3,
and
(N2) ATy = 2aon) = o] Tns | S8R, =0, 121,23,

where {g,} is a'sequence of non-negative real numbers, c is a positive constant, and
h and g are positive integers. A solution {z,}, n.€ N* of the equations (E;) (or of
(N3)) is said ‘to be oscillatory if for-every ng = 0, there exists an n 2 ng such that
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Zn Zni1 & 0. Otherwise the solution is called nonoscillatory. The equation (E;) is
called oscillatory if every solution of (E;) is oscillatory.

The problem of obtaining sufficient conditions 'under which all the solutions or
all the bounded solutions of certain classes of neutral delay difference equations are
oscillatory has been studied by a number-of authors. ‘A large portion of the results
reported have been for neutral difference equations of the form

®) ATn + 0Tnon) + G lTaglS sEn20, =0, P21, >0,

where a # —1. Here, we refer to {1-11] and the references cited therein.

Much less is known regarding ‘the oscillatory behavior of (E;) when ¢:= 1, though
a number of authors have considered this problem: For recent works in this direction,
we refer the reader to [1, 4, 8], It seems that in these results the condition

@ > a=x

F=no 20

is-essential for the oscillation of the equation (Ey) for ¢ = 1. In view of Theorem 1
of [12], for the continuous analogue of (E,) with ¢ =1, namely

£ @0 -2t~ ) + a2l ) =0.

where q: [to, 00) — (0, 00) is continuous and g and h are positive real numbers, one
can easily show that (E1) with ¢=1 is oscillatory if

B o o0,
(1.2) Z Nn Z g = 00,
j=n

Very little is known, as far as we have gathered, regarding the oscillation of non-
linear equations (E;) and (N;), i = 1,2,3. The purpose of this paper is to. establish
some new criteria for the oscillation of all solutions (all bounded solutions) of (E;)
(of (N3)), 4 =1,2,3. The results of this paper can be applied to superlinear (¢ > 1),
linear (c = 1) and sublinear (0 < ¢ < 1) equations of type (E;) and (N;). We would
also like to point out that the result obtained for (E;) extends the two oscillation
criteria mentioned above.
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2..0scILLATION OF (E,), i=1,2,3

First we investigate the oscillation of (E3) by considering two cases:

o
Case 1:Forn>ng 20, Qn= 3 g <00
i=n

Theorem 2.1. If

=
(2.1 3 (nQ4)4n = o0,
n=no
then (E3).is oscillatory.
' Proof. Let {z,} be an eventually positive nonoscillatory solution of (B3). Then
there exists ny 2 ng such that ,_, > 0 forn > ny, where o = max{g,h}. Let

(2:2) Yn = Tn = Tnoh.

Then
(2:3) Ay, = g, <0 for n>mn,

which implies that Afy,,i = 0,1,2 are eventually of one sign and that A%y, is
nonincreasing for n 2 n1 and is eventually positive. There ave four cases to consider:

(A) yn <0and Ay, <0 eventually,

(B) 4n <0 and Ay, >0 eventually,

(C) wn > 0and Ay, < 0 eventually,

(D) 4y >0 and Ay, > 0 eventually.

Assume (A) holds. Since y.,, is nonincreasing for n > ny, there exist a constant
¢i > 0and N = n; such that

Yn <=y foron 20N,

Thus,
IN = YN FIN—h < —C1 + LNk,

or
INGR ZYN+hFIN <mep +an < =20 TNy

Hence for any integer m >:1
TNamh < =(mA1)o1 + 2y —> =00 88 M 00,
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a contradiction.
Assume (B) holds. Since A%y, > 0 eventually, we must have y,, >0 eventually; a
contradiction:
Assume (C) holds. Here we have
T > Ty fors nizing

Hence; there exist a constant b > 0 and Ny 2 ny + ¢ such that

Tpmg 2 bl for nz Ny

Then
(2:4) APy, < =b%q, for n =N,
and hence
s=1
Ay, =Ny, <=0 Y g n N
d=n
Now, letting 's — oo we have
(2:5) APy, 200, for n 2 Np

In view of the monotonicity of Ay, and A%y, we obtain for every my > mi >k = Ny

(2.6) Y2 (my =k + D(=Dym,),
and
27 — Ay, 2 (ma =iy + 1) A,

Thus, for n 2 Ny > Ny + 2h, we have

(2.8) Ynozh = (A + 1P A%,
Using (2.8).in (2:5), we obtain

29 Yn 2 C Quian, 2 Na,
where C = b¢(h + 1)2.
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Let Ny (m ~2)h € n < No+ (m = 1)h, then

Ln

: 2 C(Quion + Qnint - Qrlmeiin)  Tnomn
2.10) -

C(m=2)0n.
From (2.3) and (2.10) we obtain
(2.11) Ay, € —C(m =2)° Q5 gn = = M.

In view of the fact that 2 — h-asn — oo, we have

i Mo oo fm=2)" ce
(212) CORITE & ¢ < = ) oo as noh oo
Clearly (2.1) and (2:12) imply that
(2.13) 3 M=
n>Na

Then(2.11) and (2.13) yield
Ay, = =00 as ni= 00,

which contradicts the fact that A%y, > 0 eventually,
Assume (D) holds. There exist a constant k> 0.and n2 2 ny such that

(2:14) Lnig B Wneg 2k dorin = ny
By Lemma 4.1 of [5], there exists an M* > n» such that
(2:15) Ayn > %n Ay, for nz MY

Replacing n with § 2 M* in (2:3), summing fromn > M to s — 1(2 n) and letting
8= 00, we ‘obtain

(2:16) Ay 2k Qu, nz M
Using (2.15) in (2.16) we have
(2:17) Ayn 2 %k”an no= M
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Now, for m — 1 > M* we have
(2.18) Tm Z Ym 2 Ym — Ymo1 25k (10— 1)Qm,

and hence :
Thg 23k —g-1)Q, for n>M*4g+1,

There exists M7 > M*+ g+ 1 such that
(2.19) Tnog 2 $RENQn for n> M.

Using (2.19) in (2.3) and summing from My to M —1 > My, we have

Mot
0< A% € Dysg — (393" (1Q.)°gu — —o0 a5 M ¥ o0,
Sy

a contradiction. This completes the proof.

[}

From the proof of Theorem 2.1, one can easily extract the following two oscillation

criteria.

Carollary 2.1. If condition (2.1) holds, then equation (E;) is oscillatory.

Proof. The proof is contained in the proof of Theorem 2.1 cases (A) and (C)

and hence is omitted.

Corollary 2.2. If

0. kg—1 £
(2.20) >ow ( > nQn) =0,

k=nyZnototl n=ng

then every unbounded solution of the difference equation
(E3) Ayt [Yn—ol” sEDYn—g =0, >0,

where ¢, and g are defined as in the equation (Es), is oscillatory.

Proof. The proof ig similar to that of Theorem 2.1 (D) and hence is omitted.

The following ‘example is illustrative.
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Example 2.1, Consider the difference equations
(Fs) AYzn = Taon) + (1/0)|20iol’ 580 %ng =0, c> 0, i=13and n > 1,

where h, g are nonnegative integers, h >0 and a > 1. One can easily check that

Qn=3"(1/5%) 2 1/(a— D>,

i=n

and hence condition (2.1) is satisfied if 1 < o g 2521,
Thus we conclude that (F;), ¢ = 1,3 are oscillatory for A > 0,¢ > 0 and all a and
csuch that 1 < a < 2:%1

Case: 2. We consider (E3) when

(2.21) Z gj =00.

J=no
Theorem 2.2. If condition (2.21) holds, then (Es) is oscillatory.

Proof. Let 2, be an eventually positive solution of (Ez), say z, > 0 forn >
ng > 0. There exists ny > ng such that z,_, > 0 for n > n; where a = max{g, h}.
Define y» by (2.2) and as in the proof of Theorem 2.1, we see that Aly,, i=10,1,2
are eventually of one sign and the four cases (A)-(D) hold. The proofs of cases (A)
and (B) are similar to those of Theorem 2.1 (A) and (B) and hence are omitted.
Next, we consider the cases (C) and (D). In both cases we see that A%y, > 0 and
Yn > 0 eventually. From (2.2), we have 2, > &, for n > n;. Hence, there exist
b.>:0 and no 2 ny such:that

(2.22) Tpog 2 b for nmng.
‘Then,
(2.23) APy, < =bign for nzms.

Summing both sides of (2.23) from no to.m — 1(Z ns), we obtain

me1
O<A23/M<Azynz—bc, z Qn 00O AS NIy 005
n=na
a contradiction. This completes the proof. 0
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The following two criteria are immediate:
Corallary 2.3. If condition (2.:21) holds, then (Ex1) is oscillatory.
Corollary. 2.4. If g, = g, q is a positive real number, then(E;), ¢ = 1,3 are

oscillatory.

Now, ‘we pose the following question: “Is condition (2:21) {alone) a sufficient
condition for the oscillation of (E2)?” The following example gives a negative answer
to this question.

Example 2:2. - Thesecond order neutral difference equation
(Fy) A zn = peg) + (=D~ e 0w, , =0,

has a nonoscillatory solution {e™"};
Therefore, our objective here is to present the following criteria for the oscillation

of (Ez).

Theorem 2.3, If g-> h, condition (2.21) holds and every bounded solution of the
difference equation

(E%) D% — qulzne (g 58D Zn gty =0,

is'oscillatory, then (Es) is oscillatory.
Proof. ‘Let {z,} be an eventually positive solution of (Es); say 'z, > 0 and
Tng > 0 for n 2 ny 2 ng 2 0. Defining y, by (2:2) we have, from (Es),

(2.:24) Ay, = —guat <0 formzng,

which implies that {Ay,} is nonincreasing for n > ny.

As in the proof of Theorem 2.1, we consider the four cases (A)=(D).

Proof of case (A) is similar to that of Theorem 2.1 (A) and hence is omitted.
(B) Suppose y, < 0.and Ay, >0, n = ny. Note that

0 < Uy = =Un = Tnih —Tn < Tn_k;

and hence
T > 0ngn for on>ng.
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From (2.24), we have
Ay 2, (v,l_(gvh))c for n=mny

Now; in view of Theorem 2 of [7] and its' proof, we see that (Ej) has eventually
positive solution, a contradiction:

(C) Suppose ¥, > 0 and Ay, <0, n. > ny. Since A%y, < 0;n > ny, one can easily
see that v, — —00 as nn.— 00, a contradiction.

(D) Suppose ¥, > 0 and Ay, >0, n 2 ny. From (2.2), we see that z, > z, 5
for. n 2 ny and hence there exists b > 0-and ny' > ny such that (2.22) holds. Using
(2.22) in (2.24) and summing fromny to (m — 1)(= ny), we have

m—1
0. < Ay € DYy — b° Z Gn — 00 a5 T 00,
n=ny
a contradiction. This completes the proof. 0

The following corolloary is immediate.
Corollary 2.5. Let g = h, c =1 and
(2.25) gn2.q >0 for nzng >0

Then (E5) is oscillatory if one of the following conditions is satisfied:

(2.26) gzl and g=h
4%+
(2.27) q> mﬁ where k=g—h>1,

Proof. Follows from the proof of Theorem 2.3 above and Corollary 2.2 (ii) and
(i) of [7]. o
The: following result deals with the oscillatory: and asymptotic behavior ofall

solutions of (Ez).

Corollary 2.6, If condition (2,21) or (2.25) holds, then every solution {z.} of
(Ez) is either oscillatory or @, — 0 monotonically asn — oo.

Proof. Let {z,} be aneventually positive solution of (Ey) and let 3, be defined
asin (2.2). Proceeding asin the proof of Theorem 2.3, we see that the cases (A}, (C),
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and (D) are impossible. Next, we considerthe case (B) and suppose that 4, — ¢, 2 0
as'n — 00. We claim that ¢; = 0. To show this, ‘assume that ¢1->0. Then there
exists an ng > ny such that

(2.28) Ty 2 ge for nizmg.

Using (2:28) in (2.24) and summing from 7, to m — 1{2 ns), we obtain

m=1
0 < Aym € AYn, — (31)° Z Gn = =00 8BS M~ 00,

n=ny
a contradition. ]

Remark 2.1. Thehypotheses of Corollary 2.6 are satisfied for (F3), and hence,
we see that =, = e”" = 0-monotonically as n'— co. :

Remark 2.2. The characteristic equiation associated with the linear difference
equation

(L) A (@~ Ty ) F qTng =0, $=1,2,3,

which is a special.case of (E;), i.=1,2,3 has the form

(C) (m=1)f 1-m™M)+gm =0, i=17223,

where ¢ is a positive real constant and g and h are positive integers. By Corollary 2.1,
one may conclude that (C;), i =1 and 3 have no positive roots, while, by Corollary

2.5, one may observe that (C») has no positive roots if either condition (2.26) or
(2.27) is satisfied,

3. BOUNDED OSCILLATION OF (N;), 4=1,2,3

The results of this section are concerned with the oscillatory behavior of ‘every
bounded solution of (N;), ¢ =1,2,3.

Theorem 3.1. If g > h-and every bounded solution of each of the equations

A
i

(Hy) NPz, + (—-i—q) 0o |2n—yl® SER 2 = 0,

and

(Hs) A%+ gy (om | SR, gy = 0,
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is oscillatory, then every bounded solution of (N3) is oscillatory.

Proof. Let {z,} be a bounded and eventually positive solution of (Na), say
Tp, >0 and 2,2, > 0 for n. > ny 2 no > 0. Define y,, asin (2.2). Then (Ng) takes
the form .

(3.1) DAYy, =gyt 20, for nzm,

and hence Aly,,, i = 0,1,2 are eventually of one sign. Since z,, is bounded, A*n <0
eventually, Therefore, the following two cases are considered:
(I). Ayn > 0 and ¥, < 0 eventually.
QI) Ayn >0 and y,, > 0.eventually.
I. Assume Ay, > 0 and y, <0 for n > ny > . Note that

(3.2) 0 < U = mYn = By = T < Tpp:

Using (3.2) in (3.1), we have

3.3) Alv, g vﬁ_(g_h) <0, n=mns:

Now, in view of Theorem 1 of {7} and its proof, (H) has a bounded and eventually
positive solution, a contradiction.

1. Assume Ay, > 0 and y, > 0 forn > ns 2 n. By Lemma 4.1 (d) of [5], there
exists ng 2 no such that

e
Yn—g.2 —z—g-Ay"_g for: m.>ns.

From (2:2), we see that

n—g

(3~4) Tp—g Z 2

Ayp=g for n2ns.

Using (3.4)'in (3.1), we have

(3.5) Ay, > ( 5 g) Gntiy_g for m > ns,

where uy, = AYn >0, n 2 ng: The rest of the proof is similar to that of Theorem
2.3 (B) and hence is omitted. o
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Theorem 3.2, If g > I, condition (2.21) (or (2.25)) holds and every bounded
solution of (H,) is oscillatory; then every bounded solution of (Ng) is oscillatory.

Proof. Let {z,} be a bounded and eventually positive sclution of (N3) and
let v be defined as in (2.2). As'in the proof of Theorem 3.1, we see that case (I)
is impossible, and so, we consider case (II). From' (2.2) and the fact that y, » 0
for n'> ny, there exist no = ny and b > 0 such that (2.22) holds for n 2 n. In
view of condition {2.21) (or (2.25)), using (2.22) in (3.1), and summing from 1, to
m —1(>ns) we have

me1
0> A% 2 A%, 405 57 gu oo as m—r oo

n=na
a contradiction. ; 0

From the proof of Theorem 3.1, we have the following oscillation result for (N;).
Corollary 3.1. If g > h and the equation
(Hg) Avn + @l (g 88RO () =0,

18 oscillatory, then every bounded solution of (N1) is oscillatory:

The following result deals with the oscillatory and asymptotic behavior of every
bounded solution of each of the equations (N;), 4= 1,3,

Corollary 3.2. If condition (2.21) (or (2.25)) holds, then every bounded solu-
tion {z,} of each of the equations (N;), 4 = 1.3, is either oscillatory or ¢, — 0
monotonically asn — 00:

Proof. Let {z,} be a bounded and eventually positive solution of (N3) and let
Yn be defined as in (2.2). As in’ the proof of Theorem 3.2, we see that case (IT) is
impossible. Now, we consider (I), and as in the proof of Theorem 3.1 (I), we obtain
(3.1); Suppose @, = 1 = 0asn ~ co. We claim that ¢, = 0. If ¢ > 0, there exists
ny > ny such that (2.28) holds for n > ny. Using (2.28) in (3.1) and summing from
np 1o m —1(> 1) we have

el
05 Alym 2 D2y, + ()¢ Z G =+ 00 as M 00,
n=ns
a contradiction. ]

The following example is illustrative.
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Example 3.1. - The difference equations
(F3) A= pen) = (1= e") (et~ 1)5 0T, 1 =13,

where h and g are nonnegative integers, i >0, has a nonoscillatory solution z;, =
e — 0-monotonically asn — oo, All conditions of Corollary 3.2 are satisfied:

Remark 3.1. Proofof (Ny) is similar to that of (Ns) and hence is omitted.

The following result is concerned with the oscillation of all bounded solutions of
(Nz)-

Theorem 3.3. Every bounded solution of (N,) is oscillatory if one of the following
conditions is satisfied:
(i) Condition (2.1).
(ii) Condition (2.21) or (2.25).
(iil) “ Every bounded:solution of the difference equation

(Hy) Az = aalzaglo sgnz, s, =0,
is oscillatory.
Proof. Tet {z,} be a bounded and eventually positive solution of (N3), say

@p > 0and 2,4 >0 forn 2 ny 2 no 20 and o = max{g,h}. Let y, be defined as
in (2.2). Then (Ns) takes the form

(3.6) APy =quan., for nzn.

Since z,, is bounded, we must have Ayy-< O-eventually and so y, must be eventually
positive.” Assume (2.1) holds. There exist ny > n, and b > 0 such that (2:22)
holds:for n = n,. Replacingn with j. > no in (3.6) and summing from n(> ns) to
m = 1(=n), we have

m=1
(3.7) =DYn Z Ay — Byn 2 0° Z 4= 0@y as m— oo
=
or
Y 2 Yn = Ynii 2 0Qn for nZn,.

The rest of the proof is similar to that of Theorem 2.1 (C) and hence is omitted. :

Next, assume (i) holds.. Using (2:22) in (3.6) and summing from n(z ns) to
m — 1(Z n);, we have

Cmet

0> Ain 2 ADyn, +0° Z Q200 a8 M = 00;

n=ny
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& contradiction. Finally assume (iii) holds. From (2.2) and the fact that y, > 0, n >
ny, we have &, 2 y, for n. 2 n;. Thus

Azyn Zqn ?}f._.g for mZzmne 2n.

The rest of the proof is similar to'that of Theorem 2.3 (B) and hence is omitted. [
From Theorems 3.2 and 3.3 above and Corollary 1 of 7], we have the following
result:
Corollary 3.3. For the linear difference equations

(€53 ATy = Tnin) =q Tny, 121,23

where q is a positive real number, h >0 and ¢ > 0 are integers; we have:
(i) Every bounded solution of (L}) is oscillatory if ¢ > 1 for g = h and

o

q>a—1—k—)ﬁ+—” for k=g¢g-h>1

(i1) Every bounded solution of (L}) is oscillatory.
(iii) Every bounded solution of (L3) is oscillatory if g > 1 for g = h and

27 kk

Q>W for k=g—h>1

The following examples are illustrative.

Example 3.2. Consider the difference equations
(F7) A (2 = Taon) = (L= M-z, , =0, i=123,

where h-> 0 and g > 0 are integers. All conditions of Corollary 3.3 are satisfied if
92 h'>1 and hence bounded solutions of each of the equations (F}), i =1,2;3 are
oscillatory. 'We. note that each of the equations (Ff); i'=1,2,3, has an unbounded
nonoscillatory solution z, = e™

Example 3.3:.  Consider the neutral difference equation
(Fq) A% (Bp = Thon) =078 |Zneql® SN0, a>1,c>0;

where A >0 and g > 0 are integers. ‘As in Example 2.1, we see that all bounded
solutions of (Fy) are oscillatory by Theorem 3.3 (i).
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Remark 3.2

1. The results of this paper are presented in a form which is essentially new. These
results are applicable to superlinear, linear and sublinear equations of type (E;)
and (N;), i=1,2,3

2. The results obtained here are concerned with the delay neutral difference equa-
tions (i.e., g, h > 0). The results for advanced equations of type (E;) and (N;),
i=1,2;3 (i.e;; g,h < 0) can be obtained similarly. Here, we omit the details;

3. It ‘would be interesting to obtain results similar to those presented here for
equations (E;) and (N;), ¢ > 3, as well as those for the oscillation of all solutions
of equations (N;), i > 1.
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