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Summary. In this paper we generalize a result of V. N. Salij concerning direct product 
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All lattices under consideration in the present note are assumed to have the least 

element. When no misunderstanding can occur, this element will be denoted by 0. 

Let U be the class of all uniquely complemented lattices (i.e. lattices having the 

least and the greatest element in which each element possesses one and only one com­

plement). The importance of the class U is emphasized by the well-known fact that 

each lattice can be isomorphically embedded into a lattice belonging to U (Dilworth 

[1]). 

For a lattice L we denote by C.Q(L) the system of all convex sublattices Li of L 

with 0 e Li. Let U\ be the class of all lattices L such that L can be expressed as a 

union U Li, where each L; (z £ J) is a complete lattice belonging to U n c0(L). 

A lattice L is called a generalized Boolean algebra if for each 0 < x e L, the 

interval [0, x] is a Boolean algebra. 

In the present note the following theorem will be proved: 

(A) Every lattice L belonging to Ut is isomorphic to a direct product AL x BL 

such that Ai is an atomic generalized Boolean algebra and Bi is a lattice 

which belongs to U\ and has no atoms. 

This generalizes a result of V. N. Salij (which was announced in [2] and published 

with a complete proof in [3]), namely, 
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(B) (Salij) Every complete uniquely complemented lattice is isomorphic to a di­

rect product of a complete atomic Boolean algebra and a complete atomless 

uniquely complemented lattice. 

1. D I R E C T P R O D U C T DECOMPOSITIONS 

Let L be a lattice and let <p be an isomorphism of L onto the direct product Ax B 

of lattices A and B. It is obvious that the lattice L is complete if and only if both 

A and B are complete. If z e L and <p(z) = (zi,z2), then we denote 

z,=z(A,<p), z2 = z(B,<p). 

When <p is fixed, we sometimes write z(A) and z(B) instead of z(A,<p) or z(B.<p), 

respectively. 

Under the above notation, let 

(A0,<p) = {zeL: z(B.<p) = 0}, (B0,<p) = {z e L: z(A,<p) = 0}. 

When no misunderstanding can occur, we write A0 and B0 instead of (A0,<p) and 

(B0,<p), respectively. Both A0 and B0 are convex sublattices of L and A0tlB0 = {0}. 

The lattice A0 is isomorphic to A; similarly, B0 is isomorphic to B. For each z e L 

there exists a uniquely determined element z[ in A0 such that 

z[(A,<p) = z(A,<p); 

similarly, there exists a uniquely determined element z!2 in B0 with 

z!2(B,<p)=z(B,<p). 

Denote <p0(z) = (z[,z2). 

The following lemma is easy to verify. 

1.1. L e m m a . Let L, A, B. <p and <p0 be as above. 

(i) <p0 is an isomorphism of the lattice L onto the direct product A0 X B0. 

(ii) For each z e L, 

z(A0) = max{t e A0: t^ z}, z(B0) = max{t eB0:t^z}. 

(iii) For each z e L, 

z = z(Ao)Vz(B0). 

(iv) Ifzx 6 Ao, z2 6 S 0 , z = z1 V z2, then z(A0) = z1 and z(B0) = z2• 

148 



From (ii) of Lemma 1.1. it follows that for each z £ L we have 

z e A0 <=> z(A0) = z, 

and similarly for BQ. 

Let X C L. We denote 

Xs = {y e L: y Ax = 0 for each .T e A'}. 

From 1.1. we obtain as a corollary: 

1.2. L e m m a . Under the notation as in Lemma 1.1 we have 

As
0 = B0, BS=A0, AS

0
S = A0, BSS = B0. 

A lattice is said to be atomic (or atomless, respectively), if each its nonzero element 

is a join of atoms (if it has no atom). 

If ip: L -> C x D is another direct product representation of the lattice L, then 

i>0,Co and D0 have an analogous meaning as fo,Ao and B0 above. 

1.3. L e m m a . Let us apply the same assumptions and notation as in Lemma 1.1. 

Suppose that the lattice A is atomic and that the lattice B is atomless. Let P be 

the set of all atoms in L. 

(i) P C .40 and each nonzero element of A0 is a join of some elements of P. 

(h) B0 = PS. 

P r o o f . We have already remarked that A0 is isomorphic to A and that B0 is 

isomorphic to B. Hence A0 is atomic and B0 is atomless. Let p G P. According to 

(iii) of Lemma 1.1 we havep = p(A0) Vp(B 0 ) . Since A0CiB0 = {0}, either p(A0) = 0 

or p(-Bo) = 0. If p(A0) = 0, then p(B0) = p € B0, thus p is an atom of B0, which 

is a contradiction. Therefore p(B0) = 0, whence p £ A0 and so P C A0. Since A0 

is a convex sublattice of L and 0 G A0, we infer that each atom of A0 belongs to P. 

Hence (i) is valid. 

If b £ B0 and p € P, then clearly b A p = 0. Thus B0 C Ps. Let 0 < z e P*. 

If 0 < z(Ao), then in view of (i) there is p 6 P with p <. z(;4o) C Z, which is a 

contradiction. Hence z(A0) = 0 and so z £ B0. Therefore Ps C P 0 . Hence (ii) 

holds. D 
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Lema 1.3 yields as a corollary: ' 

1.4. Lemma. If a lattice L possesses a representation as a direct product 
of an atomic lattice and an atomless lattice, then this representation is unique in 
the following sense: if the assumptions from Lemma 1.3 hold and if, moreover, ?/>: 
L —> C x D is an isomorphism such that C is an atomic lattice and D is an atomless 
lattice, then C0 = A0 and Do = B0. 

2. PROOF OF THEOREM (A) 

We apply the notation mentioned in the introduction. Let L G U\. Hence there 
are Li (i G I) in U n c0(L) such that 

L=[)Li. 

Thus for each z G L there is x G L having the property that 

z g [0,x] = Li for some i G I. 

In view of Theorem (B) there are lattices A(x) and B(x) such that A(x) is atomic, 
B(x) is atomless, and there is an isomorphism ipx of [0,.T] onto A(x) x B(x). 

We construct the lattices A0(x) and B0(x) and the isomorphism tp0 as in Sect. 1 
with the distinction that we now have the lattice [0,a;] instead of L. Let P be the 
set of all atoms of L. 

2.1. Lemma. Let z and x be as above, z > 0. Tiien 

(i) z(A0(x)) = sup{p e P: p ^ z} , 

(ii) z(B0(x)) = max{£ G Ps: t ^ z). 

Proof . A0(x) is isomorphic to A(x), hence A0(x) is atomic. The case 
z(A0(x)) = 0 is trivial; suppose that z(A0(x)) > 0. Hence z(A0(x)) is the join 
of some atoms of A0(x). Since A0(x) is a convex sublattice of [0,.-c] and 0 G A0(x), 
each atom of Ao(x) belongs'to P. Hence (i) holds. 

B0(x) is isomorphic to B(x), hence it is atomless. Next, B0(x) is a convex sublat­
tice and 0 G B0(x). Therefore Pr\BQ(x) = 0. Thus bAp = 0 for each b G B0(x) and 
each p G P. In particular, z(B0(x))Ap = 0 for each p G P and hence z(B0(x)) G Ps. 
Let t G Ps,t ^ z. According to (iii) of 1.1 we have t = t(A0(x)) V t(B0(x)). More­
over, since A0(x) is atomic, we infer that i(^o(^)) = 0. Hence t = t(Bo(x)). In view 
of t < z we obtain t(B0(x)) ^ z(B0(x)), whence t ^ z(B0(x)). Thus (ii) is valid. • 
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2.2. L e m m a . Let x and z be as in 2.1. Let j 6 / , Lj = [0,;/], x ^ y. Then 

(under analogous notation as above) we have 

z(A0(x)) = z(A0(y)), z(B0(x)) = z(B0(y)). 

P r o o f . This is an immediate consequence of 2.1. • 

2 .3 . L e m m a . Let x and z be as in 2.1. Let A- 6 / , Lk = [Q,t], x ^ t. Then 

z(A0(x)) = z(A0(t)) and z(B0(x)) = z(B0(t)). 

P r o o f . There exists j £ I such that ; t V ) e Lj. Let L:j = [0,1/]. Now the 

assertion follows from 2.2. 

We denote by AL the set of all elements of L which can be expressed as joins of 

elements belonging to P. Next let BL = (AL)S. 

Let z G L. Let x be as above. Put 

Zl = z(A0(x)), z2 = z(B0(x)). 

In view of 2.3, Z\ and z2 do not depend on the particular choice of x, they are 

uniquely determined by z. Next, according to 2.1 we have ; i £ AL and z2 e BL-

Denote tp(z) = (zi,z2). Then ^ is a mapping of L into AL x BL. 

Let z1 G ,4/,, z2 e BL. There exists i(l) G / with L i ( 1 ) = [0,:c(l)] such that 

z1 V z'2 ^ x ( l ) . Put q = z1 V ; 2 . There exists an isomorphism ip^ 1 ' of [0, .i'(l)] onto 

A(x(l)) x B(x(l)). From 2.3 and 1.1 (iv) we obtain that qx = z1 and q2 = z2. Thus 

tp is surjective. 

Let s G L. There is i(2) G / with L i ( 2 ) = [0,a:(2)] such that zV s = x(2). By 

considering the isomorphism <^:l:(2) of [0,x(2)] onto A(x(2)) x B(x(2)) we get that 

the following conditions are equivalent: 

J (i) z < a, 
L (ii) ^i ^ Si and z2 ^ s2 . 

Therefore <p is an isomorphism. 

If i G I and L ; = [0, x], then A(a.-) is a Boolean algebra. Because L A is the union of 

j all such intervals A(x), we infer that LA is a generalized Boolean algebra. Moreover, 

P C L,,- Thus the lattice BL = (AL)6 is atomless. 

If Li = [0, a:] is as above, then B(x) G U. Since L B is the union of all such intervals 

- B(x) with 0 G B(x), the relation LB G Uy is valid. This completes the proof of (A), 

i • 
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Let us remark tha t if L is complete and if the greatest element of L is denotcc 

by x, then (under the same notation as above) we have LA = A(x), LB — B(x) 

hence both LA and LB are complete lattices, LA is a Boolean algebra and LB is at 

atomless lattice belonging to U. Hence (B) is a particular case of (A). 
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