
Kybernetika

Antonín Vaněček
Root m-tissues: Systems under an action of the m-parameters

Kybernetika, Vol. 21 (1985), No. 6, 436--456

Persistent URL: http://dml.cz/dmlcz/125886

Terms of use:
© Institute of Information Theory and Automation AS CR, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125886
http://project.dml.cz


KYBERNETIKA- VOLUME 21 (1985), NUMBER 6 

ROOT m-TISSUES: 

SYSTEMS UNDER AN ACTION OF THE m-PARAMETERS 

ANTONIN VANECEK 

The root loci of the characteristic polynomial of the degree n with the coefficients parametri­
zed polynomially by the m parameters are treated. All these root loci are embedded into the 
structure of the group action on the set. The image of the action of the additive group of m real 
parameters is the m-tissue: through every root there go the m tissues. The group action is used 
to compute the single- or multivalued differentials to obtain the root loci. The main use of these 
root /^-tissues is to check the robustness of the assigned roots of the characteristic polynomial — 
the boundary of these are generally 2m-gons, under the simultaneous change of the m parameters. 
The inverse problem to the root locus analysis is stated and solved as the shift of n — Q roots 
of the characteristic polynomial of the degree n on some paths to the prescribed n — Q positions 
and the computation of both the n — Q gains on these paths and the root loci of the Q remaining 
roots. 

0. INTRODUCTION 

Systems undergo changes. To design a feedback system an open-loop system is 
changed to the closed-loop one. During the performance of the feedback system 
the open-loop system changes again. Even before closing the loop, the open-loop 
system had been changed to make both the description and the design better treatable. 
To treat the changes, it has been proved useful to resolve the time changes into the 
frequency spectrum and to describe the system in the frequency domain or in the 
complex frequency domain and describe the changes by some parametrization of the 
former description. The transfer function between any two points of the system is 
a ratio of two polynomials. These are the polynomials both in the complex frequency 
and in some real parameters. Then to describe the changes of the system, it suffices 
to parametrize the real and complex conjugate roots of both polynomials. A simple 
affine parametrization of a denominator polynomial by a single parameter treats 
the classical root locus method. This method has been proved useful for decades 
and may be due to this the method changed a little from its very beginning. Usually 
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there is a list of a dozen rules of the root locus to help a paper and pencil root locus 
drawing. In the following we present a single rule (a multivalued differential) to be 
used for the computer drawing of the classical root locus on the screen. Moreover 
we give a classification of the classical root loci to classify all possible changes of the 
system under a change of an affinely-acting real parameter. The mentioned rule is 
also extended to hold even for any polynomial scalar- or vector-parametrization. 

The stability of the linear, finite-dimensional, time-invariant systems is determined 
by the eigenvalues of the state matrix or equivalently, eliminating the eigenvectors, 
by the roots of the characteristic polynomial which are identical with the eigenvalues. 
In this paper we shall be concerned with the latter description, nevertheless it had been 
the former one where the problem had been conceived and solved firstly - in the 
connection with the celestial mechanics [18]. For the present state of the solution 
of the former problem see the perturbation theory for linear operators in finite-
dimensional space [20], It has been treated also in the electrical circuits theory [14], 
[25] and lately even in the connection with the classical root locus [16]. 

These perturbation or sensitivity approaches are of the local nature only. We have 
observed no attempt to integrate the local behaviour to obtain the global results. 
But there is clearly a demarcation line between the local sensitivity and robustness to 
finite changes. The discrete-time deadbeat control which shifts the closed-loop eigen­
values to the single point farthest from the stability boundary is both maximally 
sensitive and maximally stable [32] or robust control. In this paper we shall be 
concerned with the derivation of the local equations and afterwards with their 
integration. We shall embed both the local and global behaviour into the action 
of the additive group of the real parameters to the system roots, giving the tissues 
of these roots. 

1. DERIVATION OF THE BASIC EQUATIONS 

A system 
sx = Fx + a 

with a complex frequency s e C, a state x e M", the system order ne N, the state 
matrix E: M" -» M", and the initial state a e M" can describe a controlled system with 
a plant, a regulator, a reference, and a disturbance. The system response 

det (si - E) 

has a characteristic polynomial 

det (si - E) = I fc^-W - F, ,,„,)... (<5„,„,„s - E„,,J 

where the summation with respect to mt, ..., mn is over all permutations on 1, . . . , n, 
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see e.g. [3]. <5m;;;;"mn = 1( — 1) for the even (odd) permutation ( 
for i = (4=) j . The i, j-th element of the adjoint matrix ^ l " 

S-Fu . . . 0 . . . ~Fln 

ðu = 1(0) 

[ a d j ( s / - E)]м = det -F, 

ғnl 

-ғ;, 

s - Fш 

where 1 is at the j-th column. To analyse the system response, consider the causes 
of increasing complexity. 

RL\. FhJl = K is a simple parameter of E, i.e. if FhJi = Fhj2 then ix = i2, 

ji = h- Then the root locus of det [si — F(K)~\ is 

(RL\) a(s) + K b(s) = 0 

where K e R, so the characteristic polynomial is affine in K (or it is a pencil of the 
polynomials a(s), b(s)). 

RL\. FhJi = FhJl = ... = EivJv = K(i < v S n2) is a multiple parameter of E. 
Then the root locus of det [si - F(K)] is 

(RL\) a(s) + YJK
kbk(s)-0 

where K e R, so the characteristic polynomial is an algebraic function, [10], of 
a single parameter K. The multiplicity of K is only an upper bound of the power 
of K — the bv(s) may be zero. 

RHm. Leaving out any constraints of Fu and denoting kx,k2, ...,k,„ of them 
as KUK2, ...,Km, the root locus of det [si - F(KU K2, •••,Km)] is 

(RUm) a(s)+ £ K^Kk
2\..K

k
m-bkuk2,.,km(s) = 0 

kt,k2 km 

where Ku K2,..., K,„ e R; kt = 1, 2 , . . . , mt; i = 1,2 m; m ^ n2. The charac­
teristic polynomial is an algebraic function of the parameter KX,K2, ...,Km. The 
root locus RLv

m covers part of the s-plane, may be even the whole s-plane, as we 
know from the poles shift under the state feedback where m = n. 

In the following it is supposed that the characteristic polynomials are irreducible 
as polynomials in s, K or s, Ku K2,..., K,„. I.e. if c(s, K) = cx(s, K). c2(s, K), then 
c t or c2 is a polynomial of the 0 th degree both in s and K. Similarly for c(s, Ku . . . 
...,Km): if c(s,K1,...,Km) = c1(s,K1,...,Km).c2[s,Ku...,Km) then cx or c2 

has the 0 th degree in s, Ku ...,Km. The 0 th degree polynomials have no roots. 
Examples of reducible characteristic polynomials RL\ are the polynomials with 
common roots of a(s), b(s), that of RUm are the polynomials which are the product 
of the affinely parametrized characteristic polynomials RL\. 

Similarly as the det(s/ — E), we can analyse [adj (si — E)];;i- (i,j = 1, ..., n). 
Notice, [23], that the roots of the characteristic polynomial change with the change 
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of the feedback loop parameters and the roots of the numerator polynomials change 
both with the change of feed-forward paths and with the feedback loops. 

The effective computation of the characteristic polynomial as polynomial in 
nonnumeric or symbolic parameters see [22], [23], [30], [31], [34]. 

2. APPLICATIONS 

With respect to the control design there exists fundamental dichotomy for the class 
of the characteristic polynomials: the polynomial det (si - F) is either asymptotically 
stable or not. Equivalently all roots of det (si — F) = 0 either lie at the open left 
half of the s-plane or not. 

RL\. This root locus was introduced first at [7], it was transformed into the 
method at [13], for a survey see [21], some results relevant for us see [16], [24], [33]. 
The root locus have been well established tool for the classical trial and error design, 
see e.g. [5, 21]. Only recently the counterexamples [11, 12] had shown that even 
the modern analytical (or algebraic) design (i.e. a poles shift and/or a quadratic 
optimization) guarantees generally (— unless we can measure or control the state 
directly) no gain margin and have to be tested like the classical trial and error design. 

RL\ symmetrical with respect to the stability boundary is, see e.g. [19] 

a(s) a(-s)+K b(s) b(-s) = 0 (K ^ 0) 

The stable n roots are the roots of the optimal control characteristic polynomial, 
b(s)ja(s) is the open-loop control transfer function, the K is the weight of input (actu­
ator) energy - for 1 being the weight of the output energy. Similar equation see 
e.g. [19] 

a(s) a(-s) + Lc(s) c(-s) = 0 (L ^ 0) 

holds for the optimal reconstruction. The stable n roots are the roots of the optimal 
reconstruction characteristic polynomial, c(s)la(s) is the open-loop reconstruction 
transfer function, the L is the weight of the power of output disturbances — for 1 
being the weight of the input disturbances. For feasible (robust) control based 
on the reconstruction, the K or L have to be adjusted (and so the characteristed 
polynomials have to be deoptimized) to achieve the sufficient gain and phase margins 
of the control loop [12]. Moreover, solving these root loci gives a method for a spectral 
factorization [17]. 

RL\. In the model building from elementary branches (at the opposite to the model 
identification from input-output data) a single branch K may occur m-times. As there 
exists the other multiple branch — the n differentiators s, the characteristic poly­
nomial det [si — F(K)~\ is the polynomial both in K and s. E.g. for a salt solution 
mixer with two inputs, [9], 

-Gi/Li Q2JL2 

L QilL, -QJL2 
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and the characteristic polynomial det (si — F) has root locus 

\L1 L2 / L^L2 

where Q,(L,) are flow rates (volumes). For ljL1 = 1/L2 = K we have the root 
locus RL[. Similar example from aeronautics, [5], motivated first the root locus RL] 
at [28]. 

RL\. Characterising the properties of multivariable control, a characteristic named 
multivariable root locus was introduced, [27]. For F = A - KBC, KeR, BC: ffv -» 
-* Rv, the root locus of the characteristic polynomial 

s" - tr (A - KBC) s"~' + ...+ ( -1 )" det (A - KBC) = 0 

(i.e. det (A — KBC) = K" const.) have been considered, esp. with the emphasis 
on K -» co. The introduction of this particular feedback has been artificial and the 
use of this as a design tool is not established yet. Surveys see [26, 28]. 

RL]. In the construction of the optimal state feedback under the multivariable 

t A — BR'1 BT~\ 
T T and the optimal characteris-

..«- jpvjlJU.Jii.ic.. .^/v, . 1 U V U J -1 

num det [R + Hr(-s) H(s)] = 0 

where H(s) = C(sl — A)"1 B. Then (unless the case of input weighting matrix R) 
any element of F has the multiplicity v = 2. (We have considered the special case 
of R eff, at the root locus RL] for K = R'1, H(s) = b(s)\a(s)) Similarly for the 
multivariable reconstruction. 

Consider now the complex frequency s eC not as the Laplace transform variable 
but as the Z-transform variable. Now the characteristic polynomial det (si — F) 
is asymptotically stable if its roots are inside the circle \s\ - 1 = 0. Then instead 
of the mirror symmetry (s, — s) we have the inversion symmetry (s, s _ 1 ) . In the RL] 
we have to change — s for s~1. 

RLv„. For m = 2, v = 1 this root locus was treated at [21]. There have been 
the gap between the naturalness and the potential use of this most general root 
locus and the difficulties of its understanding and construction. 

In all cases the degree of stability have to be measured by the least parametric 
change to reach the stability boundary i.e. by some gain or better multiparametric 
margins. The degree of stability has not to be generally measured by the distance 
of the poles from the stability border: at [11] there is a counterexample showing that 
just the poles farthest from the stability boundary may become unstable first. 
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3. ROOT m-TISSUE AS AN IMAGE OF AN ACTION 
OF THE m PARAMETERS 

In this section we shall use one of the central structures of the geometry of 
manifolds, see e.g. [1, 8], an action of a group on a set. This makes possible to put 
together the highly structured group with only poorly structured set. Then we use 
the special structure of the textile geometry, [6], the m-tissue. This makes possible 
to put together the highly dimensional space of the m parameters with the points 
from 2-dimensional plane. The examples show that the main effort in the constructions 
of RLl

m is at the computation of homologies of the m-cubes. Some combinatorial 
argument helps to classify RL\. 

Definition 1. The action of the group G on the set S is a mapping 

G x S -»• S: (g, a) H-» a9 

(g e G, a e S) such that 

(g2, a9') h-> a92°g' (compatibility) 

(e, a) i—> a (existence of the neutral element) 

(g~l, a9)\-> a (existence of the inverse element) 

hold. A subset 
{&> | g e G} 

is called an orbit containing a e S. 

Theorem 1. The roots su s2,..., s„ of the equations RL\, RL\, respectively RUm 

have the structure of the action of the additive group {K} = R, respectively {Kt, K2,.. 
..., Km} = R'" on the set C1[s] of the n roots. 

Proof, (i) Let us start with RL\. Choose K = K, + K2,K,KuK2e R. Then 
the n roots of a(s) + (Kt + K2) b(s) = 0 are the same as the n roots of the equation 
(a(s) + KJL b(s)) + K2 b(s) = 0. The compatibility of the action means just this. 
There exists the neutral element e = 0 and the inverse element g~l = —K. (ii) Let 
us continue with RL\: again for the compatibility the roots of a(s) + ~~(K-i +^2)" • 
. bk(s) = 0 remains the same even after the reordering terms of the equation to 
obtain the equation A(s,K1) + Xl̂ c(s> ^ 1 ) ^ 2 = 0 where A, Bk are obtained com­
paring the coefficients. Again e = 0, a"1 = —K. (iii) Finally the case of RLJm. 
ChooseK, K,K e Mm whereK = (Ku ..., Km),K = (Ku ..., Km), K = (Ku...,Km). 
Even here the roots of a(s) + }JK1 + K2)

k' (K2 + K2f
2 ...(Km + Kmfm . 

• bkt,k2,•••,fc,„(s) = 0 are invariant with respect to reordering the terms to obtain 
A(S,'K\,'.".'., Km) + F X , t 2 , . , J s , Ku ..., Km) K\'Kk

2
2 ... Kk~ = 0 where A, Bkti...km 

were obtained by the comparison of the coefficients. Now e = (0, 0 , . . . , 0), g i = 
= (-Ku -K2,...,-Km). • 
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Definition 2. The image s; = T(KU ..., Km) of the linear mapping 

T: Rm -> C :(KU ...,Km)-+ s; (me/V+) 

is called the m-tissue at the point s;. 

Theorem 2. Let the equations REJ, RLm, RL]n be irreducible and let nt be the multi­
plicity of the root s; (i = 1, 2 , . . . , n — n1 ... n; — JV) where iV is the number of the 
different roots. Then at every root s; of the RL[, RLx

m, resp. R€„„ the n;-valued 
differential is 

(DS[) 

(DS\) 

ds ; = 

ds ; = 

b(sj dK 

П ( S . - S J ) 
L j' = l 

j*i 

Zвk(Si,к)dкk 

k=l  

П O І - ^ J ) 
j = l 
j*i 

whereBk(s,K) = £ f J ) Kl~k bt(s),resp. 

(I>S^) ds ; = 
X ^ ^ ( s ^ K ^ . - . ^ d ^ d ^ 

ki,...,«:m  

dKk 

П ( S

; - S J ) 
J' = l 
j * i 

where 

B.„-,fc.(».^i -KJ = 

-„.?.,„(t ' ) '"(t) K "" K ' r '"" '^"""'"-- < S ) 

At the roots of the multiplicity 1, the ds;/dK forms locally the root 1-tissue, the 
{ds;/dKx, dSijdK2,..., ds;/dXm} forms locally the root m-tissue. 

Proof. Let us start again with RL[. We shall apply the additive group properties 
to the previous parameter value K and its differential dK, i.e. Kx + K2 = K + dK. 
Now we shall use the invariance of the roots of 

a(s) + (K + dK) b(s) = (a(s) + K b(s)) + dK b(s) = 

= (s - s;)"; n (s - SJ) + dK b(s) -* ds';' fl (si ~ SJ) + d K b(s.) = 
j * i j * i 

= 0 as s -> s( + d s ; . 

Solving for ds ; we have, under the irreducibility assumption, the DS[. Now for 
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RLm, RLv

m: the only difference is that we have, to compare the coefficients of Bk(s, K), 

resp. Bkl,...tkn) (s,.Ki, ...,Km). But the determination of these is straightforward. 

Such is even the verification that, under the assumptions DS\, DSm, resp. DS,V„ forms 

the root tissues. • 

Note 1. For nt > 1 the formula DS\ is used to obtain the phase properties near 

the multiple root. Approaching this root (this can be easily tested as there are n ; 

points which approach each other in the n ;th root in a symmetric pattern) the phase 

properties of the n ;th root are used and the integration either jumps straight over 

(for n ; odd) or jumps and bends out (for nl even). Due to the continuity of K(s), 

the integration error can be controlled. At the root of n ; > 1 of RL\, the |ds,/dX| 

is improper and only any branch of IdsJdK1'"^ is proper. At the formula DSm 

one power of dK majorises the others: nevertheless, during the integration all the 

powers are evaluated which eliminates the necessity of analysis which power is 

major. The same holds for DSm. 

Example 1. We have to compute the root locus of the type RL\ 

(s(K)) s3 - s - K = 0 . 

For K = 0 we have s 1 2 = + 1 , s3 = 0. We shall start from this neutral element 

of the group R and compute the differentials 

(DS\) d S l = ^ -, ds2 = 
(-1 - s з) (s i - -з) ' (s2 - s3) (s2 - sx) ' 

ds, = 
(S3 - Sj[) (s3 - s 2 ) 

firstly for K > 0. Near K = 0-4 we have the double root. As this is even, we change 

the phase of the differential about 7t/2 and jump over the double point. Then we 

integrate DS[ till near K = 12 where the RL\ goes outside the chart of the s-plane. 

Then we start again at s1 > 2 = + 1 , s3 = 0 and integrate similarly, now for K < 0. 

For high complex frequencies s and high gain K the s(K) is outside the Fig. la. 

Substituting S = z - 1 , K = G _ 1 a t (s(K)) we obtain 

(z(G)) z 3 + Gz2 - G = 0 

To compute the inverse root locus z(G) we slightly unfold the triple root using 

the symmetry of 1 1 / 3 and start at z1 = 0-1, z 2 j 3 = -0-05 ± j 0-086 and G = 0-0. 

Computing the differentials 

(Z)S!) ^ -(zl-l)dG ^ d Z z = ~(z\-MG 

(zi ~ z2) (z, - z 3 ) (z2 - Z l ) (z2 - z x ) 

- ( t j - l ) d c _ 
(z3 - z x ) (z3 - z2) 
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fisrtly for G > 0 and then for G < 0 we obtain the Fig. lb. Both charts overlap, 
so we have the whole root locus at two compact charts. Now consider the s(K) with 
extra - K2 term, or with quadratic action of the R: 

s3 - s - K2 - K = 0 

For K = 0 we have again s 1 2 = + 1 , s3 = 0. Starting from these points we compute 
the differentials 

(Mi) dsj = 
åK2 + âK 

, âs2 — 
àK2 + áK 

(Sí ~ S2) (Sj - S3) (s2 - S3) ($2 - S.) 

åK2 + åK 
ds, = 

( s 3 - S j ) (s 3 - s2) 

+2.0 

+1.5 

+1.0 

+ .5 

.0 

- . 5 

- 1 . 0 • 

- 1 . 5 • 

-2 0 

o m o -4-
т- <N <N « 

-2.5 -2.0 -1.5 -1.0 - . 5 .0 +.5 +1.0 +1.5 +5..0 +2.5 

Fig. 1c. 

for K > 0. Near K = 0-5 there is a turning point and the root locus parametrizes 
the part of R twice, the remaining part leaving uncovered, see Fig. lc. Similarly for 
K < 0 with the turning point near K = -0-5. 

Example 2. We shall compute how the roots of 

(s - Pl) (s - p2) (s - p3) + Kt(s - z.) + K2(s - z2) + K3(s - z3) = 0 

(Pi = - 1 , Pz.3 = ±j, *i = - 2 , z2 = 0, z3 = 2) 
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are shifted using the positive, bounded gains Ku K2, K3. The equations of DS\ are 
( - - 1 . 2 . 3 ) 

(DSl) ds ;= -Y.{si-zJ)áKjlU{sl-Sj) 
j=i J = I 

j * i 

We shall integrate these equations starting with the point boundary equations at 
Pi, Pi, Pi, using the properties of a root 3-tissue for the complex conjugate roots 
s2, s3 and three root 1-tissues for the real root sx. Consider p2 and p3: through p2 

there go root 3-tissue which is the smooth linear map of dKu dK2, dK3, the same 
holds for p3 = p2. For p, the 3 root 1-tissues lie at R. At first we shall integrate 
DS\ for the first tissue, i.e. for dK2 = dK3 = 0, starting at pu p2, p3 and integrating 
from Kx = 0 to AK > 0. Then we shall integrate DS3 for the second tissue, i.e. for 
dX3 = dKx = 0, starting again at pu p2, p3 and integrating from K2 = 0 to AK > 0. 
Finally we shall integrate DS]

3 for the third tissue, i.e. for dKt = dK2 = 0, starting 
again at pu p2, p3 and integrating from K3 = 0 to AK > 0. Similarly we shall 
integrate from the roots reached at the previous steps — always for dKj = 0 (j 4= i) 
at DS\ and obtain the smoothly deformed 3-cubes with the corners at p2 — see Fig. 2 
and p3 = p2. On W the 3-cube degenerates to an 1-cube, i.e. abscissa with an end 
point at px. Now consider the smoothly deformed 3-cube with the corner at p2. 
For the gains Kt ^ AK (i = 1, 2, 3) there are three 3-cubes with the common sides 
with the considered basic 3-cube. Now integrating on edges of these 3-cubes for the 
gains AK S Kt ^ 2AK we shall obtain the 2nd level of the 3-cubes, see Fig. 2. 
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Similarly for the cubes which are the neighbours of the basic 3-cube with the corner 

at p3. For the continuation of the abscissa on px we shall obtain the double extended 

abscissas. Then integrating for the gains 2AK ^ Kt g 3AK we shall obtain the 3rd 

level of the smoothly deformed 3-cubes, see Fig. 2 and the 3rd level of ascissas at R. 

The body of the Fortran code in the complex arithmetics is 

NS 1 = S 1 - DK * (S 1 - Z(I))/((S 1 - S 2) * (S 1 - S 3)) 

NS 2 = S 2 - DK * (S 2 - Z(I))/((S 2 - S 3) * (S 2 - S 1)) 

NS 3 = S 3 - DK * (S 3 - Z(I))/((S 3 - S 1) * (S 3 - S 2)) 

The main part of the code is concerned with the homology of elementary cubes. 

The speed of the drawing at EAI Pacer 600 of all the root loci mentioned in the paper 

had been approx. from 0-5 to 1 cm/sec, drawing running in parallel for all roots. 

Example 3. Consider the characteristic polynomial equation 

(RLІ) 

( - 1 - - 2 , 

s;) + XK ; (s-z ; ) = 0 
; = i 

s2,з = - 1 ± 1-75J, z. = - 1 , 
п< 

; = i z 2 = - 0 - 5 , 

z 3 = 1, - 4 * 1 - 5 , z 5 = 2) . 

We have to find its roots for — K g K{ g K (i = 1, ..., 5), i.e. for the gains from 

5-cube with the centre at (0, 0, 0, 0, 0). To construct the root 5-tissue from C we 

construct first the 5-cube from R5 as a Boolean algebra of the subsets of the set 

of 5 elements, see Fig. 3a. From every vertex of the 5-cube there go 5 edges, every 

12345 

345 

Fig. Зa. 
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face of the 5-cube is square. The homology of the vertices, edges and faces will be 
used to integrate the 3 equations (i = 1, 2, 3) 

(DSІ) dsi=-ZdKi(sí-Zl)IYl(si-sJ) 
; = i j = \ 

j * i 

First, integrating for 0 ^ Kt ^ K (dK, = 0, I #= l) then for 

0 ^ K2 ^ K (dK, = 0, I * 2) , . . . , 0 g Ks £ K (dK, = 0, / * 5) 

we found the vertex 0. Second, repeating the integration for 

-K £ K, £ K (i = 1, . . . , 5; dKt = 0; / = 1, ..., 5; / # i) 

we found the opposite vertex 12 345. Then starting at the vertex 0, we integrate on the 
edges of the faces incident with the vertex 0, i.e. the faces 0, 1, 2, 12 till 0, 4, 5, 45. 
Then we integrate over the faces from 1,12,13,123 to 5, 35, 45, 345. Then we integrate 
over the opposite half: over the faces 12345, 1234, 1235, 123 till 12345, 1345, 2345, 
345. Finally over faces from 1234, 123, 124, 12 till 2345, 245, 345, 45. For the 
resulting image of the all faces, see Fig. 3b. At every image of the vertex near the 
complex (real) root there go one 5-tissue (five 1-tissues). The boundary of the shift 
of the complex (real) pole in the Fig. 3b under the action of the 5 parameters is 
a smoothly deformed 10-gon (abscissa). The boundary edges of the 10-gon we can 
find more directly. Starting from the vertex 0 we choose those two from five edges 
1, 2, 3, 4, 5 which start depart from 0 at the maximal angle. Then integrating over 
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Fig. Зb. 
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these extremal edges, we obtain two extremal vertices. At these we choose from 
the remaining 4 edges which start to depart at maximal angle and integrate to the 
next two vertices. At these we choose from the 3 edges,..., at the remaining two 
points we have no choice and integrate to obtain the edges meeting at the remaining 
vertex. The obtained 10-gon is generally nonconvex, so the boundaries for the 
different levels of parameters variations may overlap. 

Definition 3. The irreducible root loci of the type RL\ and no multiplicity at 
C u {GO} different from the multiplicities at C (shortly: no multiplicity at oo) are 
equivalent if they have the same unordered set of the multiplicities, where the multi­
plicity of the point is defined as 0. 

Note 2. The assumption of no multiplicity of RL\ at oo is not restrictive. For the 
classification based on the multiplicities it suffices to have a compact map of that 
part of RL\ which contains no multiplicities. Instead of z = l/s as in the Example 1, 
consider the Mobius group of the bilinear transformation z = (as + b)j(s — d), 
b + ad + 0. This transformation maps conformally the s-plane minus the point d 
onto the z-plane, minus the point a, see e.g. [4]. So we have to select a, d in such 
a way that neither at the point d of the s-plane, not at the point a of the z-plane 
occur the singularities of s(K) or z(G). The other possibility, already used in the 
Example 1 is to use two overlapping maps at the s- and z-plane and count the 

. multiplicities either at the s- or z-plane. 

Theorem 3. Consider the root loci RL\ which are irreducible and have no multi­
plicity at oo. Then there exist no root loci with odd number of even multiplicities. 

Proof. It suffices to consider only the even multiplicity from R. From it there 
eave to the top half of C the odd number of branches. On the other side from any 
odd multiplicity there leave the even number of branches. But there exists no pairing 
between the odd and even number of the branches. So there exists no partitioning 
of the root loci multiplicities between single even multiplicity and an odd multiplicity 
or multiplicities. • 

Fact 1. Consider the root loci from the Theorem 3, moreover with the multi­
plicities nor exceeding 8. The representants of these under the equivalence from the 
Definition 3 are given in Fig. 4a — the poles are denoted by a slanting cross, the zeros 
by a diamond. The representants of all other root loci with the multiplicities not 
exceeding 8 are given by the union of these loci. 

Fact 2. Consider the representants of the root loci in Fig. 4a. As the poles (zeros) 
are connected on their circles only with zeros (poles), it is not necessary to distinguish 
between them and it is possible to denote both poles and zeros as vertices. Next 
instead of a circle or circles connecting the pole and the zero connect the vertices 
by a single or multiple branch. Then the elementary root loci from the Fig. 4a are 
represented by the Coxeter diagrams, [8], in Fig. 4b. 
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(0) 

(2n+1) 

(2n,2и) < 

4. INVERSE PROBLEM 

Up to now we were concerned mainly with the analysis, mainly with respect to the 
testing of the robustness. We were mainly testing whether the 2m-gons, which are 
in general the boundaries of the root m-tissues generated under the linear action 
of the m parameters, are in some feasibility regions of the stability half of the s-plane. 
Now let us consider the inverse, or the synthesis problem: given the poles pt where 
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they are we have to find the feedback gains Kt to shift the poles where they should 

be - at 7r; (i = 1, 2, ..., n). For the full state measurement feedback and a single 

input (dually a single output and full access to the state) the polynomial equations 

are, see e.g. [19] 

a(s) + KA(s) G = c(s) 

where K e R" (dually the left-hand-side is a + HAL, Le R"). Let us set the paths s ; 

on which the poles pt have to be shifted to the TT; (i = 1, ..., n) as disjoint line segments 

5 . = p. + $(n. _ p . ) (o ^ 3 = 1) 

The assumption on the simple 7t; is justified by the properties of RL\ at the multiple 

root. Then the gains are the integrals 

Ki=[1dyci(si(S),...,sn(gj) 

where for the differentials of the gain we have - following the derivation of DS],: 

ds ; f ] (st - Sj) + dxx 6x(s f) + ... + dx„ bn(st) = 0 
J = I 
j * i 

where fc,(s;) = XA lV(s ;) G} (i,j = 1,..., n). In the direct problem we solve the 

equation for the roots differentials ds;, in the inverse problem we shall solve it with 
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respect of the gains differentials. The linear algebraic equations for the differentials 
dx,,..., dxn 

*>i(si) • • • bi(sn) 

bn(Sl) . . . b„(sn) 

dx^ 

dx„ 

- d S i Г K 5 ! - S J) 
1 = 2 

л - 1 

- d s „ П ( s

и - s j ) 
J ' = I 

The regularity of the matrix gives us the shiftability condition for the paths s.,..., s„. 

The poles shift equations are symmetric with respect to such permutation of the roots 

Pi or 7i; which keeps the coefficients of c(s) real. From these possible n-tuples of the 

shifting paths we can choose any — e.g. with respect of the time of computation 

the shortest. 

Now consider the equation for the polynomial assignment for the output feedback 

and single input 

a(s) + KHA(s) G = c(s) 

where K F Re, Q < n. (Dually a + HAGL.) Denote b,(s) = Y,HuAJk(s) Gk(i=\,... 

..., Q; j , k = 1, ..., n). (Dually fr;(s) = X-HyA/^s) Gki.) Now we have n linear algebraic 

equations for Q gains dxi,..., dxQ and directly unspecified n — Q roots dse + 1 , ..., ds„, 

given the prescribed Q root paths ds x , . . . , dse. The Q equations for the gains are 

^ ( s . ) ... bß(Sl) dxг 

âx„ 

and the n — Q equations for the roots are 

e 

£ bi(s) dxl 

ds, = - '-=* 

П ( S , - S J ) 
l=t 
J*ì 

- d S i Г K * ! - S J У 
1 = 2 

- d s e Г J ( s

f i - Sj) 
J = l 
J*e 

(І = Q + 1, ..., й) 

(For some of the roots se + 1,..., s„ of the multiplicity n, — but different from the 

roots su ..., s„_,, we use the n ;th root of the right-hand-side.) 

Example 4. We have to find such feedback gains Ku K2 and the root 7i3 to obey 

the polynomial assignment equation 

(s - pt) (s - p2) (s - p3) + Kt(s - zt) (s - z2) + K2(s - z3) (s - z4) = 

= (S - 7 ^ ) (S - 7t 2 ) (S - 7t 3 ) 

where p12 = 2 ± 3j , p3 = 0, zt = 2-25, z 2 = 2, z 3 = 1-75, z 4 = 1-5, n1<2 = 

= —0-5 + 0-5 j . The prescribed paths for the roots s 1 2 are sx = p1 + 9(n1 — px), 
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S2 = V2 + ^(^2 — P2)) 0 _ $ _ 1- The equations for dx 1 ; d%2 are 

[ ( S l - 2-25) (-. - 2) ( S l - 1-75) ( S l - 1-5)-] r d ^ l f - d s ^ s , - aa)(s. - s3)l 
[(s 2 - 2-25) (s2 - 2) (s2 - 1-75) (5- - 1-5)J [ d x 2 J [-ds 2 (s 2 - s3) (s2 - s,)J 

the formula for ds3 is 

d s 3 = -
(s3 - 2-25) (s3 - 2) dx. + (s3 - 1-75) (s3 - 1-5) d* 2 

(-3 - s i ) ( 5 з - s2) 

Integrating the equations for dxu dx2 starting at xx, x2 = 0 for & = 0, and s 1 2 = 
= 2 + 3j and the equation for ds3 for s3 = 0 we obtain xx = Kt = —8-0, x2 = 
= K2 = 140 and s3 = n3 = —10- at 9 — 1, at the end of the prescribed paths 

+ J . Э 
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Fig. 5. 

s 1 2 and computed folded paths s3, see Fig. 5. For Q = n, another n integration paths 

can be the part of RL\ from the stability half of the s-plane which is the solution 

of a(s) a( — s) + X b(s) b(-s) = 0, i.e. the optimal poles parametrized by the scalar 

weight 0 5S X g A. In this case the n optimal poles s ; (together with their n mirror 

images - s ; ) and the n gains Kt(i = 1,..., n) are computed simultaneously. 

Even dynamic controllers with single input (dually single output) are described 

by the characteristic polynomial linear in the gains and can be computed for the 

prescribed poles shift. 

The situation changes for the control synthesis for several inputs and several 
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outputs. E.g. for full state feedback we start with the n equations (i = 1, . . . , n) for 
S = S; 

, Tr GA(s)Kl n 
num det 7 + — ^ — = 0 

L a(s) J 

Then we can obtain the equation of the RUn type. The number of the gains have to be 
again Q ^ n, the number of directly unprescribed roots again n — Q 2: 0, and the 
number of the prescribed root paths again Q. 

Even in the inverse problem we can generalize the problem of shift to the prescribed 
point to that of shifting to the prescribed boundary. 

Finally, even the inverse problem can be treated as the action of a group. Consider 
Q prescribed paths not as Q parametrized segments but as Q parametrized loops 
on which orbits belong to the couples {[pf = sf(0), nt = st(ij] | i = 1, . . . , Q). This 
is a Lie group, see e.g. [1, 8], acting on the manifold of the product of the vector 
space Ka of the parameters K^S),..., Ke(9) and of the Lie group of the root loci of 
se+1(Klt ..., Ke),..., s^K^ ..., Ke). In this paper we prefer only to touch the inver­
se problem. It is treated, for multiple inputs, in some other problem parametriza-
tion elsewhere, [35]. 

5. CONCLUSION 

The multiple real parameters for both analysis and synthesis of the linear 
systems had been embedded into the complex plane. For the analysis, the root 
m-tissues are the image of the action of the additive group of the m parameters. 
For the synthesis, the m parameters are the image of the action of the Lie group 
of the prescribed m paths of the roots. This concern with the m bounded subsets 
(2m-gons or m abscissas in the complex plane) we take more pertinent to the control 
theory than the usual concern with some fixed m points. After the solution of the 
synthesis - action of the roots on the gain parameters, the analysis problem can be 
easily solved as the action of the system parameters on the roots. 
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