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K Y B E R N E T I K A - V O L U M E 25 (1989), N U M B E R 4 

ON TRANSFER FUNCГION MATRIX 
OF LINEAR CASCADE SYSTEMS 

VÁCLAV SOUKUP 

Lower triangular transfer function matrix of cascade linear system is investigated. The paper 
aims to show and prove that unlike for the other multi-input, multi-output systems general 
fashions of the coprime transfer function matrix fraction representations can be found in this 
case. 

1. CASCADE SYSTEM TRANSFER FUNCTION MATRIX 

Many technological, industrial and other processes are characterized by an one 
way, one line flow of information and energy ([2]). Such cascade processes repre­
sent the special case of multi-input, multi-output structure that may be modelled 
by the block diagram in Fig. 1 where 

Pj denotes the /th stage of the process, 
yt the output of the /th stage (/th controlled variable), and 
Uj the input of the /th stage (/th control variables); 

i = 1,.... n. 

-ć> pn -ГEУr--rШ} 
f У 2 f ÿ í - 1 f yť f y-_ j 

Fig.l. 

Feed properties between parts Pi-X and P( of the process are modelled by elements 
Tu / = 2,..., n. 

The paper deals with the regular n-input, n-output cascade only which is affected 
by no external disturbances. 

Assuming continuous-time, linear dynamics of P f as well as Tt the following 
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equations can be written (in Laplace transforms): 

(1) Y.(s) = Pt(s) Ut(s) 
and 

Yi(s) = Pi(s) [Ut(s) + Tt(s) Y^.(s)] , i = 2, 

The transfer functions 

_ bis) 

(2) and 

' * ) 

ад 

«.(«) 

___ 

p.W 

(я ř, /Зř) - 1 ; i = 1, ...,n 

(pt> i) ~ 1 î i = 2, ..., w 

where a£(s), fr^s), pj(s) and qf(s) are supposed to be polynomials in s. Nevertheless 
the final results which come in Theorems 1 and 2 of the paper are also applicable 
if factors exp ( — T,-S) corresponding to possible dead times occur in bt(s) and/or qf(s). 

Note that the standard symbols of polynomial theory ([1]) are used in the paper: 
(a, b) for the greatest common divisor (GCD) of a and b, 
a ~ b if a and b are associates, i.e., a = a/3 where a = const, (a polynomial 

of degree 0) and 
b | a if b is a divisor of a. 

Combining the equations (l) we can write in vector-matrix form 

(3) Y(s) = G(s) U(s) 

where 

(4) Y(s) = [Y1(s);...;Yn(s)Y and U(s) = [U ,(s);...; U„(s)]T 

and the system transfer function matrix (TFM) 

"Ms) ° 
(5) G(s) = G2l(s) f2 2 ( s ) . 

_G„i(s) G„2(s) . . . ' G„„(s) 

is lower triangular (n x n) matrix with the elements 

Hs) 
GІJ(S) 

ÜІ(S) 
for / = i 

Gij{s)=sbi(s)...bJ(s)qi(s)...qj+i(s) fQT j < i 

ai(s)...aj(s) Pi(s)...pJ+1(s) 

Gij(s) = 0 for j > i, i,j = 1, ..., n . 

The structure given by Fig. 1 includes usual cases which we encounter in practice. 
Especially, either 

— T; represents the process part which is affected by no external input and has no 
own measured output or 
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— two neighbouring (i — l)th and ith stages of a process are coupled through 
a physical transducer Tt to adapt signal yt„t to the actuator of Pt. 

Fraction representations of the matrix G(s) are investigated in the next sections. 
It is well known that the coprime matrix fraction (CMF) descriptions of a general 
TFM can be found by numerical ways only (cf. [1]). But numerical algorithms 
need not be applied in the case of cascade system matrix. It will be shown and proved 
that G given by (5) with (6) can be usually transformed into CMF fashion immediately 
using the elements au bh p; and qt of single transfer functions in G. 

The reader is assumed to be acquainted with the main fundamentals of polynomial 
and polynomial matrix theory of dynamic systems ([1], [3]). 

2. LEFT COPRIME MATRIX FRACTION REPRESENTATION OF G 

Any (n x r) TFM G of a linear, free of dead times, continuous-time system can be 
always written in the form (cf. [1]) 

(7) G = A^BL 

where AL and BL are (n x n) and (n x r) polynomial matrices in s, respectively. 
The corresponding input-output equation 

(8) AJ = BLU 

is valid. 
The matrices AL and BL represent a left matrix fraction description of G. Such 

a representation is left coprime (LCMF) if and only if 

(9) AL = DFL a i î d B L = DH1 

where the (n x n) polynomial matrix D known as the greatest common left divisor 
(GCLD) of AL and BL has the property det D ~ 1, i.e., D is unimodular. The pairs 
AL, FL and BL, HL are then the pairs of left equivalent polynomial matrices; AL and 
BL are called left coprime matrices. 

Theorem 1. LCMF representation of a cascade system TFM G standing in (5) 
with (6) can be written in the form 

ax 0 
-b2q2 a2p2 (10) 

and 

( i i ) 

if and only if 

(12) 

AL = 

-b„qn anpn 

BL = diag[/3i; b2p2;...; bnpn~\ 

\Pu ^ibi-i) ~ 1 for any i = 2, ..., n 
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Proof. 

A. At first we must prove that the matrices (10) and (11) represent a left matrix 
fraction description of G at all. 

Using (10) and (11) in the equation (8) we get 

(13) atYx = b&t 

and 

Hence 
biqiYi.1 + ciiPiYi = biPiUi for i = 2 , . . . , n . 

(14) Yt = --- U, 
« i 

and 

Y4 = M ' y . ^ + - i L ! i for Z = 2 , . . . , n . 

Gradual substitutions Yt into the (i + l)th equation in (13) i = 1, . . . , n — 1, yield 
the relation Y = GU with G standing in (5) with (6). The same result can be obtained 
if the inverse of AL is formed and then G = AL

 1BL determined. Thus (10) and (11) 
is a left matrix fraction representation of G. 

B. Secondly, it must be proved that the matrices (10) and (11) are left coprime 
if and only if the conditions (12) are true. 

/ / : Assume a polynomial matrix D to be GCLD of AL and BL and denote d = det D. 
The expressions (9) can be written as 

(15) [ « i ; . . . ; f l j - 0 [ f 1 ; . . . ; f j and [ b l 5 . . . ; b j = D [ h i ; . . . ; h j 

where ah bh ft and hi are the columns of AL, BL, FL and HL, respectively; i = 1, . . . , n. 
Obviously at = Df{ and bt = Dht. 

Now the set {Mn} of (n x n) polynomial matrices Mn can be considered each 
of them being constructed as a different combination of at and by, i,j = 1, ..., n, 
i.e., M„ is formed by n mutually different columns which are taken from 2n columns. 
Combining ft and hj in similar way the set {L„} of (n x n) polynomial matrices 
L„ is defined. Note that AL, BL e {M„} and F^, HL e {L„}. Then 

(16) M„ - DL„ 

and hence 

(17) det Mn = d det L„ 

is true for any corresponding pair of Mn e {M„} and L„ e {L„}. 
Let all nonzero determinants m„ of all matrices Mn constitute the set {m„} and the 

GCD of all m„ be denoted by (m„). 
It follows from (17) that 

(18) d | (m„) . 

Hence AL and BL are LCMF of G if (m„) ~ 1. But it is not easy to survey the finding 
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of {m„} and (m„) for general n. That is the set {*M„} contains (2n)\ (n!) 2 matrices. 

To overcome this difficulty we start with n = 2. 

Here we determine 

{Щ 
' ax 0 1 Tbx 0 1 ř ax bxl ["O 0 "| 
_-b2q2 a2p2y [ o a 2 p 2 J ' |_ —b_«2 0 J ' \_b2p2 a2p2\' 

~bx0 I} 
_o fe2p2jr 

a^ 0 
- Ь 2 g 2 Ь 2 p 2 

{rø2} = {axa2p2, bxa2p2, bxb2q2, axb2p2, bxЪ2p2} and (rø2) = (p2, ЬгЬ_) 

Then (p2, b2bx) ~ 1 ensures (rø2) ~ 1. 

For n = 3 we obtain 

{rø3} = {a^гPгßзPз, bxa2p2aгpг, axa2p2Ъгpг, bxa2p2bгpг, ЬxЪ2q2aгpг> 

Ъ_Ъ2q2Ъгpг, Ъxb2q2Ъгqг, axЪ2p2aгpг, axb2p2bгpг, axb2p2bгqг, 

bxb2p2aгpг, bxЪ2p2bгqг, bxЪ2p2bгpг} 

and 

(m3) = (p2, b2bx)lp3, b3

 2 (b2, bx, p2)\ 
\ (b2, Pí) ) (b2, P2) 

Obviously (p2, b2bx) ~ 1 together with (p3, bzb2) ~ 1 ensures (m3) ~ 1. Thus 
far sufficiency of (12) for n = 2 and n = 3 has been proved. 

The structure of determinants m„ for an increasing n must be studied for a general 

proof. 

One can see that 

(19) m„ = cxc2 ...c„ 

where either ax or fri stands at the position cx and either atp{ or b ^ or b&i at the 
position ci5 i = 2 , . . . , n. But not all combinations occur in m„ since ct — btq{ can 
succeed to Cj_x = fo£_tPj-1 or c^x = /j ;_1q[_1 only. 

Then we can decompose 

(20) , {m„} = {m„4} u {m„B} u {m„Q} 

where the subset 

{mnA} contains all m„ ended by c„ = anplt, 
{mnB} contains all m„ ended by c„ = bnpn, and 
{m„Q} contains all m„ ended by c„ = b„q„ . 

Let X{-} denotes the number of determinants within a set {•}. Since 

(21) ^{mnA} = X{mnB} = k{mn-x} , and 

A{m«o} = }\mn-\,is} + A{mn_ l jQ} 
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the recurrent relation 

X{m„} = 2A{m„_1} + A{m,._1>B} + A{m„_1>Q} 

is true starting with 
X{m2} = X{m2A} + X{m2B} + X{m2Q] 

where 
X{m2A} = X{m2B} = 2 and X{m2Q} = 1 . 

Suppose now that (mj) ~ 1 is ensured by the conditions 

(22) (ph bib^^ ~ 1 for any i = 2, . . . , ; < n . 

Considering i = j + 1 we need to show that together with (22) the only additional 
condition 

(23) (Pj+i,bJ+1bj)~l 

is sufficient to satisfy (mJ + 1) ~ 1. 

According to (20) and (21) 

(m j + i} = {WJ+UA} v {^J + I.B} U {mJ+UQ} = 

= {mJaJ+1pJ + 1} u {m^bj+ipj+i} u { m ^ b , - ^ - ^ } vj {ntfjQby+13i+_} 

and then 

(24) (m J + 1) ~ (p i + 1, bJ+1(mjB, mJQ)) . 

Considering (22) we determine 

(mJB, mjQ) ~ (bjpj, bj-rfj-^jqj, bJ_1qJ_1bjqj) ~ b /p , , by_ t) ~ b, 

and hence taking into account (24) 

(25) (mJ+1) ~(pJ+1,bJ+1bj). 

Consequently (mJ + 1) ~ 1 is ensured by (23) for any j < n if (22) are valid. Hence 
-4L and BL are left coprime if (12) are true. 

Only if: The conditions (12) can be decomposed for any i into two separate 

relations: 

(26) (Pi, bt) ~ 1 

and 

(27) ( P I , & I - I ) ~ 1 . 

Assume now that .4L and BL standing in (10) and (11), resp., are left coprime but 
(12) are not valid. 

1. If (12) are broken by (pu b() ~ 1 for one i e [2, n] we can denote 

(28) P» = 7 - ^ a n d bu~ bi 

(Pu bí) (Pь b;) 
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Then the matrices (10) and (11) can be decomposed into 

0 

(29) AL~D 

« i 

b2q2 a2p2 

DA LO -bi-iqi-i ai-ipi^1 

-biiqi aiPu 

— bi+1qi+1 Qi+iPi+i 

o 
- b„q„ a„p„ 

and 

(30) BL = Ddiag \b_; b2p2,...; bt-_pt-_', btpit; bi+1pi+i;...; b„p„] = DBL0 

where 

(31) D = d iag[ l ; . . . ; l ; ( /? i ,_ l ) ; l ; . . . ; l ] 

is the GCLD of AL and BL. 

As d = det D = (pt, b{) >+> 1 AL and BL are not left coprime. 

2. If the conditions (12) are broken by (ph /3,-i) <*> 1 for one i e [2, n] the denota­

tions 
Pi „ „ „ _ fti-i (32) pi,i-i and /ЗІ_ 1 ( І 

( P i ^ i - i ) ' (Pi.&i-i) 
can be applied. 

Then the matrices (10) and (11) may be written as 

« i 

- b2q2 a2p2 

0 -b3q3 a3p3 

(33) AL = D 0 - Ь i - i q , . ! a.-.iPi-! 

v У ЛІPІ.І-I 

0 0 -bi+1qi+1 ai+ipi+i 

0 ~lЗлa« Д*PJ 

DA LO 

and 

(34) ß L = D 

Ъ_ 

0 Ö2P2 

0 Ьi-ip,--! 

-" &._V-i 
0 bi+iPi+l 

0 lлр„_ 

= Dß LO 
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with the GCLD 

(35) D = 

1 
0 1 

0 

0 

0 1 
x (PІ,ЬІ-І) 

0 1 

0 1 

The polynomials x and y satisfy the equation 

(36) ai-iPi-iX + (ph V i ) y = -bi<li 

which is always solvable seeing that (pj-i, bt-i) ~ 1 as well as (a^i, bt-i) ~ 1 is 

assumed. 

Having x, y the remaining polynomials in (33) and (34) are 

(37) v = bi-irfi-ix, and 

z = -bi-x,iPi-iX. 

For i = 2 we put p{- x = 1 and qt- x = 0 in (36) and (37); the polynomial v in ALO 

is omitted. 

In virtue of (35) we have d = det D = (pt, bi-i) <~ 1 and consequently the matrices 

(10) and (11) are not left coprime. • 

3. RIGHT COPRIME MATRIX FRACTION REPRESENTATION OF G 

Any (n x r) TFM G of a linear, free of dead times, continuous-time system can 
be always written also in the form (cf. [1]) 

(38) G = BRAR' 

where AR and BR are (r x r) and (n x r) polynomial matrices in s, respectively. 

The matrices AR and BR represent a right matrix fraction description of G. Such 
a representation is right coprime (RCMF) if and only if 

(39) AR = FRD and BR = HRD 

where the (r x r) polynomial matrix D is the greatest common right divisor (GCRD) 
of AR and BR and det D ~ 1, i.e., D is unimodular. The pairs .4^, FR and BR, HR 

are then the pairs of right equivalent polynomial matrices; AR and BR are called 
right coprime matrices. 

Theorem 2. RCMF representation of a cascade system TFM G standing in (5) 
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with (6) can be written in the form 

(40) 

and 

(41) 

if and only if 

(42) 

Proof. 

ä\Pi 
~Ъxq2 a2pъ 0 

AR = 

0 -Ъn-2qn-i an_xp„ 
-Ъ„-Xqn an_ 

BR = diag [bxp2; b2p3;.._.; bn.xp„; b„_ 

(PÍ, bibi- x) ~ 1 for any i = 2, ..., n 

Y=BRAR
lU = BRX 

U = ARX 

A. Considering r = n for a regular cascade system and using an auxiliary (n x 1) 
vextor signal X we can express according to (38) 

(43) 

and hence 
(44) 

If (40) is substituted into (44) the components of U are 

(45) Ux = axp2Xx , 

Ut = -bi-1qiXi_1 + aiPi+xXi for i = 2,..., n - 1 
and 

Un = — !3„-iq„X„-i + anXn . 

Then by gradual substitutions X} from ith into (i + l)th equation (45), i = 1, ... 
...,n - 1, 

(46) 

and 

Xx = 
1 

Ux, 
axp2 

X = Y Pt-ifft ••• bjgj + x JJ 1 
j=i a ,p i + 1 ... fljPj+i J aipi+x 

Uiг i = 2,..., n - 1, 

X и = " £ Ъn„1qn...bjąj+1 ^ + l̂  ^ 
i=i a„a„-i^„ ... 0/P/+1 

Now using BK given by (41) in (43) we get 

(47) Yt = bipi+xXt for i = 1,..., n - 1, and 

Қ — Ь/ДII 

If the equations (46) are substituted into (47) the desired form Y = GU with G 
given by (5) and (6) is obtained. Thus (40) and (41) is a right matrix fraction descrip­
tion of G. 
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B. It remains to prove that the matrices (40) and (41) are right coprime if and only 
if (42) are valid. 

If: Assume that a polynomial (n x n) matrix D is GCRD of AR and BR with 

d = det D. 

Considering (39) we can write 

(48) D and 

»J 

V 

where at, bu ft and ht denote now the rows of AR, BR, FR and HR, respectively, 

i = 1, ..., n. Obviously at = ftD and bt = htD. 

The approach used in the previous proof of Theorem 1 can be simply transformed 

here with the rows playing the former role of columns. For this reason the proof 

of sufficiency of (42) is given very briefly referring for details to the previous section. 

Thus the sets {Mn} and {Ln} are considered where (fl x n) polynomial matrices 

Mn and Ln are formed by different combinations of the rows o ;, bj and fu hj, respect­

ively; i,j = 1,..., n. Then we have 

(49) Mn = LnD 

with 

(50) det M„ = det Lnd 

for any corresponding pair of Mn e. {Mn} and Ln e {Ln}. 

Although the matrices Mn and Ln differ from the ones which considered under 

the same denotations in the proof of Theorem 1 the set {m„} of all nonzero deter­

minants of Mn is identical with {mn} which has been considered there. 

Since the conditions (42) are also identical with (12) the continuation of the proof 

can be found in the previous section starting with the equation (18) until (25). 

Only if: Suppose that AR and BR standing in (40) and (41), resp., are right coprime 

but (42) are not valid. 

1. If (42) are broken by (ph bt) -*- 1 for one /' e [2, n] we use the denotations (28). 

The matrices (40) and (41) can be decomposed into 

(51) 

aiPz 
bxq2 a2p3 

0 -b2q3 '• 0 
0 ai-гPi-x 

•. _ь. 
0 

V 

0 

-i i-í ai-iPii 
У atfi+^ 

-b;qi+í 

0 '". an__2pn_x 

"•. -bn-2 n-i a»-iPn 

0 -bn-xqr an_ 

D = AROD 
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and 

b\P2 

0 0 

' • . bt-2Pi-i 

ßк = 
0 lЛ-iPii 

z ЬІPІ+I 

o 
o •. ьn_lPn 

o K. 

D 

with the GCRD 

T 

0 •. 0 
'•. 1 

(53) D = 
0 (PІ,ЬІ) 

x 1 
0 

o • . 1 
0 1 

D = BROD 

The polynomials x, y represent a solution of the equation 

(54) aiPi+iX + (Pi, &.) y = -b^^ 

which is always solvable since (pi+1, bt) ~ 1 as well as (au b{) ~ 1 is assumed. 

Then 
(55) v = buqi+1x, and 

z = -bnpi+1x . 

For i =- n we must put pi+1 = 1 and # i + 1 = 0 in (54) and (55). The polynomial 
v in *4K0 is omitted. 

According to (53) d == det D = (p., frf) ^ 1 and hence the matrices (40) and (41) 
are not right coprime. 

2. If (42) are broken by (pt, b^^ * \ for one i e [2, n\ then using the denotations 
(32) the matrices (40) and (41) can be written in the form 

aiPi 
-b±q2 "• 0 

ai-iPi-\ 
~bi-2qi-i ai-iPiti-i 

-bi-tjqt aiPi+i 
-biqi+i 

0 '•. an-lPn 
-b„-iq„ a„_ 

D = AR0D 
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and 

(57) BR = diag [ o ^ ; . . . ; bt.2p^x; bt-iPtj-u &.P.+ i ; . . . ; bn-xpn\ !3j D = 

ZROD 

where 

(58) D » diag [ l ; . . . ; l ; ( p f , * , . - ) ; 1;.»;1] 

Since d = det D = (pt, b^ t) «* 1 the matrices (40) and (41) are not right coprime. 

D 
Note. Polynomial fraction fashions of Pt(s) as well as Tt(s) have been assumed 

so far. If dead times T{ are present in a cascade system factors exp( —T,S) occur 
in the numerators /3,(s) and/or q;(s). 

But the results of both Theorems 1 and 2 are valid for dead-time systems too, 
of course, with AL, BL and AR, BR being not necessarily polynomial matrices. The 
algebraic structure containing the elements tt(s) exp ( — Tts) instead of polynomials 
can be considered where tt(s) is a polynomial and T ; = 0. Then going through the 
steps of presented proofs no special pressumptions and operations in this structure 
are required. It can be appreciated from the physical system viewpoint that exp (—T,-S) 
and an arbitrary polynomial c(s) have only the common factor equivalent to unit, 
i.e., (exp(-T,s), c) ~ 1. 

4. EXAMPLE 

Let the three-stage cascade process (according to Fig. 1) be described by 

лtø = 10 bjş) =  

a^s) s(s + 2) , ,,(,)_ íäö__--, ai(s) s + 2 
ŕ-tø 

= Һ(s) 
a3(s) 

Ţ2{S) = Ш = *J2ÍZ!), T3(s)=Щ 
Pi(s) 

and hence its TFM 

G(S) 

10 

-•) 

s(s + 2) 

10exp(--•) 
s(s + 2)2 (s + 0-

10exp(-

1) 

- ) 

+ 0-1 

0 

1 

7+2 

1 

0 

0 

s + 2 

s + 2 

s(s + 1) 

1 

pъ(s) s + 1 

Ls2(s + 2) (s + 0-1) (s + l ) 2 s(s + I ) 2 s(s + 1). 

Observing that (p2, b2b^ ~ 1 as well as (p3, b3b2) - 1 the conditions (12) = (42) 

are fulfilled. 
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Using (10) and (11) the LCMF representation of G is given by 

s(s + 2) 0 0 

AĹ = 

B 'L = 

- e x p ( - s ) (s + 2)(s + 0-l) 0 
0 - (s + 2) s(s + 1): 

"10 0 0 
0 s + 0-1 0 
0 0 (s + 2) (s + 1)_ 

and according to (40) and (41) the RCMF description of G is formed by 

"s(s + 2) (s + 0-1) 0 0 
- 1 0 exp (-s) (s + 2) (s + 1) 0 

0 - 1 s(s + 1) 

"I0(s + 0-1) 0 0 
0 s + 1 0 
0 0 s + 2 

AR = 

B 'R = 

(Received December 27, 1988.) 
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