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KYBERNETIKA — VOLUME 11 (1975), NUMBER 6 

On G-machines Generating Intersection 
and Union of Generable Languages 

IVAN MEZNIK 

The article deals with the construction of G-machine generating to given two G-machines the 
union (if they satisfy certain necessary and sufficient conditions) and the intersection of their lan­
guages. 

1. INTRODUCTION 

The notion of a G-machine was introduced in [2] as a certain generalization of 
machines studied in [1] and [4], A generable language is the set of all "words" 
generated by a G-machine (in the mentioned references "generable set" instead of 
"generable language" is used). The class of generable languages is closed under 
intersection, but not generally under union (see [3]). We shall deal with the construc­
tion of G-machines generating to given two G-machines the intersection and the 
union of their languages. 

2. PRELIMINARIES 

2.1. Denotation. T= {1 ,2 , . . . } , T = {0, 1, 2, . . . } , T„ = {1, 2, ..., n), Tn = 
= (0, 1,2, ..., n}. 

2.2. Let J be a finite set (including the empty set). Denote J00 the set of all nonvoid 
sequences of elements of/. These sequences are called words. For w e /°°, me T w = 
= (s0, Su ..., sm_j) put /(w) = m. For w el'", w = (s0, s1 ; . . . ) put /(w) = GO. The 
symbol /(w) is called the length of w. Instead of w = (s0, st, ..., sm_J and w = 

m - l 

= (s0, Sj, ...) we write w = s0s1 ... sm^1 and w = s0st . . . or w = F | s , and w = 
oo ; = o 

= FJ s i respectively. Considering a word of finite or infinite length we use the denotation 



392 r j S ; . For k eT by the symbol (s 0s 1 . . . sm_ 1) lwe understand the word s0Sj ...s,„sm + 1 ... 

•••s2ms2m + i •••s*m-i> where sim+j = Sj for all i6T )£_1 and all j e T m _ 1 . Further, 
by the symbol (s0sl ... sm_ j)00 we understand the word s0Sj .. . smsm+1... snrnsnm+l ..., 
where snm+J = s ; for ally e T„_ j and all n e T. For m = 1 we omit the brackets and 
write s0, s^. 

2.3. Convention. In the relation C £_ ]x we suppose that every element from I is 
included in at least one sequence from C. 

2.4. A G-machine is a triple M =_ (S, 7, (5), where S is a nonvoid finite set, / c 
c S(/ 4= S), 5 is a mapping of/ into the set of all nonvoid subsets of S. In the follow-

m - l 

ing, M is to be understood as G-machine M = (S, I, <5). Let m e T. A word J7 s; 
00 i = 0 

or 17 s ; is called an output word of the length m or co respectively, if s0 el, si+l e 
i = 0 

6 <5(s;) n 7 for all i e T„_2 or for all i e T. An output word w = r ] s ; is called a word 

generated by M if either l(w) = oo or l(w) = m and there exists v e <5(sm_ j) n (S — /) . 
To distinguish that FTs; is an output word of G-machine M we use the denotation 

i 
r]s;(5). The set of all words generated by M is denoted L(M) and called the language 

i 

of M. A set C, C __ J00 is called a generable language if there exists M such that 
C = L(M). 

2.5. A pair (s, t>) is called productive if s el and i> e 8(s) n / and unproductive if 
s e 7 and u e <5(s) n(S — I). Denote P6 the set of all productive pairs and N5 the set 
of all unproductive pairs. Then 8 = Psu Ns. For every s el put Ns = {(s, u) | (s, p) e 
e/V5}. Choose from every Ns 4= 0 an arbitrary (s, us) (a representative) and put 
7V« = U (s, fs) and <5* = Pfi u /Vf. G-machine MR = (S, 7, 5R) is said to be 

seI,Ns*0 

result of reduction of M. 

2.6. G-machines M, = (Sj, Iu <5j) and M2 = (S2 ,72 , (52) are said to be equivalent 
if L(Mj) = L(M2). Then we write M , ~ M2 . 

2.7. Let 7 be a finite set, C _= 7°° and 7 c S(7 4= S), where S is a nonvoid finite set. 
Suppose 7 + 0 (then according to Convention 2.3 C 4= 0). Denote c an element 
(sequence) from C and by s ; the (i + l)-th element of c, c = TJs; for all i e T„,_j 

i 
m - 1 

if 1(c) = m e T and for all i e T if /(c) = oo. For c e C, c = FT Si(m e T) put P(c) = 
i = 0 

= U(s_> s_+i) f° r all fc e T„,_2 and JV(c) = (sm_j, u), where f is an arbitrary element 
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of (S - 7). For c e C, c = J ] s< P u t p(c) = U(s_, -_.+ _) for all fc e T. Denote P = 

i = o k 
= U P(c), N = U N(c), <5[C] = P u JV. If 7 = 0 put <5[C] = 0. Define G-machine 

csC ceC 
M[C] = (S, /, <5[C]). 

3. G-MACHINES MP AND My 

3.1. Proposition. M ~ MR. 

(See [2], Corollary 2.) 

3.2. Proposition. Let I be a finite set, C _= 7"°. C is a generable language iff C- = 

= IMC]). 
(See [2], Theorem 6 and Corollary 3.) 

3.3. Proposition. Let M, = (S l t J_, <5_), M2 = ( S 2 , 7 2 , <52) fee G-machines. Then 
the following statements (A), (B) are equivalent: 
(A) Pa_ = PSz and there exists (s, vl) e NSi iff there exists (s, v2) e 7V_2. 
(B) Mi ~ M2 . 

(See [2], Corollary 5.). 

3.4. Definition. Let M_ = (SUIU S,), M2 = (S2,I2, <52) be G-machines. Put 

(1) P_ = {(s, u) | there exist f j sy and / e T such that 
j = o 

11 SJ(5I) = f l SJ(<52) and s, = s , si+1 = v} . 
_=0 . = 0 

(2) P 2 = {(s, _>)| there exist indices /, ne T, n > i + 1, states u1 6 S_, t>2 e S2 and 
n - l 

an output word J\sj with sosi ••• sisi+t ••• s«-i(^i). so si ••• s;sl + 1 ... s„_](<52) 
_ = o 

where s ; = s, s i + , = t> and (s„_,, v^eN^, (s„_i, i>2)eJVa2} ; 

(3) JV' = {(s, »•') | (s, _>') 6 JV_,( and there exists (s, t/') e JV4j for all i,j e {1, 2}, / + ;} ; 

(4) <5P = P, u P2 u TV', PSp = P , u P2,_V4p = JV'; 

(5) SP __> S, where S = {s | there exists (s, /) e <5P} u {/ | there exists (s, /) e <5P}, SP 

is a nonvoid finite set; 

(6) IP = {s\ there exists (s, /) e <5P} u {t\(s, t) e P^p}. 
Define G-machine MP = (S_>, JP, SP). 

3.5. Theorem. Let M_ = (Si,/_,<$i), M 2 = (S2 ,72 , <52) fee G-machines, C = 
= L(M2) n L(M2). Then __/MP) = L(M[C]). 



394 Proof . Suppose PSp * 0, (s, v) e Pip. By Definition 3.4 (s, .) e P,„ for some 
m e {1,2}. First assume (s, D ) _ P X . From 2.4 and (l) of Definition 3.4 it follows 

there exists a word w = T | sj which belongs to L(MX) and L(M2), thus w e C. By 
j = 0 

2.7 (s, .) e P(w) and (s , . ) 6 P«[C]. Second let (s , . ) e P2 . By Definition 3.4 there exist 
v1 eSu v2 eS2 and an output word w of the form given by (2). Using 2.4 w — s0st ... 
. . .s„_j eL(M,„) for all m e {1,2}, thus w e C. By 2.7 (s, t))eP(w), (s, .) e Pa[C]. 
Hence the inclusion 

(?) P3 p = Psm 

holds true. Now suppose (s, u) e P^[C]. By 2.7 there exist c e C and / e T such that 
(s;, s ; + 1) e P(c), s; = s, s ; + 1 = v. Since c e L(M^ n L(M2) then there holds (s;, 

s ; + 1 ) eP^ m for all m e {l, 2}. First consider c = [7 s;. Then from (2) and (4) of 
j' = o 

Definition 3.4 it follows immediately (s;, s ; + 1) e P , , (s,-, s ; + 1 ) eP a _ . Second let 
n - 1 

t = J ] s/n e T). Since c e L(M,) n L(M2) from 2.4 it follows s0Si. . . . s,s i + 1 . . . 
;=o 

.. . - .- . .(-i) = s ^ .. . SiSi+1 ... s„_1((52) and there exist (s. . . , , o^eiVT.,, (s„_!, . 2 ) e 
eiV52. By Definition 3.4 (s;, s ; + 1) e P 2 , (s;, s ; + 1) e Pdp and therefore Pa[C] £ PdjJ. 
Using (7) we obtain 

(8) ^_=IVr 

Further, suppose Ndp =)= 0, (s, .) e iV5p. By 2.4 and (3) there exists a word w = s0 e 
e L(Mj), where s0 = s for all m e {l, 2}. From here c = s0 e L(M^ n L(M2) and 
by 2.7 there exists . ' e Nd[C] such that for s = s0 (s, . ' ) e N(c) holds, thus (s, . ') e 
e N. [C]. Hence the implication 

(9) if (s, u) e Ndp then there exists (s, . ') e !V.[C] 

holds true. Now suppose (s, . ') e Ni[CV By 2.4 and 2.7 there exist a word c = s0e C = 
= L(Mt) n L(M2), where s0 = s and v1 e(Sl - Ix), v2 e(S2 - I2) such that (s, v1) e 
eNSl, (s,v2)eNd2. From (3) it follows (s, vx)eN', (s, . ^ e J V . . and therefore the 
implication 

(10) if (s, . ' ) e iVa[C] then there exists (s , . ) e JV5p, 

where v = -1 holds. By (8), (9), (10) and (A) of Proposition 3.3 we obtain L(MP) = 
= L(M{C\). 

3.6. Corollary. Let Mt = (Sv Iu 5t), M2 = (52, I2, 82) be G-machines, 
C = L(Mt) n L(M2). Then MP ~ M[C] ~ M* 



3.7. Theorem. Let Mx = (SUIU <5,), M2 = (S2, /2 , <52) be G-machines, C = 
= L(MX) n L(M2). Then C = L(M[Cj) = L(Mj.) = L(M*). 

Proof . Since C = L(M1)nL(M2) is a generable language (see [3]) then by 
Proposition 3.2 C = L(M[C~\) and the proof is completed. 

3.8. Example. Using Definition 3.4 we shall construct to given G-machines M1( M2 

the G-machine MP, for which L(MP) = L(MX) n L(M2). G-machines M : = 
= ( S ^ / j , <5j), M2 = (S2,I2, <52) are given as follows: S t = {a, fc, c, x}, / t = 
= {a, h, c}, «5. : [a -* {a, x], b -* {a, b}, c -» {c, x}], S2 = {a, b, y}, I2 = {a, b}, 
$2 • [a ~* {)>}, b~>{a,b}, c -*• {b}~\. Since s0Si .. . s„_1(<51) = s ^ ... s ^ f ^ ) , 
where ss = b for every ne(T~ {I}) and y e f„_1 then by (l) (b, 6) e P t . Further, 
ha(<5,) = ba(82), (a,x)eNSi, (a,y)eNS2, thus by (2) (b,a)eP2. The pairs (a, a), 
(c, c), (c, b) obviously do not belong to Ps for any j e {l, 2}. Further, (a, x) eNSi, 
(a, y) e Nd2 and by (3) (a, x) e N', (a, y) e N'. Hence <5P : [a -> {x, y}, b -» {a, h}], 
SP = {a, b, x, y}, Ip = {a, b}, MP = (SP, IP, SP). By 2.5 M? = (SP, /P , <5*), where 
<5P : [a -> {x}, b -> {a, &}]. Apparently L(M?) = {fc00, bka, a\keT} = LtM.) n 
n L(M2). 

3.9. Definition. Let Mt =(S1,I1,S1), M2 = (S2,/2,<52) be G-machines. Define 
G-machine Mv = (Sv, Iv, dv), where Su = Sj u S2, Iv = It u I2, 5V = <5j u <52. 

3.10. Theorem. Let M. = (S t , / l 5 <5j), M2 = (S 2 , / 2 , <52) he G-machines, C-
= L(M,) u L(M2). Then L ^ ) = L(M[C]). 

Proof . Suppose (s,t)ePSu. Obviously (s,t)e(Pdi u P a J . There exists a word 
w e L ^ L , ) beginning with the output word S Q S J ^ ) , where s0 = s, Sj = t (see [2], 
Corollary l). By 2.7 (s0, Sj) e P(w), thus (s0, Sj) 6 Pd[Cy (s, t) e Pg[Cy Herefrom it 
follows 

( i i ) Piv - Pm • 

Now assume (s, t) e P5[Cy By 2.7 there exists a word ceC such that (s, f) e P(c). 
Since C = L(MX) u L(M2) it must hold (s, f) e P5 . at least for one j e {1, 2}, there­
fore (s, r) G P . r and P^rC] £ P5 u . Using ( l l ) we obtain 

(12) Piv - Pim • 

Let (s, r) 6N i v . By 2.4 w = s0 = s e L(MU). Apparently (s, J) eN s . at least for 
one j e {1, 2}. From 2.7 it follows there exists (s, f') e N(w), thus (s, f') e At̂ £C3 and 
the implication 

(13) if (s,t)eNSu then there exists (s,t')eNd[Ci 



holds true. Now suppose (s, z) e NS[Cy Then there exists c e L(M[Cj) such that 
(s, z) e N(c). Since c e L(Mj) u L(M2), then c e L(MJ) and there exists (s, zJ) at 
least for one j e {1,2}. Hence the implication 

(14) if (s, t') e NS[C] then there exists (s, f) e NSu , 

where r' = z, f = zJ' is satisfied. From (12), (13), (14) it follows the condition (A) 
of Proposition 3.3 is fulfilled, hence Mv ~ M[C] and L(MV) = L(M[C]). 

3.11. Theorem. Let Ml = (SUIU 5j), M2 = (S2,I2, 52) be G-machines and let 
C = L(Mt) u L(M2) be a generable language. Then C = L(M[C~\) = L(MV) = 
= L(M«). 

Proof . The statement is the consequence ofPropositions 3.1, 3.2 and Theorem 3.10. 

3.12. Proposition. Let Mt =(SuIud1), M2 = (S2,I2,52) be G-machines. Then 
the following statements (A), (B) are equivalent: 

(A) For every i,j e {1, 2}, i =# j and for every neT 

(A') ifs0S! ...s„.1(5J) and (sn_1,v)ePs. then s0Si ...s„.1(5i) 
or (sn-u v) e PSj and 

(A") if s0s1 ... s„_l(5J) and (s„_u vi)eNSl then SQS,. ... s„_1(5£) 
or there exists (s„_x, vJ) e Ndj. 

(B) L(Mj) u L(M2) is a generable language. 

(See [3]). 

3.13. Corollary. Let Mt = (SUIU 5^, M2 = (S2,I2, <52) be G-machines. Then the 
following statements (A), (B), (C) are equivalent: 

(A) For every i,j e {1, 2}, i 4= j and for every neT 

(A') ifs0s1...sn_l(5j) and (s„_j, v) e Ps. then s0s t . . . s„_1(<5;) 
or (s„_j, v) e PSj and 

(A") ifs0sl ...s„-l(5J) and (s„_1( v) eNs. then s0Si . . . s„_1(_>i) 
or there exists (s„_j, vJ) eNSj. 

(B) L(Mj) u L(M2) is a generable language. 

(C) L(M,) u L(M2) = L(MV) = L(M«) = L(M[L(MX) U L(M2)~\). 

3.14. Example. Let G-machines Mx = (SUIU <5j), M2 = (S2,I2, d2) be given as 
follows: Sl = {a, b, c, x},It = {a, b, c}, 8t : [a -> {a, x}, b -* {b, c, x}, c -> {a}], 



S2 = {a, c, d, y}, I2 = {a, c, d}, 52 : [a -» {a, y}, c -> {a}, d -» {c, d}]. First, we 397 
shall examine the condition (A) of Corollary 3.13. Let k,meT Then the following 
holds: 

«*($.), (a, a) e P,2, a«(<52); cr*(«i), («, J>) e lV («, *) 6 Nfl ; 

bkc(5l), (c, a) e PS2, (c, a) e P.,; ^ca" 1 ^ . ) , (a, a) e Pd2, (a, a) e PSl ; 

bkcam(5,), (a, y)eNl2, (a, x) e Ntl; ak(52), (a, a) e P6l, afyj ; 

a\d2), (a, x)eNSl, (a, y) e NSl; cak(52), (a, a) e PSl, (a, a) e PSl ; 

dcak(52), (a, x) s NSl, (a, y) e NSl; dcak(52), (a, a) e PSi, (a, a) e P5l ; 

dcak(82),(a,x)eNdi,(a,y)eNd2. 

From the above G-machines Mu M2 satisfy the condition (A) of Corollary 3.13, 
therefore L(Mt) u L(M2) is a generable language and L(Mt) u L(M2) = L(MV) = 
= L(Mu) holds true. By 2.4 L(MX) U L(M2) = {a™, ak, bx, bk, cak, bkcax, bkcam, 
ca00, dcam, dcak, dx}. By Definition 3.9 S „ = S , u S 2 = {a, b, c, d, x, y}, Iv = 
= It u I2 = {a, b, c, d}, ov = (c^ u d2) : [a -> {a, x, y}, b -> {b, c, x}, c -» {a}, 
d^{c,d}], Mu = (Su,Iu,dv). By 2.5 50 : [a - {a, x}, b -» {&, c, x}, c -> {a}, 
d -> {c, d}], M£ = (Sv, I0, S0). It is easy to verify that L(MV) = L(M^) = {a°°, a \ 
b°°, b*, ca1, ^ca0 0 , bkcam, cax, dca°°, dcak, dx} = L(MY) U L(M2). 

(Received January 3, 1973.) 
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