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KYBERNETIKA — VOLUME 22 (1986), NUMBER 1

EFFICIENCY AND ROBUSTNESS CONTROL
VIA DISTORTED MAXIMUM LIKELIHOOD
ESTIMATION

IGOR VAJDA

Families of M. L. E.’s with likelihood functions distorted by a parameter « == 0 are introduced
50 that a = 0 yields the classical non-distorted M. L. E.. The M. L. E. is known to be cfficient
but not robust while the distorted estimators are shown to be robust but not efficient. For quite
general types of distortions and statistical families, the distorted estimates as well as the corre-
sponding influence curves and asymptotic variances are shown to be continuous at « = 0. Thus
the parameter « controls the efficiency and robustness of estimators under consideration so that
one can easily review the set of attainable compromises and sclect the most appropriate one.
General location and scale families are analyzed from this point of view in more detail.

1. INTRODUCTION

N is the set of all natural and R the set of all real numbers. (%, /) is a measurable
sample space, 2 the class of all probability distributions on (%, &), 5,€ # the
distribution with all probability concentrated at x € &, and #, the subclass of all
empirical distributions defined by the mapping

::}—»P,,:—EZ&“ for all x=(x;,...,x,)e2", neN.
ni=1

@ is a locally compact Hausdorff topological space with countable base and Borel
sigma-algebra 4, P = {P,: 0 O} < i (sigma-finite), py = dPy/dk on @ x Z,
and D8, P), with D{6, x) written instead of D6, P,) for x> P,, is a mapping
O x Py [—w, 0], where o U P, = Py = P. A mapping T: P, — O issaid
a D-estimator if*)
(1.1) T(P) € argming D{0, P) = © forevery Pe P,
and if T,/x) = T(P,) for x~ P, is (=", %)-measurable for every ne N.

1) The symbol argming D(6, P) denotes the non-empty subset of @ at which the function
D(0, P) of variable 6 € © attains its minimum value, provided the minimum exists. Otherwise

this symbol denotes the empty subset. Analogically for argmax.
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Various functions D have been proposed in [13] but the concept of D-estimator
was introduced in a too narrow sense there. Namely, (1.1) was replaced by T(P) =
= r{argming D(0, P)) for every P € 2, where 7:exp @ — O was a fixed rule of choice.
In the meantime we found that quite complicated topologies have to be considered
on exp @ if the continuity of 7 required in [13] has to be ensured on sufficiently
general parameter spaces @ and that the whole theory is considerably simpler if the
concept of D-estimator is based on (1.1).

The next result which follows from Theorem 1.1 of [14] is stated here for references
later. There and in the sequel, @ U {f*} denotes the one-point compactification
of @ (cf. Chap. 5 of Kelley [7]).

Lemma 1.1. Let D(6, P) be continuous on @ and continuously extendable to 6*
with
(12)  D(h, P) < D{6*, P) forsome 60 =06P)c® andevery PeP,.
Then the D-estimator T exists. ’

In the present paper we are interested in D-estimators which can be interpreted
as distorted maximum likelihood estimators (M. L. E.’s) with a distortion parameter
o = 0. These estimators are denoted by T* and defined as follows. Let f,, o = 0,
be a class of increasing, continuous, extended real-valued functions defined on
[0, 0] and twice continuously differentiable on (0, 00) with (f,(u), fo(u), f1(x)) —
= (folu), fo(u), fo(u)) as o — 0 for all u e (0, o) where fo(u) = Inu. Then T* is
the D-estimator defined by D{(f, P) = —1,/0, P) where

(1.3) 100, P) = Ep f(py) for every 0e®, PeP,,

and where the expectations are supposed to be well-defined. Obviously, T is the
well-known M. L. E. Note that, if restricted to the subdomains Z, = 2, all distorted
M. L. E’s T" of the present paper become minimum contrast estimators of Pfanzagl

[10].

Theorem 1.1. Let py{x) be continuous on @ with

1.4 Eppy > 0 forsome 0 =0(P)e® andevery PeP,
\
and with
(1.5) lim py(x) = 0 forevery xe& .
o0

Further, let for every e @ U {0*} there exists an open neighborhood B{f) = @
such that

(1.6) — w0 £ Epfis@P) S EpfuPog) < 0 forevery Pey,
where ’
(L.7) s@Px) = inf py{x), pugyx) = sup px),

B(D) B@)

and where the left-hand equality in (1.6) takes place iff § = 6* and f,(0) = —c0.
Then T* exists.

48




Proof. By (1.6) and the Lebesgue bounded convergence theorem, the continuity
of py on @ implies that of 1,(6, P) for every P € #,. If f,(0) > —oco then the same
argument together with (1.5) implies that 1,(6, P) continuously extends to * and
1(6%, P) = £,(0). If £,(0)= —oo then the assumption limsup I(0; P) > —oo

J o

for some 6; — 6* together with the Fatou lemma and (1.5) leads to the contradiction
£{0) > —oo. Therefore the continuous extendability of 1,(0, P) to 6* holds for
f{0) = — oo as well. Finally, the monotony of f, together with (1.4) implies that for
every P e 2, there exists 6 € @ such that 1(6, P) > £,(0). Therefore all assumptions
of Lemma 1.1 hold for D(0, P) = —1,(60, P) and the desired result follows from
Lemma 1.1. ]

Next we present conditions under which the estimates T%(P) tend to the M.L. E.’s
T°(P)for Pe #,.

Theorem 1.2. Let the assumptions of Theorem 1.1 hold for all « 2 0 and let
for some P e 2, there exists a compact B(P) = @ such that

(1.8) max (6, P) = max [,(6, P) forall «=0,
o B(P)

(1.9) lim sup |L(0, P) — 14(6, P)| = 0,

a0+ B(P)

and

(1.10) {T°(P)} = argmaxyg, I4(0, P).

Then

(1.11) lix.sriT“\P) = T%P).

Proof. Let {ocj:j € /\/} be arbitrary fixed sequence tending to zero and 6; =
= T™{P) e B(P). By Theorem 5 of Chapter 5 of [7] there exists in B{P) at least one
limit point 6, of {0;:je N}. If we prove 0, = T°(P) then (1.11) will be proved.
Suppose for simplicity 8; — 8, as j — oo (there exists exactly one limit point)‘ By the
definition of T*(P), I,/6;, P) 2 1,6, P) and, by (1.9), 1,(6, P) - I,(6, P) for all
6 € B/P). Therefore
(1.12) liminf [, (60, P) = 14(6, P) forall feB(P).

jnw®
Take now into account the inequality
[1,10;, Py — 1o(00, P)| < |1,/ 0;, P) — 1005, P)| + |1o(0;, P) — 15{0o, P)| .
By the proof of Theorem 1.1, [y(6, P) is continuous so that the second right-hand
term tends to zero as j — co. The first right-hand term tends to zero by (1.9). Therefore
1,f0;, P) = 15(8,, P). This and (1.12) imply I,8,, P) = 1,(6, P) for all 0 e B{P)
which implies 8, € argmaxy) lo(6, P). The rest follows from (1.10). 0
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2. ASYMPTOTIC THEORY OF DISTORTED M. L. E’s

T* is said strongly consistent for P e 2, if T} (x) > TP) as n - oo P® — as.
The next result extends the theorem of Le Cam [8] on strong consistency of M. L. E.’s.

Theorem 2.1. If the conditions of Theorem 1.1 hold and {T%P)} =
= argmaxg L{0, P) for some P € 2, then T* is strongly consistent for P.

Proof. (I) Let py/x) = supy py(x) for every B = @ (cf. (1.7)) and let for every
Bz O

z{x, B) = i;}f [fz{PTz(P)(x)) — fdpx)] =
= fa(l’rxa’)(x)) - S‘;}szfl’a/\x)) = fm‘fl’rm(P)(X)) - fa(Pu{x)) .

Since @ has a countable base, for every 6 € @ U §* there exist open neighborhoods
© > B,{0) > B,(0) o ... with the intersection {6}. The monotony of the neighbor-
hoods implies

z(x, B/'9)) < zlx, B;,4{0)) forevery jeN
and the continuity of py{x) implies
lim z(x, Bj{0)) = [ pracp)(x)) — £ po'x)) = =(x, 0)
i=®
provided py{x) = 0 on &. Moreover the assumption {T%(P)} = argmaxg (6, P)
implies Ep z{x, ) = L(T%P), P) — 1,00, P) > 0 for all @ under consideration different
from T%(P). Therefore, by the Lebesgue monotone convergence theorem,

(2.1 limEpzix, Bj{6)) = Epz{x,0) > 0 forevery fe@ u{6*}, 6+ T*P).
o

Consequently, for every 0 considered in {2.1), there exists an open neighborhood
B0) = @ such that Ep z.x, B,0)) > 0.

(1) Let B = @ be an arbitrary open neighborhood of T*P). Since © u {0%} is
compact, the Heine-Borel theorem implies that there exists a finite set H = {6%, 6, ...
....80} = @ U {0*} disjoint with B and open neighborhoods B{f)) = @ of points
0 € H such that
(22) UB(@0)> ©—B and Epz{x,B(0)) >0 forall 6cH.

BeH

(cf. part (I) of the proof). Obviously, 7,/(x) € Bif x € A, where
A, = {xeZ" ) £/ prpfx)) ~ sup Zlfn(pe(xi)) > 0} .
i=1 O-Bi=
(I} To prove the desired statement take first into account that the inclusion
in (2.2) implies

max sup Z.fnlpa(xi)) 2 sup Zlfz(l’o(xi)) ’
=1 o-B i=

6cH  B(§) i=
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for every x € Z". Therefore
4,> /Tn = {x € %" max ( wa(PT(P)(xi)) — sup qu(h(xi))) > 0} .
6eH i=1 B@E) =1

Since for every x € "

3, sup £0s) 2 00 % 10x),

i=1 B

it holds

A,> 4, = {xe2" max ¥ z{x, B()) > 0} .
fcH i=1
Further, the right-hand inequality in (2.2) and the strong law of large numbers
imply that there exists a measurable set A « &% with P®(4) = 1 such that for
every infinite sequence x* = (xl, Xq, ) € A there exists n,. such that (xl, ey x,,) €
€ A, for all n > n,. This however implies that T;(x) tends P* — as. to T%P)
for the above established inclusions A, = A, = A4, together with part (II) of the proof
imply that the event x € 4, results in that T;(x) belongs to the neighborhood B
of TXP). O
In the rest of this section we consider the following

Regularity assumptions. Let @ < R™ for me N, let us consider the Euclidean
R™-topology on @, let int @ = 0, let for every o = 0 and Pe 2, < 2 there exist
derivatives

d . , :
(24) [;(9, P) = ;1(3 {0, P) = Er[fa(Pﬁ) Pa]

/d\T \ " - , £y
(2.5) 16, ) = (Q) 1L(6, P) = E[17(p0) mipi™ + filpa)

with components continuous on int @, where (d/d6)" = (8/2, ..., 8/80,,) (throughout

the paper the superscript © denotes the matrix transposition) and
,_d " da\" / "
(2‘6) Do = CTU Po> Po = (@) po» Eipo=Ep; =0,

and let 2, be a convex subclass of 2.

We shall say that Qp: &+ © is an influence curve of an estimator T: Z, > O at
PedP,ifforeveryxe &
(P, ) — T( .
(27) Qp(x) = lim T(P.y) — T(P) , where P, =(1—&)P+ed, for £e(0,1).
e~0+ &

Theorem 2.2. Let the assumptions of Theorem 2.1 hold for some P e #, and let
T*P)eint O, det [I(T%P), P)] = 0, and

(2.8) : lim T%P,,) = TP) forall xeZ.

=0+
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Then the influence curve of T* at P exists and is given by
(29) Q(x) = —I(TP), )" y'x) . p(x) = £l Proey(%)) Precer(%) -

Proof. Let x € & be arbitrary fixed. Since J, € , = 2, and since 2, is convex,
P, € 2, and T(P, ,) exists for all ¢ € [0, 1]. Further, since for all sufficiently small
¢ > 0it holds .

L(T(P),P)=0,
(2.10) (TP, ), P, ,) = 0, )

I(T(P), P, ) = (1 — &) IAT(P), P) + &l,(T*(P), 1,)) =

= afp(x) (cf. (2.9).(2.4) and (2.10)),
it also holds
L(T(P), P, ) — L(T*(P,.,), P..) = eyplx).
By the mean value theorem applied coordinatewise to the function L{u) = L(uT*(P) +
+ (1 —u) TP, ), P, ), u€[0,1], cach coordinate of the left-hand difference is
equal to the corresponding coordinate of
1260, P.. ) (THP) — T*(P, )

where 6,, possibly depending on the coordinate, tends to T(P) as & — 0 (cf. the
assumption (2.8)). Therefore

(P, ,) — T%(P)
&

(2.11) (6., P, ) = —p(x) for all sufficiently small ¢ > 0.

On the other hand, by (2.5),
10, P. ;) = (1 — &) I(0,, P) + ¢I;(0,,6,), where P,6.e,.

Since we assume that /{6, P) is continuous on int @ for every P e, and since
8, € int © for all sufficiently small ¢, the last identity implies

lim 10, P..)) = L(T(P), P).
£-0+

This together with (2.11) implies that the limit Q3(x) defined by (2.7) with T replaced
by T* exists and satisfies (2.9). O

Theorem 2.3. Let the assumptions of Theorem 2.2 hold, let all components of the
m x m matrix E(Q3Qz") be finite and let for every f e int © there exists'an open
neighborhood B{f) = © such that
(2.14) Ep sup ¢ < o

B(®)
for all components ¢, of the matrix f;(ps) pops” + fiPe) Ps. Then J/(n) (Ti{x) —
— T%(P)) converges P*-weakly to N(0, E//Q5Qz")) as n — co.
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Proof. (I) We first prove that if 6, — 0, eint @ as n - o0 and x — P, then
(2.15) lim 7(6,, P,) = (65, P) in P®-probability .

The assumed continuity of @y(x) on @ for every x € & (cf. (2.14), (2.5)) together
with (2.14) and with the Lebesgue bounded convergence theorem imply Ep@p, —
— Epgy, as n > 0. The same argument implies that there exists ¢ > 0 such that

Epl@y, — Eppy)* < ¢ forall nehN.

This assumption and the Chebyshev inequality imply (cf. the proof of Theorem 2
in Sec. VIII. 3 of Rényi [12])

lim 1 Y (@o.(x)) — Eppy,) = 0 in P -probability .

nooo B i=1

Since
1y .
a Y. @o(x) and  Eppy, = lim Eppy,
i=1 n— oo
are nothing but the components of the matrices 1,(6,, P,) and I,(6,, P,) respectively

(cf. (2.14), (2.5)), the statement (2.15) holds.

(II) By Theorem 2.1, T = T;(x) = T*P) as n » o P®-a.s. Hence for x— P,
and all sufficiently large n e NV

L(T5 P) =0
TPLP) =L T yin) (of (24).09).
Therefore
(216) LTP) P — LT P) = L Tl
Using coordinatewise the mean value theorem analogically as in the proof of Theorem
2.2, we obtain
(217) L(TX(P), P,) — L(T}, P} = [(8,, ) (TH(P) — T})

where 6, > T%P)asn — co P®-a.s. Combining (2.16) and (2.17) we get the identity

) (5 = T(P) = M2 3 05x)

where M, = (0, P,)~! I,(T*P), P) for all "5 x> P, such that det (I;(8,, P,)) + 0.
By (2.15), I)(0,, P,) - L{T*P), P) in P*-probability, where det(I;(T*(P), P)) + 0
(cf. Theorem 2.2). Hence, M, tends to the unit m x m matrix as n = o in P®-
probability. The assertion of the corollary now follows from the multidimensional
central limit theorem (cf. e.g. And&l [1], p. 185), from the multidimensional version
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of the Cramér-Slutskij theorem (cf. Fuller [4], pp. 140— 145) and from the identities
EpQf = —I(T%P), P)' Ep¥bp = (cf. (29))
= —I(T%P), P)" ' I(T%P), P) = O (cf. (2.9), (2.4), 2.10)) .

Efficiency and robustness control. Let us suppose that the assumptions of

Theorems 2.2 and 2.3 hold for ¢ € [0, o], 0o > 0, and let for some P e 2,

lim E(QR08T) = Ex(QRQLT).

=0
It is typical that the influence curves Qf are bounded on % for « > 0 and unbounded
for o = 0. In this situation, choosing T% with suitably small « > 0, one estimates
the unknown parameter in a robust manner with efficiency arbitrarily close to the
efficiency of M. L. E. T°. Generally, one can always control the asymptotic variance
Ex(Q230Q5") and the gross-error sensitivity sup Q3(x) (cf. Hampel [5]) by the parameter

z

o = 0. We shall analyze this possibility in more detail in Sections 5 and 6, where
two concrete families of distorted M. L. E.’s T%, « = 0, are considered.

3. DISTORTED M. L. E.’s OF STRUCTURAL PARAMETERS

Pg is said structural with a parent P, (in symbols 24 = P, ) if (a) @ is a group
with a neutral element o ¢ @ and with the property 6, — 0; for some 6, 0, 0, €
€ @ v {6%} iff 66, — 00, for all ¢ O, (b) © is homomorphic with a group [O]
of one-to-one &/-measurable mappings [0]: 2 — Z, (¢c) Py = P,[0] ' for all 0 e O,
where [0]7': & > & is inverse to [6].

Throughout this section we consider a structural family 2, and the corresponding
distorted likelihood function (1.3) satisfying the assumptions of Theorem 1.1. We
denote 0B = {00: e B} for all € O, B = @, and say that T* is equivariant if,
for every fixed f € @ and P € 2, it holds P[0]™* € 2, and

(3.1) argmaxg (0, P[0]71) = 0 argmaxg 10, P).
Theorem 3.1. If there exist bounded continuous mappings 4: @ — (0, ), B:
:@ — R such that
(3.2) 140, P[6]°") = A(0) 1(07 1, P) + B(6) forevery 6,8c@, Pe?,,
and either 2, = 2 or [,(6*, P) = — oo for all P € 2, then T* is equivariant.
Proof.Let 0 € O, P € 2, be arbitrary fixed. Generally P e 2, implies P[] ! € 2,
for if 2, # 2 then 1(0, P[0]™1) satisfies the assumptions of Theorem 1.1iff 1,(§, P)
does so. Therefore P[0]7* e #,. Further if (1.14) holds then (8, P[0] ) =
= max L(0, P[6]7") iff 18, P) = max (@, P) for 8 = 6718,. In other words,
[ o

0, € argmaxg (6, P[0]7") iff §, = 00 for 0 € argmaxg L(d, P), i.e. (3.1) holds. [J
Denote [6] . x = ([0] (xy), ..., [0] (%)) for every xe &™ It holds x — P, iff
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[6].x — P,[6]™ . Hence, in the case { T(x)} = argmaxg L{0, P), (3.1) takes on the
well-known form
(3:3) T([0].x) = 0 T{(x) forall 0e®.

Theorem 3.2. Let for a structural family 2, the conditions of Theorem 1.1 hold,
let T* be equivariant and let {T%(P)} = argmax, [,(6, P) for some P e Z%. Then
THx) T(P)™! - 0 as n — oo (P[0] ")®-as. for all f e O.

Proof. If {T%(P)} = argmaxg 1{0, P) then, by (3.1), {T%P[6]"%)} = {6 T4(P)} =
= argmaxg (0, P[6]71) for every fixed @ € ©. This implies that the assumptions
of Theorem 2.1 hold for all P = P[], 6 € ©. Hence, by Theorem 2.1, T;(x) —
- TP[0]™") = 6 TYP) as n— oo (P[0] ')®-as. But, by the assumption (a)
in the definition of structural family, this implies the desired statement. O

Theorem 3.3. Let the assumptions of Theorem 3.2 hold, let 80 = A(f) 6 + a(f)

for all 0, § € © and for some m x m or m x 1 matrix functions A(f) or a(f) with
real-valued components, and let for all x € & and all sufficiently small ¢ > 0

(3.4) {TXP, )} = argmaxe L(6, P, ) (cf.(2.7)).
Then the influence curve Qf of T*at P[§]~* exists if Q} exists and
(3.5) Qf(x) = A(0) Q4([6] ' (x)) forevery xeZ, 8e0.

If, moreover, 00 = B{6) § + b(6) for all 0, (e @ and for some matrix functions
B(0), bi¢) with real-valued components, then the influence curve & of the ‘right-
modified version® 7% = T*T%(P)™* of T (cf. Theorem 3.2) at P[0] ! exists iff the
influence curve Qp of T* at P exists and

(3.6) Q5(x) = C(0) 23([0] (x)) forevery xeZ, 0e0O,
where
(3.7) C(0) = A(0) B(T*(P)™1).
Proof. Put P, = P[0] . It holds
(3‘8) (ﬁg)u,x = (P[G]Ml)c.x = Pc,[ﬂ]“(x)[_»a:lg1

for all ee(0,1) and xe %, 6 €@. Therefore, by (3.1), (3.4) and by the linear represent-
ation of the associative group multiplication,

TH(Py), ) — TPy) = 8 TP, po3-1(0) = O TH(P) =
= A(0) (THP; toy-100) — T(P))-

Therefore, by the definition of Qf and Qf (cf. (2.7)), @ exists if Q5 does so and the
identity (3.5) holds. Replacing T* by T* = T*T*(P)™* we get from (3.8)

T(Py).,5) — TH(Ps) = C(0) (TP, 1oy-1(y) — T(P))

with C(6) given by (3.7). This identity and the preceding result imply the second
assertion of Theorem 3.3. O
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Theorem 3.4. Let the assumptions of Theorems 3.3 and 2.3 hold. Then /(n} (T;7(x) —
— T*P[6]7*) - N(0, A(6) E{2325") A()") for all feint@ and /(n)(T(x) —
— ) - N(0, C(0) Ex(2;25") C(0)") for all @eint @, where Qf and C(6) are as
in Theorem 3.3 and both convergences are (P[0]™*)* — weak as n — co.

Proof. If the conditions of Theorem 2.3 hold for P then, by (3.5), they hold for
all P[#]~! with 0 eint ©. Therefore, by Theorem 2.3,

V() (T(x) = T5(PLO] ) > N(O, Eppoy-(25%™)) (P[6]*)~-weakly.
But by (3.5) it holds

Brror-(Q5Q5") = A(0) By [QH([0]74(x)) Q5([0]H(x))"] A(0)" =

= A(0) Ep[Q3(x) Qx(x)"] A(0)"

so that the first convergence is proved. At the beginning of the proof of Theorem 3.2
it was proved that T*P[6]™!) = 0 T%P) for all 8 € @. Therefore THP[0]7?) =
= TY(P[0]™*) T*(P)"! = 0 for all 0 € © and, consequently,

V) (Tr(x) = 0) = /() [T(x) T*(P)~" — T(P[6] ") T(P) "] =

= B{T*(P)™") () (T;(x) — TX(P[6]71)) -

Thus the second assertion of Theorem 3.4 follows from the first one. O

4. IMPLICATIONS FOR M.L.E’s

In the present section we summarize some implications of the general theory
of Sections 1—3 for the M. L. E’s T° Remind that T® is defined in the present
paper by the condition T%(P) € argmaxg (0, P) for all Pe 2 o Py L P, Where
Pg is a family of theoretical distributions dominated by a sigma-finite measure A
with densities py(x) on @ x %, 2, is a family of empirical distributions and

(4.1) 15(0, P) = Epfo(ps) = Epinp, forall 0e®, Pe?,.

We shall consider the following conditions concerning Zy and #,:
A 1: p,(x) is positive and bounded on @ x Z,
A 2: py(x) is continuous on @ x & with lLim py(x) = O for every x e & (cf. (1.5)),
0-0%
_ A3:for every e @ there exists an open neighborhood B(f) = ® such that
Ep In (inf pg) > — oo,
B
A 4: p, = p; A-a.s. for no different 0, § e O,
A 5: py(x) satisfies the regularity assumptions of Section 2 for « =0 and
—13(8, P) = Ex[(ps/p) (mapa)" — Pi/ps] > 0 on int © for every P e 2,
A 6: The squares of components of the matrix (ps/p,) (ps/ps)” — Pi/ps are uniformly
P-integrable in an open neighborhood of each f e int 6.

Assertions similar to those that follow have been widely established in the literature
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since R. A. Fisher [3] introduced the concept of M. L.E. We avoid the tedious
task to list all relevant references here.

Theorem 4.1. If A 1—A 3 hold then all expectations in (4.1) are well-defined
and the T exists.

Proof. The first assertion follows from A 3. Since under A 1— A 3 all assumptions
of Theorem 1.1 hold, the second assertion follows from Theorem 1.1. a

Theorem 4.2. If A 1— A 4 hold then, for every fixed 0 € ©,

(4.2) {T°(Py)} = {0} = argmaxg Iy, Py) .
If (4.2) holds for P, replaced by any P € 2, then
(4.3) lim TY(x) = 0 P™-as.

R~

Proof. (4.2) follows from the fact that Io(d, Py) < 1o(0, P,) for every 6, § with
the equality iff P, = P; (cf. Theorem 5 of Perez [9]), where, by A 4, the equality
takes place iff @ = {. By (4.2) and by what has been said in the proof of Theorem 4.1,
the assumptions of Theorem 2.1 hold for P under consideration with T°(P) = .
Therefore (4.3) follows from Theorem 2.1. 0

Theorem 4.3. If A 1—A 5 hold and if for some P e Z, there is a unique root
0 = O(P) of the equation I;(6, P) = Ex{py/ps) = 0 on int &, then
(4.4) {T°(P)} = {8} = argmaxg I(0, P)

and the influence curve of T° at P is given by
i
(45) QUx) = —15(6, P)™! ) forall xex.
/ (
Pex)

For all P = Pye P, 6 eint O, the root O(P) is unique and equal 6 and I5(9, P) =
= —I(6), where I(6) is the Fisher information of #, at 6.

Proof. (4.4) follows from the fact that, under A5, I,(0, P) is strictly concave
on @. Since §, € P, = P, for every x € &, 140, 5,) = In py(x) is strictly concave
on @ for every x e & as well. Therefore, I4(0, P, ,) = (1 — &) Io(6, P) + ¢ In py/x)
is a system of strictly concave functions tending to the strictly concave function
14(6, P) as & — 0. It follows from here that (2.8) holds and, moreover,

(4.6) {T(P, )} = argmaxg Lo(0, P, ;) .

Since the remaining conditions of Theorem 2.2 with o = 0 under A 1—A 5 hold
as well (cf. A 5 and the proof of Theorem 4.2), (4.5) follows from (2.9) with « = 0
and from (4.4). The last assertion follows from (4.2) and from the fact that
(— 11)4(0, Pg) = Ep,[(P/po) (el po)"] — Ero(Ps/Po) = I(6) — E;pj, where E;p; = 0 by
2.6). O

Theorem 4.4. If the assumptions of Theorem 4.3 and A6 hold then ./(n).
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(T2(x) — 0) - N(0, Ex(Q003T)) P*-weakly as n — 0. If P = Pge 4, for f eint 9,
then E,(Qp0pT) = I(6) !, where I(0) is the Fisher information of g at 0.

Proof. By A5, —I;(0, P) is positive definite so that —Ig(6, P)~* has all com-
ponents bounded. By A 6, Ep[(pi/ps) (ps/ps)"] has all components bounded too.
Hence, by (4.5), all components of the matrix E,(Qp, Qf7) are finite. By A 6, (2.14)
holds as well. Consequently, the first assertion of Theorem 4.4 follows from Theorem
2.3 and the second one from Theorem 4.3. O

In the rest of this section we consider Euclidean sample spaces 2 = R™, me N,
with the norm ||x||* = xx, x € B, Euclidean parameter spaces @ = R™ x [3, 67 1],
5€(0,1), and Lebesgue dominating measures 1 on %. We introduce a general
location and scale structure as follows. Let 0" = (p, 6) e B™ x [§, 07 1], where p =
= {py, ..., 1,) € R™ (unless necessary, we do not distinguish between (y, o) and
(1 &)"). If we put

(4.7) 00 = (1, o) (i, 6) = (u + ofi, 06) and [0](x) = p + ox,

then (a), (b), (c) in Section 3 hold (0 = (i, 6) — 0% iff |u|| > o). Let 2 be a domin-
ated structural family with a parent density p,. It holds

(4.8) Dofx) = L Po (x;u) forevery xe%, 0 ={p0)c@.
o o ) .

Denote by M® and S° the p- and o-components of the M. L. E. T° defined by this
family Pg.

We shall consider the following conditions concerning p, and 2,:

B 1: p,(x) is a continuous, bounded, decreasing function of ”AU forxe &,

B2: {0, P) = EpgyIn p, > —co for all 0 @, Pe &,

Theorem 4.5. If B1, B 2 hold, then A 1— A 4 hold too, T° exists, { T°(Pg)} = {6} =
= argmax, lo(f, Py) for every fixed 8 € @ and T,)(x) » 8 Py-a.s. for all f e ©.

Proof. The fact that A 1, A2, A4 follow from B 1 is clear from (4.8) and from
the equivalence between 6 = (1, o) — 0% and [u| — co. If we prove that A 3 holds
too, then the desired assertions will follow from Theorem 4.1 and 4.2. By (4.8), A 3
holds if, for each fixed (i, 6) ¢ @ and every & < 4,

(4.9 Ep ln( max p, <L‘J‘__+_ﬁ)> > —o0

llul.lol<e G +0

(take into account the inequalities § < & < 1[5, In (¢ + 0)™™ = —mIn (e £ 1/6) >
> —mln (8 + 1/8)). Let 1(x) = x/||x| for all x % 0 and 1(x) = (1,0,...,0)e &
for x = 0. Since

max
linlllol2e

»

x—f+el(x — f)
G+ o G —

X—BE+u \l _
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the monotony of p, assumed in B 1 implies
] g 1 i
Ep ln< max p, (ui‘ﬂ)) = E,lIn p, (L i iﬁw) _
lalllolze 5 _¢ ,

E_ so.

=mIn(5 — &) + EpzzpIn pfx + £1(x)) where &=
g — &

Since [x + &1(x)] < [2x] for | x| > &and since p,(x + & L(x)), po(2x) are bounded
from below as well as from above by positive constants for Hx” < &, the monotony
of p, assumed in B 1 now implies that (4.9) holds provided

Epis—e1 10 po(2X) > —c0 .
But
Epma»e] In Pn(zx) = EP[F(,(E—E)/ZJ In Po\x)

where the right-hand expectation is bounded from below by B 2, so that (4.9) holds. []

Theorem 4.6. If B 1, B 2 hold, then T° is equivariant.
Proof. Let 0 = (g, 6), 0 = (i, &) € @ and P € #, be arbitrary fixed. By (4.1) and
(48),
~ ~ 1 A_1 ¢
15(8, P[6]77) = Epggy-iIn pp = Eppyy- l“( r/[0] IP‘))) =

&

= Epre I (22001 (01101 (49) = oo (L 10710) () =

i[5 ) i[5 ) -

—Ino=Eplnpysy—Ine =16""0,P)—Ino.
Since, moreover, [o(0%, P) = —co for all Pe 2, (cf. Theorem 4.5 and the proofs

of Theorems 4.1 and 1.1), all assumptions of Theorem 3.1 hold and the equivariance
of T? follows from Theorem 3.1. ]

Theorem 4.7. Let B 1, B2 and A 5 hold and let there is a unique root § = {u{P),
o(P)) of the equation Ey{ps/p,) = 0 on int ©. If P < A and p = dP/dA satisfies B 1
then u(P) = 0,

Si{x)
4.10 TOo(x) = { MO(x), 2222
i) 70 = (i), 22
for all § = (4, 0) € @, and the influence curve of T° = (M?°, S°/o(P))" at P[0]*
is given by

(4.11) (x) = oCQ} (i\:—‘u) forevery xe%, 0eO,
g

>—)0 as n-oo (P[] N -as.
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where QJ is given by (4.5) and
(4.12) C= [_:"_. ________ ] (I, is the m x m unit matrix) .

Proof. By Theorem 4.4, (4.4) holds. By (4.4), T*(P) = (M°(P), S°(P)) = (u(P),
o(P)). By Theorem 1 of Anderson [2] (cf. also Example 2 of Pfanzagl [11]), if p
satisfies B 1 then, for every fixed ¢ > 0, EpIn p, , is maximized by u = 0. This
implies p(P) = 0. Since by (4.7) it holds (M°(P), S%(P))™* = (0, o(P))"* = (0, a(P)™ 1),
since the conditions of Theorem 1.1 hold (cf. Theorem 4.5 and the proof of Theorem
4.1) and since T° is equivariant (cf. Theorem 4.6), (4.10) follows from Theorem 3.2.
(4.]1) follows from Theorems 4.5, 4.3 and 3.3 and from the fact that A(g, &) =
= 61,041, a(fi, &) = (1, 0)" e R"**, and

LT
(4.13) ‘ Blu,0) = [{!" “] (g, 0) =0
(U
(cf. Theorem 3.3; by (4.6), the assumption (3.4) of Theorem 3.3 holds). O

Theorem 4.8. If all conditions of Theorem 4.7 as well as A 6 hold, then
(4.14)  /(n) (T2(x) — 0) > N(O, Eppy-(F2G5T)) (P[] Y)>-weakly as n — oo
for the estimator T and influence curves Gy defined in Theorem 4.7 and for all
feint ©.

Proof. By the preceding proof, the assumptions of Theorem 3.3 hold. By A6
and Theorem 4.3, the assumptions of Theorem 2.3 hold for « = 0 too. Thus the
assumptions of Theorem 3.4 hold and the desired assertion follows from Theorem
3.4. 0

Example 4.1, Let p,(x) = (2n) "™ exp (—||x||*/2) for every x € . This p, obviously
satisfies B 1. Moreover, by (4.8), it holds for all f € int ©

x — m\T
g
— 2
x—pt_

(4.15) S oEY_ 4

1
In py(x) = —
pefx) dof o) ¢

w0 A -

60



Let Pe &, P < 1, be a fixed distribution with a density p = dP/d4 satisfying the
condition B 1 with E,[[x|? < . By (4.1), (4.15), (4.16),

- 2 2
(417) 140, P) = — %[m Ino® + Eﬂ’iéﬂ] forall 0=(u0)T €0,

- <ﬂ>

l o
7| Ealsl + Jul? _ |
o2

and

(4.18) 10, P) = Ep oo ) =

T L
(4.19) 16, P) = E, (i) (3> o) = — | b N

a6/ \de o _21_153'5?_”)6\!2;“ lel> _,,

for all 0 = (g, 0)" eint @. We shall prove that B1, B2, A5, A6 (consequently
also A 1—Ad4, cf. Theorem 4.5) hold for 2, = {P e Z: Ey||x||* < 0} > 2, L 2,.
Indeed, for every P e 2,

2

(4.20) 146, P) = — v;:[m o2 4 B2l = 2u(Em)" +,l|/fH’] (cf. (4.17)),

and, analogically, (4.18) remain true for arbitrary P e 2, provided all dividents
Ep|x||* + [u||? are replaced by the more general divident of (4.20). B1 is clear.
B 2and A 5 follow from (4.18) —(4.19). A 6 follows from (4.16) and (4.19).

By (4.17), if for P under consideration
, 1 12
(421) o(P) = [— E,,HXHZ] (6,57,
m

then 6(P) = (0, o{P))" eint O is the only point of @ which maximizes /o(6, P) on
O (it is at the same time the unique solution of the equation Ix(6, P) = 0 on int O,
cf. (4.18)). Hereafter we suppose that 6 > 0 is selected small enough so that (4.21)
holds for P (if P = P, then ¢(P) = 1 so that (4.21) holds for every 6 € (0, 1)).

By Theorem 4.5, the M. L. E. T® = (M®, 5°): 2, - @ = R™ x [§,67"] exists.
By Theorem 4.6, (M°, S°) is equivariant. Since {(M°P), S°%(P))} = {(Epx, (E5.
- x]|2[m)**)} = argmaxg 140, P) for all P e 2, (cf. (4.20) for the standard normal
po)andsincex » P, e 2, = Pyforallxe ", ne N,(M° S°) as well as (M®, S°/o{P))
are equivariant in the sense specified in (3.3) for all x € 2", n € N. By Theorem 4.7

li:n‘(M,?(x), S3(x)fo(P)) = 0 (P[6] )*-as. forall 0c®
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and, moreover,
0 (x = w"
(422) 3)(x) = for every xe &
LAY e
26(P) \m o(P)?
is the influence curve of (M°, S°/a(P)) at P[6]"1 for every 0 = (u, ¢)eint ©.

[
The formula (4.22) follows from (4.5), (4.11), (4.12) and from the fact that, by (4.15),
(4.19),

T
X
Pﬁ,a(rg(x) _ 1 ("_P)>

Po,ary(X) - ;"TP) [ m
a(P)?

N _ ! [,’215,9,] (cf. (421) .

§’3EPI|X]|2 o o{P)y* | 0 !2m ]

1 J7

= 1((0, o{P)), P) = P |
t

In the particular case of location, the influence curves 39(x) = Q%(x) = x — u
of the sample mean M° (defined by M%P) = Epx for every Pe #,) at P[u]™ !,
pel, are well known (cf. e.g. Hampel [5]). For the general right-modified least
square estimators (M°, S°/o(P)) the curves (4.22) seem to be new. Note that e.g.
for the standard doubly exponential density p(x) = exp (—[x[)/2 it holds ¢{P) = 2
while the standard Cauchy distribution is outside 2. Note also that, by Theorem 4.8,
J() (M}(x), Sp(x)[o{P)) — (u, 0)) is asymptotically normal with the asymptotic
mean zero and the asymptotic variance Eppgy-(G9Q57) (cf. (4.22)) for every 0 =
= (i, o) e int @. If the Fisher information I(6) of the family {P[0] *: 0 € O} exists
and is positive on int @ then, using the idea employed in the end of Section 2 of
Huber [6], one can establish the inequality Epry- (3937 = 1(0) 7.

5. TYPE 1 DISTORTED M.L.E’s

In the present section we consider one concrete class of estimators T% « € (O, 1),
defined by the functions
T flw) =

4 —1, Sy =w", fiw)= (e~ )u"?, uel0,x],
«

ae[0,1].
These functions are satisfying the assumptions of Section 1 and, for a € (0, 1), f,(u)
are uniformly bounded from below by —1/x so that the left-hand inequality in (1.6)
is strict for-all § € @ and all families 2. This fact considerably simplifies the theory
for T% « (0, 1), against the theory for T° presented in Section 4. Throughout this
section we preserve the notation introduced in Section 4 and the preceding sections
and we consider #, = 2.
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Theorem 5.1. If A 1, A 2 hold then all T% a e (0, 1), exist.
Proof. All assumptions of Theorem 1.1 follow from A1, A2 and the desired
assertion follows from Theorem 1.1. O

Lemma 5.1. If A 1, A 2 hold and, moreover,
A*3: pyfx), py(x) defined in (2.6) are continuous and pj(x) py(x)[ps(x), pi(x).
. P3(x)pe{x) bounded on int @ x Z for all w (0, 1]
then the regularity assumptions of Section 2 as well as (2.14) hold for all Pe 2, = &
anda (0, 1).

Proof. By (5.1), A*3 implies the continuity and boundedness of the integrands
in (2.4), (2.5). Hence. by the Lebesgue dominated convergence theorem and by the
mean value theorem applied componentwise to the integrands, (2.4)—(2.6) hold i..,
in particular,

(5.2) 140, P) = Eppi 2 forevery Oeint®, Pe2,
Pe
v Pl /p! T pu
(53) —140,P) = Epp* ((I — o) (J\\ <——9) - —'—7) foreveryleint®, Pe?.
Pe/ Do Po
(2.14) follows from the fact that, for every P € &, the integrands in {5.3) are assumed
bounded on {int ®) x % so that the squares of components of these integrands are
bounded on (int @) x Z too. O

Lemma 5.2. If for some P ¢ 2
A*4: there is a unique solution 6§ = ¢%P)eint @ of the equation I,{6, P) =0
on int @ and (6% P), P) > 1,(0, P)forall0 e ® — int @, a (0, 1),

then {T%P)} = {6%P)} = argmax, I,(6, P) as well as (2.8) hold for all o (0, 1).

Proof. Let we(0,1) and P e # be arbitrary fixed. By Theorem 5.1 there exists
T*(P) € © maximizing {6, P) on ©. By the inequality assumed in A*4, T P) e int .
Therefore T%P) is a stationary point of (0, P), i.e. [(T%P), P) = 0. By assumptions,
TXP) = 04P) is unique and the first assertion holds. As to the assertion (2.8), take
at first into account that {6, P,.) = (1 — &) (0, P) + &(py/x)* — 1)/ tends for
arbitrary fixed x e & to 1,0, P) uniformly on @ as & — 0. Since @ is locally compact
with countable base, it is also sigma-compact i.e. there exist compact subsets B, <
© B, < ... = O with a union equal @. The assumption T“(sz‘x) ¢B;foralljeN
and some ¢; — 0 as j —» oo contradicts A 1, A 2. Therefore, for all sufficiently small
€ > 0 there exists a compact subset B = @, T%P) e B, such that T%P, ) € B. The
uniform convergence of L(0, P, ) to L[6, P) together with the assumption that
L(8, P) is maximized at exactly one point T%P) € @ imply (2.8). O

Theorem 5.2, If A 1, A 2, A*3, A*4 hold and, morcover,
(5.4) —L{T%P),P) >0 forall «e(0,1)
then, for all « & (0, 1),
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(i) THx) » TYP) P=-as,
(ii) the influence curve of T* at P is bounded and given on & by

(5.5) Q3(x) = —15(0, P)™* pi(x) ) where 0 = T%(P),
Po(x)

(i) /() (T(x) — T(P)) - N(0, Ex{(Q5Q5")) P -weakly as n — co.

Proof. (i) By Lemma 5.2 and the proof of Theorem 5.1, all assumptions of Theorem
2.1 hold so that (i) holds too.

(ii) By (5.4), Lemmas 5.1 and 5.2, and by what has been said in part (i) of this proof,
all assumptions of Theorem 2.2 hold. Thus (5.5) follows from (2.9) and (5.1). The
boundedness of Qf follows from A*3.

(iii) By what has been said in part (ii) of this proof and by Lemma 5.1, all assump-
tions of Theorem 2.3 hold. This Theorem implies the assertion (iii). ]

In the rest of this section we consider the general location and scale structural
model introduced in Section 4. We assume that the family 2 defined by a parent
density p, satisfies B 1, A*3 (by what has been said in the roof of Theorem 4.5,
A1, A2 follow from B l). We also consider a fixed distribution P € 2 satisfying
A*4 with a density p = dP[dA satisfying B 1 as well.

Lemma 5.3. It holds 0% P) = (u*(P), 0%(P)) = (0, o*(P)) for all a & (0, 1).
Proof. This statement follows from the same Theorem 1 of Anderson [2] as the
analogical statement of Theorem 4.7. O

Let us suppose in addition to what has been supposed above that
(5.6) —1((0,6%(P)), P) > 0 forall ae(0,1).

Theorem 5.3. It holds for all we(0,1) that (i) T° = (M% S%):# >0 =R x
x [8,671] exists and is equivariant, (i) T* = T°T%(P)~! = (M?, §*/¢*(P)), (iii)
(M¥x), Si(x)j*(P)) » 0 as n — oo (P[] )*-as. for all § = (u, o)€@, (iv) the
influence curve of (M®, $%/6%(P)) at P{§]" is bounded and given by
0

(57) ) = oo 2y | (- HCO. N2

. , X —f
Po,ex(Py <7>
X —u 4
X Po,g2(P) ( o )

Po,exp) (%ﬁ) M
for all 6 = (i, o) eint @ (cf. (5.3)), ‘
v V() (M3(x), Six)[0%(P)) = (1, 0)) = N(0, Epryy- (B;57))

(P[] Y)®-weakly as n—> oo forall 6= (u,0)eint®.
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Proof. (i) The existence follows from Theorem 5.1. The equivariance follows
from Theorem 3.1 and from the following identities {cf. (3.2))

5 _ . 1 x —f
o« 1,/8, P[G] N = EP[O]"(pH - 1) = Eppgy-1 ( P»( P l) - 1) =

=& (o ("I ) s (a @ oy - 1) -

. ‘)+l—1_~lfe 19P)+i_1

Q,

(ii) follows from Lemma 5.3.

(iii) follows from Theorem 3.2 (cf. (i) of the present Theorem, Lemma 5.2, and
part (i) of the proof of Theorem 5.2).

(iv) If (3.4) holds then all assumptions of Theorem 3.3 holds and the desired
assertion follows from Theorems 3.3 and 5.2 (cf. (5.6) and (5.4) and (4.11), (4.12)).
Thus we shall prove (3.4). By A*3 and (5.6), —I,(0, P) > 0 in an open neighborhood
Bc @ of THP) = (0 a*(P)). By A*3 and (5.3). (0, P, ) = (1 — &) I(6, P) +
010,56 = (1 — &) 16, P) + e[pi(e)/mox) — (1 — o) (peox)polo) (o) o) ]
tends to the locally concave (0, P) uniformly on a compact covering of B as ¢ — 0.
Therefore there exists an open neighbourhood B of T*(P) such that —1,(6, P, ) > 0
for all € B and all sufficiently small e > 0. Since, by Lemma 5.2, TP, .)€ B for
all sufficiently small & > 0 (cf. (2.8)) and since 1,(6, P, ) is concave on B for all
sufficiently small ¢ > 0, the points of maxima of 11(0, P, ) on B are unique for all
sufficiently small ¢ > 0 which proves (3.4).

(v) Since we proved in the part (iii) that all assumptions of Theorem 3.3 hold,
(v) follows from the second assertion of Theorem 3.4. [}

Example 5.1. Let us consider the same standard normal p, as in Example 4.1.
By (4.15), (4.16), the assumptions B 1, A*3 hold for the corresponding normal family
Po. A*4 holds for P with densities p of normal, doubly-exponential, uniform or
Cauchy type. For simplicity of calculations let us consider p = p,. For this P it holds

1-2 2
4 o2 o

5.3) Epp} & = cla, 6)" Ep, & for ¢lo,0) = | G =
( ) Eppj o8 \ ) Po,3 \ ) (271)"2 (« + 02)1,2 o+ ol
and for any vector-valued measurable ¢(x) defined on 2 and any ¢ > 0, a € (0. 1).
By (5.2), (4.15) and (5.8),

aw ol 0

. .
m -1
<o¢+az )

Therefore A*4 holds for the standard normal P with
(5.9) % P) = (1 — a)V? forall ae(0,1— 6%).

1(0.0), P) =
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Analogically by (5.3), (4.16) and (5.8),
lo
(5.10) ~1((0, 0*(P)), P) = e(a, (1 — o)/ [ 71~
01i2m
forall ae(l,1— d%)

so that P satisfies (5.6).

Therefore the distorted M. L. E’s (M?, S*/(1 — 2)!/?), a e(0,1 — %), are eugi-
variant strongly consistent estimators of parameters (u, 0) e R™ x [5,67'].

By (5.7), (4.15) and (5.10), the influence curves of these estimators at P, , are
bounded and given by

A/_“[Z
21 -4

exp
(5.11)  @fx) = <

Ix —u

| o 2) (e =)
(1 — gzt o‘( !

m{1 — «)

X —p

2 4

2
_1)
forall xe%,0=(p o)cint®

and for allx (0, 1). As said in Section 4, o{ P) = 1in (4.22) provided P is the standard
normal distribution. This together with (4.22) imply that (5.10) for o = 0 yields the
influence curve of the M. L. E. (M°(P), S%P)) = (Epx, Ep||x||?/m) at P, for all
(#, 0) eint ©. Since all (M* $*/1 — «)!/?) are asymptotically normal with the
asymptotic mean zero and the asymptotic variance Ep (J;3;T) where, by (5.10),
35(x) are uniformly bounded by the integrable 3(x) outside the circle |x| = r
of a large radius r as o« — 0. Thus E,(35(;") tends to the variance E, (3735
of the M. L. E. which is equal to the Cramér-Rao lower bound I{6)™ 1. Therefore,
by a proper choice of o € {0, 1), one can control the efficiency and robustness of the
estimates of location and scale (g, o) € B™ x [§,67*] as claimed at the end of
Section 2.

6. TYPE 2 DISTORTED M. L.E.s

An alternative class of distorted M. L. E.’s T « € (0, 1), is obtained when, instead
of (5.1), one considers the functions

(6.1) ) = In (e +u), flu) = ——) fou) = —

o+ u (@ + u)?’

uel0, 0], ae[0, ).
Here again the functions f,/u) as well as their derivatives are bounded [fom below
so that T* can be considered on domains 2, = 2 and their theory is even simpler
than that presented in Section 5. In particular, the assumptions of Theorem 1.1 follow
from A 1, A 2 so that the following theorem holds.

Theorem 6.1. If A 1, A 2 hold then all T% « (0, o0), exist.
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Analogically, Lemmas 5.1 and 5.2 remain true with

! 71T "
(6.2) [(0,P) = E, —2 . 16, P) = E, [_ﬂﬂ"w - T’L]

%+ pg (04 po)* @+ py
for § e int @, P e 2 (the arguments used in the proof transfer to the present situation
without any modifications). Consequently, Theorem 5.1 remains true with pj(x).
. Po(x)/po(x) in (5.5) replaced by ps(x)/(x + pyfx)).

Lemma 5.3 still follows from the same argument as used in Section 5. However,
T* are only location and not location and scale equivariant (they are equivariant
only if we consider the structural subfamily with (u, 6) € B x {1}). For location
families with the same parent densities as considered in Section 5 one can easily
reformulate Theorem 5.2 and analyze the standard normal example. The same
control of efficiency and robustness as with the type 1 distorted M. L. E.’s is possible.
Details are omitted here.

(Received December 3, 1984.)
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