
Kybernetika

Ladislav Lukšan
Conjugate direction algorithms for extended conic functions

Kybernetika, Vol. 22 (1986), No. 1, 31--46

Persistent URL: http://dml.cz/dmlcz/125545

Terms of use:
© Institute of Information Theory and Automation AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125545
http://project.dml.cz


KYBERNETIKA-VOLUME 22 (1986), NUMBER 1 

CONJUGATE DIRECTION ALGORITHMS 
FOR EXTENDED CONIC FUNCTIONS 

LADISLAV LUKSAN 

The original conjugate direction methods were developed in such a way that they find a mini­
mum of a quadratic function after a finite number of steps making use of perfect line searches. 
These methods have been frequently modified and improved by many authors. Some previously 
proposed modifications of the conjugate direction methods minimize extended quadratic functions 
after a finite number of steps. This paper describes the conjugate direction methods which 
minimize extended conic functions after a finite number of steps. 

1. INTRODUCTION 

Consider the class of objective functions of the form 

(1.1) F(x) = cp.Fx), Ix)) 

where F: Rn -> R is a quadratic function with the constant positive definite Hessian 
matrix G, /: R„ -> R is a linear function with the constant gradient c and q>: R2 -> R 
is a twice continuously differentiable function. Define 

,x)_dq_J_x)_!__lt 

dF 

_ dcpKF{x), Lx» 

and suppose that a(x) > 0 for all x e X cz Rn where either X = R„ or X is a suffi­
ciently large subset of R„ such that all points x e Rn considered in the next sections 
lie in X. These functions generalize a class of so called conic functions that were 
introduced by BJ0rstad and Nocedal [2] for line search and by Davidon [5] and 
Sorensen [22], who had used them for the construction of a new class of the variable 
metric methods for unconstrained minimization. Therefore they will be called the 
extended conic functions. Note that the functions (LI) also generalize a class of the 
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extended quadratic functions that were introduced by Davison and Wong [6], and 
by Spedicato [23] and that can be obtained from (1.1) by setting c = 0. 

In this paper conjugate directions methods for extended conic functions are 
described. The original conjugate direction methods were developed in such a way 
that they find a minimum of the quadratic function after a finite number of steps 
making use of perfect line searches (see [13], [11] for conjugate gradient method 
and [4], [10] for variable metric methods). These methods have been frequently 
modified and improved by many authors. Dixon [7] has proposed conjugate direction 
methods which find a minimum of the quadratic function after a finite number of 
steps without perfect line searches (see also [8], [20]). Sloboda [21], Shirey [19] 
and Abaffy and Sloboda [1] have generalized the conjugate gradient method in such 
a way that it finds a minimum of an extended quadratic function after a finite number 
of steps. Similar generalization of the variable metric methods has been described 
by Spedicato [23] and Flachs [9]. In the previous paper [16], the present author has 
proposed two modifications of the conjugate gradient method which minimize 
a conic function after a finite number of steps. Similar generalization of the variable 
metric methods has been described in [5], [22] and [17]. 

This paper generalizes previous results. It describes the conjugate direction methods 
which minimize both the extended quadratic function and the extended conic function 
after a finite number of steps. These methods use the values and the gradients of the 
objective function only and they need no information of the actual form of the 
function cp: R2 -> R. Section 2 contains some results concerning the extended conic 
functions. It also contains a description of a new algorithm. Section 3 is devoted 
to the derivation and analysis of the basic conjugate direction methods for 
extended conic functions. Section 4 is devoted to the investigation of imperfect 
versions of the conjugate direction methods for extended conic functions. 

2. SOME PROPERTIES OF EXTENDED CONIC FUNCTIONS 

Consider the extended conic function (1.1). In order to simplify the notation, we 
omit the parameter x. We denote by F, g, G and F, g, G the value, the gradient and 
the Hessian matrix of the function F^x) and F[x) respectively at the point x e R„. 
Furthermore, we denote by / and c the value and the gradient of the function l(x). 

Using (IT) we get the following formulae 

F = q>[F, I), 
(2.1) * • > • 

g = ag + %c 

where a = dq>\dF and i = Bcpjdl with a > 0. The vector c that appears in (2.1) 
can be determined by the following lemma. 

Lemma 2.1. Let F: Rn-> R be an extended conic function. Let x e R„ and let st 
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and s2 be two linearly independent directions. Let the gradients g = g(x), gn = 

= g(x + a ; i s ; ), and gi2 = g(x + a ; 2s ;) be linearly independent for 1 _ i = 2. 

Furthermore let the gradients a 1 2 , fl22 and fl32 = a(x 3 2 ) be linearly independent, 

where x32 = 2 1 2 x 1 2 + A 2 2x 2 2 with X12 > 0, A22 > 0, and X12 + X22 = 1. Then 

ceC where 

(2.2) C = se(g, glu g12) n J % , a21, fl22) n &(g12, g22, g32) 

(Herei?(-, •, •) is the subspace spanned by its arguments). 

Fig. 1. 

Proof. The situation is indicated in Figure 1. Since the points x, xn = x + anst. 

and xi2 = x + <xi2st lie on the straight line given by the direction sh we can write 

by (2.1) so that 

and, consequently 

where 

g = ag + xc , 

вn = Vn + <XцatiGst + т ; i c , 

9І2 = &І29 + a i2ff i2Gs ; + т i 2c , 

& - - * - « „ & , + (Í-Ł-I) 
an a \an aj 

£a_f€ = «„&,+ 

<тi2 a 

1 ÍЯa 

= Xf , 

я,= 
Therefore ceH?(g, giU gi2) since A, + 0 follows from linear independence of the 

gradients g, gn and gi2. Since the points x l 2 , x22, and x 3 2 lie also on a straight line, 

we get c e J5?(ff12, fl22, o 3 2 ) by the same considerations. • 

Lemma 2.1 can be used for determination of the vector c in case n ^ 4. We de­

monstrate it by the following example. 
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Example. Consider the objective function of the form 

ffx\ = *2 + * 2 + 4 + (** + *)2 

X, + 1 

Then 

«(*)-
2x. 
2x2 

2x3 

2xл + 2 

x3 + 1 

x 2 + x 2 + x\ + (x 4 + f)2 

(xз + 1)2 

Let x = [0, 0, 0, 0] T , Sl = [1, 0, 0, 0 ] T and s2 = [0, 1, 0, 0] T . Let an = 1 and 
a i 2 = 2 for 1 = i g 2 and let x 3 2 = x + s. + s2. Then 

« = [ 0 , 0 , - 1 , 2 ] \ gn = [2,0, - 2 , 2 ] \ a 1 2 = [4, 0, - 5 , 2 ] T , 

g21 = [0, 2, -2, 2]
T
 , g22 = [0, 4, -5, 2]

T
 , a

3
2 = [2, 2, -3, 2]

T
 , 

so that 

&(9>9u,9iZy = AL°> !> °> °]T) = ^ 1 > 

-?(t7,021, 022Y = -?([i, 0,0, o]T) = < r 2 , 

- 2 W , 022, g32y = -?([i, 1, o, - 2 7 ) = r 3 . 

Therefore C = ( f , u f 2 u f ^ Y = .S?([0, 0, 2, 0]T) and we can see that c = 
= [0, 0, 1, 0] T e C. 

The above example shows the process for determining a basis in C. This process 

consistsinthe determination of bases in ir

1 = &(g, glt, g12y,'f2 = &(g, 02i, gzz)1, 

and y 3 = S?{g12, g22, g32)
x and then in construction of a basis in C = ( f t u 

u y2 u f a ) 1 . Note that this process cannot be used when n ?S, 3. If this is the case 

then usually i/\ = i^2 = •f3 = 0 so that dim C = n. Therefore we always consider 

the extended quadratic model whenever n ^ 3. 

If the above procedure is used for the general objective function then usually 

f 1 u f 2 u f 3 = R„ and, consequently, C = 0 for n > 4. Therefore we again 

use the more simple extended quadratic model if this situation arises. 

Having the vector c, we can determine the ratios a\a1 and a\a2 by means of three 

point formula. 

Lemma 2.2. Let F: R„ -> R be an extended conic function. Let x, x1 ~ x + a1s, 
and x2 = x + a2s be three different points such that the gradients g, gu and g2 are 
linearly independent. Then 

a gJPggT

2Pg2 - gJPg2gJPg <x2 - a. 

(2.3) 

0-2 

gJPgigJPgг - (ûJPg2У 

gJPffiffìPg - ffJPggJPgi <ч 

gJPgig

т

2Pg2 - (gJPg2)
2 
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where 

(2.4) P = I -

Proof. Using (2.1) we can write 

g = ag + xc , 

Since Pc = 0, we get 

so that 

01 = G\9 + ZlGlGs + -jC, 

92 = °20 + «2a2Gs + x2c . 

P^-P°=a1PGs, 
ax a 

P ^ - P l = a,PGs, 

T „ a2 Trv a, a, — a2 T „ 
- gJPgi - + g\Pgi - = - -2 gJPg • 

The last two equations have the solution (2.3) provided 

(2.5) g[PgiglPg2 - {gJPg2)
2 * o . 

But (2.5) is valid if and only if Pgt and Pg2 are linearly independent (the Schwartz 
inequality). It certainty holds since in the opposite case the vectors Pg and PGs 
have to be linearly dependent and, consequently, the vectors g, Gs, and c have also 
to be linearly dependent, which contradicts the assumed linear independence of the 
vectors g, gx, and g2. • 

Note that (2.3) turns into the well known formula for determination of parameters 
of the extended quadratic function when P = I (see [19] and [9]). 

Both Lemma 2.1 and Lemma 2.2 assume linear independence of three gradients 
g(x), gix + «js), and g{x + a2s), say, lying on a straight line. This situation arises 
only if Gs is not parallel to the vectors c and Pg(x + as) + 0 for all a e R. The 
following lemma allows us to remove this requirement and gives the possibility 
of determining the parameter a2 by means of two point formula in the case when 
the conjugate directions are generated without perfect line searches. 

Lemma 2.3. Let F: R„ —> R be an extended conic function. Let x and x2 = x + 
+ a2s be two different points and let v + 0 be a vector, which is conjugated to the 
vector s (i.e. vTGs = 0), such that vTc = 0 and vTg 4= 0. Then 

(2.6) £ . - - £ ? ? ' ; 
a vTg 
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Proof. Using (21) we can write 

g = ag + xc , 

02 = <*2§ + «2a2Gs + x2c . 

Since vTc = 0 and vTGs = 0, we get vTg = avTg and vTg2 = a2v
Tg so that (2.6) 

is valid provided vTg + 0. • 

Note that (2.6) can be used also for an extended quadratic function. The condition 
vTc = 0 is satisfied automatically in this case. 

The following lemma is essential for the minimization of an extended conic function. 
Note that it is unnecessary for extended quadratic function. 

Lemma 2.4. Let F: Rn -> R be an extended conic function. Let xxe Rn and x2 e Rn 

be two different points such that Pgx = 0 and Pg2 = 0. Let x* e Rn be a critical 
point of the function F(x). Then there exists a steplength a* such that 

(2.7) x* = x2 + a*(x2 - x.) . 

Proof. Since Pgx = 0 and Pg2 = 0, we can write 

9i = °"101 + txC = V > 

g2 = <y202 + ?2c = A2c . 
Therefore 

0i = he , 

g2 = X2c 
for ax > 0 and a2 > 0 so that 

x2 - x, = G"1^ - tfi) = {h - *i) G-'c . 

Note that X2 + Xx since we assume x2 =f= xx (ax > 0 and a2 > 0 follows from the 
definition of the extended conic function). But x* is a critical point of the extended 
conic function F(x) so that g* = 0 and also Pg* = 0. Therefore, we get 

x*-x2 = G-\g*-g2) = (X*-X2)G-lc 

using the above considerations. Combining these equations, we obtain (2.7) where 
a* = (X* - X2)I(X2 - Xx). • 

Let x°x e Rn be an arbitrary point. If we minimize the extended conic function 
(1.1) subject to the single linear constraint l(x) = l(x°), we get the point xx e R„ 
such that Pgx = 0. Let x°2 = xx + <xxc with ocx +- 0. Then l(x°2) +• l(x°x) and if we 
minimize the extended conic function (1.1) subject to the constraint l(x) = l(x2), 
we get the point x2 e R„ such that x2 + xx and Pg2 = 0. Using Lemma 2.4, we find 
the minimizer x* e R„ of the extended conic function (1.1) (if it exists) by the formula 
(2.7) where a* is a steplength chosen by the perfect line search. Since the functions 
cp(F(x), l(x°)) and (p[F^x), l(x2)) are extended quadratic functions and since we 
suppose that G > 0 and a(x) > 0, the points xx e Rn and x2 e Rn such that Pgx = 0 
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and Pg2 = 0 always exist and they can be obtained by means of usual methods 
developed for linearly constrained minimization of the extended quadratic functions. 
Note that these methods have to be designed in such a way that they use no values 
of the function x(x), since these values cannot be determined by the above theory. 

Now we will describe an outer algorithm which summarizes our results. We 
denote by Ji(x, c) a linear manifold which contains the point x e R„ and which 
is orthogonal to the vector c so that Ji(x, c) = R„ in case c = 0. 

Algorithm 2.1. 

Step 1: Determine an initial point x e R„ and compute the value E : = E(x) and 
the gradient g := g(x). Set k := 0. 

Step 2: If the termination criteria are satisfied (for example if |a | | is sufficiently small) 
then stop. 

Step 3: If k = 0 then compute the vector c by means of Lemma 2.1 and go to Step 4. 
If k = 1 then set xt := x, s : = —g and go to Step 5. If k = 2 then go to 
Step 4. If k = 3 then set x2 := x, s := — sgn (gr\x2 — x t)) (x2 — x t) and 
go to Step 6. 

Step 4: If c + 0 then set k := k + 1. Using some conjugate direction subalgorithm, 
determine a minimizer x* e R„ of the extended conic function E: R„ -> R 
on the linear manifold Ji(x, c) and compute the value E* : = E(.\*) and the 
gradient g* := g(x*). Go to Step 7. 

Step 5: Set k := k + \. Using an imperfect line search procedure, determine the 
the point x* = x + a*s such that F(x*) < Fyx) and compute the value 
F* := F(x*) and the gradient g* := g(x*). Go to Step 7. 

Step 6: Set k : = 0. Using a perfect line seaich procedure, determine the point 
x* = x + u*s such that x* = arg min E(x + as) and compute the value 

ago 
E* : = F(x*) and the gradient g* : = g(x*). 

Step 7: Set x := x*, F := F*, g := g* and go to Step 2. 

Comments. 

1) The vector c is computed by means of Lemma 2.1. If the computations are not 
exact then usually dim C =t= 1. Therefore we have to use some tolerances in order 
to exclude the almost linearly dependent vectors. Note that dim C = 1 and, conse­
quently, c # 0 indicates that E : R„ ->• R is probably an extended conic function. 
If the objective function has a general form then usually c = 0 and the algorithm 
reduces to one for minimizing an extended quadratic function. 

2) The vectors s1 and s2 which appears in Lemma 2.1 can be chosen arbitrarily. 
But it is advantageous to use them in the minimization process. Therefore we can 
set c = 0 initially and use a conjugate direction subalgorithm as in Step 4 to generate 
the points x, xtl = x + a.jSj, x12 = x + a12su x21 = x12 + <x21s2, x22 = x12 + 
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+ cc22s2. Then c eC where C is given by (2.2) while g32 is the gradient computed 
at the additional point x32 = (x, 2 + x22)/2. If c = 0, then an extended conic function 
is not a good model for the objective function and we continue in a conjugate direc­
tion subalgorithm with c = 0. If c + 0 then F: R„-+ R is probably an extended 
conic function and we go to Step 4. 

3) The minimizer x* e R„ desired in Step 4 always exists and it is unique for an 
extended conic function since this function has the same behaviour as an extended 
quadratic function in the manifold Ji(x, c) and since G > 0 and <J(X) > 0. 

4) Step 5 serves for the determination of the point x* e R„ such that l(x*) 4= l(x). 
It is advantageous to use an imperfect line search procedure for this purpose since 
it reduces the value of the objective function. 

5) The result of Step 6 depends on the behaviour of the extended conic function. 
If the extended conic function has several critical points then all these points lie 
on the line defined by x ans s. On the other hand, if the line search procedure fails 
in Step 6 then the extended conic function has no minimizer. This is the only case 
when the line search can fail in the algorithm since it cannot fail in the manifold 
Ji(x, c). 

Lemma 2.4 shows that Algorithm 2.1 finds a minimizer of an extended conic 
function (if it exists) after at most two cycles provided the conjugate direction sub-
algorithm used in Step 4 gives the required extremal points. The conjugate direction 
subalgoritms which can be used in Step 4 are described in the next two sections. 
Note that Algorithm 2.1 uses the values and the gradients of the objective function 
only and it need no information of the actual form of the function q>: Rn^> R. 

3. BASIC CONJUGATE DIRECTION METHODS 

Let Ji(xu c) be a linear manifold which contains the point xt e R„ and which is 
orthogonal to the vector c. Denote by m the dimension of the manifold Ji(xt, c). 
Note that m = n if c = 0 and m — n — 1 if c + 0. The basic conjugate direction 
methods for minimizing extended conic functions over the manifold Ji(xu c) are 
based on the iterative scheme 

(3.1) x i + 1 = x ; + a ; s ; , ieN 

where s;, i e N, are direction vectors orthogonal to the vector c so that 

(3.2) sTc = 0 , ieN 

and where ah i e JV, are steplengths chosen by perfect line searches so that 

(3.3) sTff.+ 1 = 0 , ieN 

(N is the set of natural numbers). 
The following lemma is essential for the basic conjugate direction methods. 
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Lemma 3.1. Let F: R„ -» R be an extended conic function. Consider the iterative 
scheme (3.1) — (3.3). Let the direction vectors sh 1 = i = m, be nonzero and mutually 
conjugate (i.e. st + 0, Sj 4= 0 and sJGsj = 0 for 1 < i < j < m). Then Pam + 1 = 0 
where P = / f o r c = 0 o r P = 7 — ccTlcrc for c #= 0. 

Proof. See [16]. • 

Conjugate directions, assumed in lemma 3.1, can be generated by the conjugate 
gradient method described in [16] which is a generalization of the methods proposed 
in [13] and [11]. In this case, 

(3.4) 5 l = -P9l 

and 

S i = - P 9 i + 4~r-d^ 
for 1 < i sS m where P = / f o r c = 0 o r P = 7 - ccT\cTc for c # 0 and where 

(3.5) -/;_! = Xf — X;_! = «;_!$;_! 

* - _ - * - - - - * 
<7» * . - l 

Therefore we can use the following algorithm. 

Algorithm 3.1. (Conjugate gradient method.) 

Step 1: Having the point x e R„, the value F = F(x) and the gradient g = g(x), 
choose an initial value a = a(x) (usually set a : = l). If c = 0 then set 
m:= n and P : = I,else set m : = n — 1 and P:= I — c^lc^c. Set k: = 0 and 
/ : = 0. 

Step 2: If the termination criteria are satisfied (for example if \\Pg\\ is sufficiently 
small) then set / := 1. If / = 1 then stop. 

Step 3: If k = 0 then set s := - P o else set 

s : , _ P ! , + Z ^ d . 

Step 4: Use a perfect line search procedure to determine two points xt : = x + axs, 
x2 : = x + a2s such that sT g(x2) = 0. Compute the values Ft : = P(x1), 
E2 := E(x2) and the gradients gt := g(xt), g2 := g(x2). 

Step 5: If the gradients g, git and g2 are linearly dependent then set / = 2 else 
compute the value <r2 := o(x2) by Lemma 2.2 (see (2.3)) and set 

d : = x2 — x , 

y:=3-l-l. 
o2 0" 

Step 6: Set k := k + 1. If k = n then set k : = 0. If I - 0 then set cr := <r2. Set 
x : = .x2, F := F2,g := g2 and go to Step 2. 
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Conjugate directions orthogonal to the vector c can be also generated by the 

variable metric methods proposed in [12]. These methods use the direction vectors 

(3.6) st = - - Higi, ieN 

where Hj = P a n d 

(3.7) »„,_,, + M_5^af! + 
y\di yJHtyi 

^ (y>H*Ut-Hiy)i(
yl^di-Hiyi 

ylHtyt \ yjdi 7 V yjdi 

for i e N (Broyden's class, see [3]). Here &t is the value of a free parameter and 

(3.8) dt = xi+i — Xi = atSi, 

yt = im-ii 
C f + i at 

for i e N. Most frequently used variable metric methods correspond to the values 

Sj = 0 (DFP method) or St = 1 (BFGS method). Note that 

dlyi = d r ( i l ± l - d 1 \ c c i _ g l H i g i > Q 

\ai + 1 a(J a-

if Pgt 4= 0, which is a necessary assumption for the positive definiteness of the matiix 

(3.7). The variable metric methods can be realized by the following algorithm. 

Algorithm 3.2. (Variable metric methods.) 

Step 1: Having the point xeR„ the value F = F(x) and the gradient g = g(x), 

choose an initial value a = a(x) (usually set a : = 1). If c = 0 then set 

m := n and P := I else set m : = n — 1 and P := I — ccTlcrc. Set k : = 0 

and? : = 0. 

Step 2: If the termination criteria are satisfied (for example if |Pfl|| is sufficiently 

small) then set / : = 1. If t _t 1 then stop. 

Step 3: If k = 0 then set H : = P else set 

H : = я + ^_я^I + ^ 
\yTd y)\yTd yTd yrHy yrHy 

for a given value of the parameter 9. Set s : = —H(g\a). 

Step A: Use a perfect line search procedure to determine two points xi := x + 

+ <xts, x2 : = x + a2s such that sT g(x2) = 0. Compute the values Fx : = 

:= F(xt), F2 : = F(x2) and the gradients g^ : = gix-^), g2 : = g2(x2). 

Step 5: If the gradients g, gx, and g2 are linearly dependent then set I := 2 else 
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compute the value a2 := a(x2) by Lemma 2.2 (see (2.3)) and set 

d : = x2 — x , 

y:=9-±-9-. 
a2 a 

Step 6: Set k := k + 1. If / = 0 then set a: = a2. Set x := x2, F := F2, g := g2 

and go to Step 2. 

Both Algorithm 3.1 and Algorithm 3.2 use a perfect line search procedure in Step 4. 
The following lemma shows that the perfect line search is reduced to the computa­
tion of three function values and three gradients only, in the case when Gs is not 
parallel to the vector c and, at the same time, Pg(x + as) + 0 for all a e R (see 
comment after Lemma 2.2). 

Lemma 3.2. Let F : = Rn -> R be an extended conic function. Let sTc = 0 and 
let x, x0 = x + u0s, and xt = x + a^ be three different points such that the gra­
dients g, g0, and gt are linearly independent. Then sTg2 = 0 where g2 — gix + a2s) 
with 

(3.9) 

l - ^ 1 -s ffi g 
ST0 ffj 

Proof. Since the gradients g, g0, and aa are linearly independent, we can determine 
the ratio a\ax by Lemma 2.2. Since 

02 = Gig + a2a2Gs + x2c 

by (2.1) and since sTc = 0 by the assumption, we get 

sTg2 =. a2s
Tg + a2a2s

TGs = 0 
so that 

But 

s'g 
a2 = - — • - . 

sTGs 

1 U + a, sTGí 

s 9 a \ s'g 

by (2.1). Thus (3.9) follows from the last two equalities. • 

Note that the formula (3.9) has been already used for extended quadratic functions 
(see [9]). This formula cannot be used when either Pg(x + a*s) = 0 for some 
steplength a* e R or Gs is parallel to the vector c. Therefore we have to use the general 
line search procedure if this situation arises. Note also that the above exceptional 
cases terminate both Algorithm 1.1 and Algorithm 3.2. If Pg(x + a*s) = 0 for 
some steplength a* e R then, obviously, a* = a2 and the subalgorithm terminates 
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with the value / = 1. If Gs is parallel to the vector c then the subalgorithm terminates 
with the value / = 2, which indicates that the required extermal point has not been 
found. But the direction s is parallel to the vector G~1c in this case, so that we have 
got a vector parallel to the difference x2 — xx used in Step 6 of Algorithm 2.L 
Therefore we can consider also the situation when the subalgorithm does not find 
the required extremal point in either cycle of the outer algorithm. Obviously, Algo­
rithm 2.1 has to be slightly modified in this case. 

4. THE IMPERFECT CONJUGATE DIRECTION METHODS 

Let J/(xlt c) be a linear manifold defined in the previous section. Let m = n 
if c = 0 or m = n — 1 if c 4= 0. The imperfect conjugate direction methods for 
minimizing extended conic functions over the manifold Jl(xx, c) are based on the 
iterative scheme (3.1)-(3.2) where a;, ieN, are steplengths that are chosen by 
imperfect line searches. The following lemma is essential for the imperfect conjugate 
direction methods. 

Lemma 4.1. Let F: Rn -+ R be an extended conic function. Consider the iterative 
scheme (3.1)-(3.2) with a ; 4= 0 for 1 jg i £ m. Let the direction vectors st, 1 <. i <t 
^ m be nonzero and mutually conjugate (i.e. s, 4= 0, Sj 4= 0 and sJGsj = 0 for 
I <. i < j <: m). Let xm + 2 = xm+1 + ocm+1sm+1 where a m + 1 = 1 and 

- 1 d]gi+1 
Sm+1 ~ ~ L ft ">' 

>-=i ai+1 d]yt 

with dt, 1 ^ i ^ ra, and yt, X <. i <. m, given by (3.8). Then Pgm+2 —• 0 where 
P = Z for c = 0 or P = J - ccTjcrc for c 4= 0. 

Proof. We confine ourselves to the case when c 4= 0 (the proof for c = 0 is 
similar). Since the direction vectors s;, 1 <. i <. m, are nonzero and mutually con­
jugate, we get 

V __L - G"1 - g ~ l c c T g ~ 1 

ksJGsi SG-h ' 

This equality can be easily verified by multiplying it by the linearly independent 
vectors Gsh 1 <, i <, m, and c. Therefore, we can find a minimizer xm+2 of both 
the quadratic function F(x) and the extended conic function F(x) on the manifold 
Ji(x1, c) by the Newton step. Thus 

(4.1) xm+2 = xm+1 - (G-- - ^ P - ) gm+1 = 

_ V S'S' Pi V difi 9i+l 
— -*ra+l 2-i ~~~~~~~~- Wra+1 = Xm+1 — l_, ~ 

• = i s ; G s ; ;=i d\yt ai+1 

since a ; 4= 0 and dfyj - 0 for i < j <. m by the assumption. D 
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Conjugate directions, assumed in Lemma 4.1, can be generated by the imperfect 
conjugate gradient method described in [16] which is a generalization of the methods 
described in [8] and [20]. In this case 

S l = -ht 

(4.2) and 

y\-id,-i 

for 1 < i <. m where 

hi = PQi 

(4.3) and 

-T-l-Vl-l L 
Лi = IУ-i -

íľ-iЛi-i 

for 1 < / = m with d.-.., 1 < i ^ m, and J>,_i, 1 < i <. m, given by (3.5). As above, 
P = 7 for c = 0 or P = J - cc7cTc for c + 0. Note that s, * 0 only if h; + 0 
(regular case). Using the above considerations, we can state the following algorithm. 

Algorithm 4.1. (Imperfect conjugate gradient method.) 

Step 1: Having the point xeR„, the value F = F(x) and the gradient g = g(x) 
choose an initial value a = a(x) (usually set a := 1). If c = 0 then set 
m := m and P := I else set m : = n — 1 and P := I — ccTJcTc. Set k : = 0 
and /: = 0. 

Step 2: If the termination criteria are satisfied (for example if | |Pa | | is sufficiently 
small) then set / : = 1. If / = 1 then stop. 

Step 3: If k = 0 then set h := Pg and u := 0 else set 

and 

dтv 
h-.^Py-^h 

dтh 

ídTg , 
u := u -2. d . 

<7<P> 

Step 4: If either k = m or \\h\\ = e|a|| then set fc := - 1 . 
Step 5: If k < 0 then set s : = « and go to Step 6. If k = 0 then set s : = — h and go 

to Step 6. If fc > 0 then set 

, yTh i 
s : = -h + ^—d 

yTd 
and go to Step 7. 

Step 6: Use an imperfect line search procedure to determine two points xt:= x + 
otjs, xz := x + a2s such that F(x2) < F(x) and, moreover, sT g(x2) 4= 0 
in the case when k — 0. Compute the values Ft: = F(x±), F2 : = F(x2) and the 
gradients gx := g(xt), g2 := g(x2). If the gradients g, gu and g2 are linearly 
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dependent then set / := 2 and continue with the line search to obtain the 
point x2 := x + a2s such that sTg(x2) = 0 else compute the value a2 : = 
: = a(x2) by Lemma 2.2 (see (2.3)). If / = 0 then go to Step 8 else go to Step 9. 

Step 7: Use an imperfect line search procedure to determine the point x2 : = x + cc2s 
such that sT g(x2) #= 0 and F(x2) < F(x). Compute the value F2 := F(x2) 
and the gradient g2 := g(x2). Compute the value a2 := a(x2) by Lemma 
2.3 (see (2.6)). 

Step 8: If k = 0 then set 
d : — x2 — x , 

j ; ; _ _ _ _ _ . 
er2 a 

Step 9: Set k := k + I. If / = 0 then set a := a2. Set x :_ x2, F := E2, and 
a := o2. Set v := s and go to Step 2. 

Conjugate directions orthogonal to the vector c can be also generated by the 
projection methods. These methods use the direction vectors 

(4.4) . = - - QiQi 

for \ <. i <. m where Qt = P and 

(4.5) e , . 1 = e,-_^_LT
 + 

9> rtto^^l^^-tot 
ylQiy, V Ĵ 7̂ i ' ' J \ yX 

for 1 _ / < m (Lenard's class, see [15]). Here _, is the value of a free parameter 
and dh yt are vectors defined by (3.8) for 1 ^ i < m. Most frequently used projection 
method corresponds to the value .,- = 0 (see [24]). Note that s; + 0 only if Q.fli 4= 0 
(regular case). Furthermore 

_,. i = Q.-G. , = - QiGQifli 

so that (4.5) is defined for Q^i 4= 0 and a,- 4= 0. The projection methods can be 
realized by the following algorithm. 

Algorithm 4.2. (Projection methods.) 

Step 1: Having the point x e Rn, the value F = F(x), and the gradient g = g(x), 
choose an initial value a = a(x) (usually set a : = 1). If c = 0 then set m : = 
:= n and P :- I else set m :- n - 1 and P := I - ccTjcTc. Set fc := 0 
and / := 0. 

Step 2: If the termination criteria are satisfied (for example if |Pa | | is sufficiently 
small) then set / := 1. If / = 1 then stop. 
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Step 3: If k = 0 then set Q := P and « := 0 else set 

e !_e-_4___ + ^(_s___ ( bv_s___ ( &y 
/fij; /_A/<< A/< i V 

and 1 dTg , 
u:= u d. 

adTy 
Step 4: If either fe = m or \\Qg\\ < e\\g\\ then set fc := —1. 
Step 5: If fe < 0 then set s := u and go to Step 6. If fc = 0 then set s := -Qg and 

go to Step 6. If fe > 0 then set s : = — Qg and go the Step 7. 
Step 6: Use an imperfect line search procedure to determine two points xx := x + 

+ axs, x2 := x + a2s such that F(x2) < F(x) and, moreover, sT g(x2) =j= 0 
in the case when fc ^ 0. Compute the values Fx := F(x1), F2 := FKx2) 
and the gradients gx := g(xx), g2 := a(x2). If the gradients g, gu and g2 

are linearly dependent then set / := 2 and continue with the line search 
to obtain the point x2 : = x + a2s such that sT g(x2) = 0 else compute the 
value a2 := a(x2) by Lemma 2.2 (see (2.3)). If / = 0 then go to Step 8 else 
go to Step 9. 

Step 7: Use an imperfect line search procedure to determine the point x2 := x + a2s 
such that sT g(x2) + 0 and F(x2) < F(x). Compute the value F2 : = F(x2) 
and the gradient g2 := g(x2). Compute the value a2 := a(x2) by Lemma 
2.3 (see (2.6)). 

S.ep8: If fe = 0 then set 
d := x2 — x , 

y:=g-A-g-. 
a2 a 

Step 9: Setfe := fe + l .If / = 0 then set a := a2. Set x := x2, F := E2 and o := a2. 
Set u : = s and go to Step 2. 

Both Algorithm 4.1 and Algorithm 4.2 find a minimum of an extended conic 
function on the manifold Jt(xu c) after at most m + 1 imperfect steps in the regular 
case, when either h; 4= 0 (Algorithm 4.1) or £),-_<; * 0 (Algorithm 4.2) for Pgt *- 0. 
However, it is necessary to use the steplength <x,„+ x = 1 in the last step. It is interesting 
that these algorithms minimize an extended quadratic function with no perfect line 
search in the regular case. Note that both Algorithm 4.1 and Algorithm 4.2 are 
designed in such a way that they can be used for an arbitrary objective function. 
Obviously, the finite step convergence does not appear in the general case. 

The algorithms are described in this section can terminate either with the value / = 1 
or with the value / = 2. These two cases has been analyzed in the previous section. 
Note that the above approach can be used for the modification of the other imperfect 
conjugate direction methods such as those proposed in [18] and [14]. 

(Received December 19, 1984.) 
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